UNIVALENCE CONDITIONS FOR A NEW GENERAL INTEGRAL OPERATOR

R. Bucur, D. Breaz

Abstract. In this paper, we obtain univalence conditions for a new general integral operator defined on the space of normalized analytic functions in the open unit disk U. Some corollaries follow as special cases.

2010 Mathematics Subject Classification: 30C45.
Keywords: keywords, phrases.

1. Introduction

Let $U=\{z:|z|<1\}$ be the open unit disk of the complex plane and \mathcal{A} the class of all functions of the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3} \ldots, \tag{1}
\end{equation*}
$$

which are analytic in U and satisfy the condition $f(0)=f^{\prime}(0)-1=0$.
Consider $S=\{f \in \mathcal{A}: f$ is univalent in $U\}$.
A function $f \in \mathcal{A}$ is said to be starlike of order $\delta, 0 \leq \delta<1$, that is $f \in S^{*}(\delta)$, if and only if

$$
\operatorname{Re}\left[\frac{z f^{\prime}(z)}{f(z)}\right]>\delta \quad(z \in U) .
$$

A function $f \in \mathcal{A}$ is said to be convex of order $\delta, 0 \leq \delta<1$, that is $f \in K(\delta)$, if and only if

$$
\operatorname{Re}\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right]>\delta \quad(z \in U)
$$

It is well known that $S^{*}(0) \equiv S^{*}$ and $K(0) \equiv K$ are the classes of starlike and convex functions in U, respectively.

Frasin and Jahangiri [8] defined the family $B(\mu, \lambda), \mu \geq 0,0 \leq \lambda<1$ consisting of functions $f \in \mathcal{A}$ which satisfy the condition

$$
\begin{equation*}
\left|f^{\prime}(z)\left[\frac{z}{f(z)}\right]^{\mu}-1\right|<1-\lambda, \quad(z \in U) \tag{2}
\end{equation*}
$$

The family $B(\mu, \lambda)$ is a comprehensive class of analytic functions. For instance, we have $B(1, \lambda)=S^{*}(\lambda)$ and $B(2, \lambda)=B(\lambda)$ (see Frasin and Darus [9]).

In the present paper, we define a new integral operator given by

$$
\begin{equation*}
F_{n, \zeta}(z)=\left(\zeta \int_{0}^{z} t^{\zeta-1} \prod_{i=1}^{n}\left[\frac{t f_{i}^{\prime}(t)}{g_{i}(t)} e^{h_{i}(t)}\right]^{\alpha_{i}} d t\right)^{\frac{1}{\zeta}} \tag{3}
\end{equation*}
$$

where parameters $\zeta \in \mathbb{C} \backslash\{0\}, \alpha_{i} \in \mathbb{C}$ and the functions $f_{i}, g_{i}, h_{i} \in \mathcal{A}, i \in\{1, \ldots, n\}$, are so constrained that the integral operator (3) exists.

The operator $F_{n, \zeta}$ extend the following integral operators:
(i) For $\zeta=1, e^{h_{i}(t)}=1, g_{i}(t)=t$ and $\alpha_{i}>0$ we have $I_{n}(f)(z)=\int_{0}^{z} \prod_{i=1}^{n}\left[f_{i}^{\prime}(t)\right]^{\alpha_{i}} d t$, that was defined by D. Breaz, S. Owa and N. Breaz in [1], and this operator is a generalization of the integral operator $I_{\alpha}(f)(z)=\int_{0}^{z}\left[f^{\prime}(t)\right]^{\alpha} d t$, discussed in [10, 16, 18].
(ii) For $\zeta=1, g_{i}(t)=t$ we get $G_{n}(z)=\int_{0}^{z} \prod_{i=1}^{n}\left[f_{i}^{\prime}(t) e^{h_{i}(t)}\right]^{\alpha_{i}} d t$ which was studied by A. Oprea and D. Breaz in [14] and this operator is a generalization of the integral operator $I_{1}(f, h)(z)=\int_{0}^{z}\left[f^{\prime}(t) e^{h(t)}\right]^{\alpha} d t$, defined and studied by N. Ularu and D. Breaz in [12, 13].
(iii) For $\zeta=1$ and $e^{h_{i}(t)}=1$ we obtain $I_{n}(z)=\int_{0}^{z} \prod_{i=1}^{n}\left[\frac{t f_{i}^{\prime}(t)}{g_{i}(t)}\right]^{\alpha_{i}} d t$, that was introduced by R. Bucur and D. Breaz in [6] and this operator extends the integral operator $I_{\alpha}(z)=\int_{0}^{z}\left[\frac{t f^{\prime}(t)}{g(t)}\right]^{\alpha} d t$, defined and studied in [2].
(iv) For $\zeta=1, n=1$ and $f_{1}(t)=t$ we have $G_{\alpha}(z)=\int_{0}^{z}\left[\frac{t e^{h(t)}}{g(t)}\right]^{\alpha} d t$ defined and disscused by R. Bucur, L. Andrei and D. Breaz in [3].
(v) For $n=1$ and $e^{h_{1}(t)}=1$ we have $I_{\alpha}^{\zeta}(z)=\left\{\zeta \int_{0}^{z} t^{\alpha+\zeta-1}\left[\frac{f^{\prime}(t)}{g(t)}\right]^{\alpha} d t\right\}^{\frac{1}{\zeta}}$, which was studied by R. Bucur, L. Andrei and D. Breaz in [4].
(vi) For $\zeta=1$ we obtain the integral operator $F(z)=\int_{0}^{z} \prod_{i=1}^{n}\left[\frac{t f_{i}^{\prime}(t)}{g_{i}(t)} e^{h_{i}(t)}\right]^{\alpha_{i}} d t$, introduced and studied by R. Bucur and D. Breaz in [5].

Recently, many authors studied the sufficient conditions for the univalence and convexity of certain families of integral operators in the open unit disk and some of them motivated our work(see $[7,19])$.

In order to derive our main results, we have to recall here the following:
Lemma 1. (Pascu [15]) Let γ be a complex number, Re $\gamma>0$ and let the function $f \in \mathcal{A}$. If

$$
\frac{1-|z|^{2 \operatorname{Re} \gamma}}{\operatorname{Re} \gamma} \cdot\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1
$$

for all $z \in U$, then for any complex number $\zeta, \operatorname{Re} \zeta \geq \operatorname{Re} \gamma$, the function

$$
\begin{equation*}
H_{\zeta}(z)=\left[\zeta \int_{0}^{z} t^{\zeta-1} f^{\prime}(t) d t\right]^{\frac{1}{\zeta}} \tag{4}
\end{equation*}
$$

is regular and univalent in U.
Lemma 2. (Pescar [17]) Let ζ, c be complex numbers with $\operatorname{Re} \zeta>0$ and $|c| \leq 1, c \neq$ -1. If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\left.\left.|c| z\right|^{2 \zeta}+\left(1-|z|^{2 \zeta}\right) \frac{z f^{\prime \prime}(z)}{\zeta f^{\prime}(z)} \right\rvert\, \leq 1 \tag{5}
\end{equation*}
$$

for all $z \in U$, then the function H_{ζ} given by (4) is univalent in U.
Lemma 3. (The General Schwarz Lemma [11]) Let f be regular function in the disk $U_{R}=\{z \in \mathbb{C}:|z|<R\}$ with $|f(z)|<M$, for M fixed. If f has in $z=0$ one zero with multiply bigger than m, then

$$
|f(z)| \leq \frac{M}{R^{m}}|z|^{m}, \quad\left(z \in U_{R}\right)
$$

The equality case hold only if $f(z)=e^{i \theta} \frac{M}{R^{m}} z^{m}$, where θ is constant.

2. Main Results

In the folowing theorem we give sufficient conditions of univalence of the operator $F_{n, \zeta}$ defined in (3), by using Pascu univalence criterion.
Theorem 4. Let $\gamma, \alpha_{i} \in \mathbb{C}, \operatorname{Re} \gamma>0$ and $N_{i}, M_{i}, P_{i} \geq 1, i \in\{1, \ldots, n\}$, such that

$$
\begin{gather*}
(2 \operatorname{Re} \gamma+1)^{\frac{2 \operatorname{Re} \gamma+1}{2 \operatorname{Re} \gamma}} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\alpha_{i}\right|\left[1+\left(2-\lambda_{i}\right) N_{i}^{\mu_{i}-1}\right]+2 \operatorname{Re} \gamma \sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\alpha_{\mathrm{i}}\right|\left[\mathrm{M}_{\mathrm{i}}+\left(2-\eta_{\mathrm{i}}\right) \mathrm{P}_{\mathrm{i}}^{\nu_{\mathrm{i}}}\right] \\
\leq \operatorname{Re} \gamma(2 \operatorname{Re} \gamma+1)^{\frac{2 \operatorname{Re} \gamma+1}{2 \operatorname{Re} \gamma}} \tag{6}
\end{gather*}
$$

If $f_{i} \in \mathcal{A}, g_{i} \in B\left(\mu_{i}, \lambda_{i}\right), h_{i} \in B\left(\nu_{i}, \eta_{i}\right)$ satisfies

$$
\begin{equation*}
\left|\frac{f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right| \leq M_{i}, \quad\left|g_{i}(z)\right|<N_{i}, \quad\left|h_{i}(z)\right|<P_{i} \tag{7}
\end{equation*}
$$

for all $z \in U, i \in\{1, \ldots, n\}$, then for every complex number $\zeta, \operatorname{Re} \zeta \geq \operatorname{Re} \gamma$, the function $F_{n, \zeta}$ given by (3) is in the class S.
Proof. We begin by considering the function J be defined by

$$
\begin{equation*}
J(z)=\int_{0}^{z} \prod_{i=1}^{n}\left[\frac{t f_{i}^{\prime}(t)}{g_{i}(t)} e^{h_{i}(t)}\right]^{\alpha_{i}} d t, \quad z \in U \tag{8}
\end{equation*}
$$

After we calculate the first-order and the second-order derivatives, we obtain

$$
\begin{equation*}
\frac{z J^{\prime \prime}(z)}{J^{\prime}(z)}=\sum_{i=1}^{n} \alpha_{i}\left[1+\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}-\frac{z g_{i}^{\prime}(z)}{g_{i}(z)}+z h_{i}^{\prime}(z)\right] \tag{9}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left|\frac{z J^{\prime \prime}(z)}{J^{\prime}(z)}\right| \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|\left\{1+|z| \cdot\left|\frac{f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right|\right. & +\left|g_{i}^{\prime}(z)\left(\frac{z}{g_{i}(z)}\right)^{\mu_{i}}\right| \cdot\left|\frac{g_{i}(z)}{z}\right|^{\mu_{i}-1} \\
& \left.+\left|h_{i}^{\prime}(z)\left(\frac{z}{h_{i}(z)}\right)^{\nu_{i}}\right| \cdot \frac{\left|h_{i}(z)\right|^{\nu_{i}}}{|z|^{\nu_{i}-1}}\right\} . \tag{10}
\end{align*}
$$

By applying the General Schwarz Lemma to the functions $g_{1}, \ldots, g_{n}, h_{1}, \ldots, h_{n}$, we obtain

$$
\begin{equation*}
\left|g_{i}(z)\right| \leq N_{i}|z| \text { and }\left|h_{i}(z)\right| \leq P_{i}|z| \quad(z \in U, i \in\{1, \ldots, n\}) . \tag{11}
\end{equation*}
$$

Replacing (11) in inequality (10), we find that

$$
\begin{align*}
&\left|\frac{z J^{\prime \prime}(z)}{J^{\prime}(z)}\right| \leq \sum_{i=1}^{n}\left|\alpha_{i}\right| \cdot\left\{1+|z| \cdot\left|\frac{f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right|\right.+\left(\left|g_{i}^{\prime}(z)\left(\frac{z}{g_{i}(z)}\right)^{\mu_{i}}-1\right|+1\right) N_{i}^{\mu_{i}-1} \\
&\left.+|z| \cdot\left(\left|h_{i}^{\prime}(z)\left(\frac{z}{g_{i}(z)}\right)^{\nu_{i}}-1\right|+1\right) P_{i}^{\nu_{i}}\right\} . \tag{12}
\end{align*}
$$

Next, using the hypothesis, we obtain

$$
\begin{align*}
\frac{1-|z|^{2 \operatorname{Re} \gamma}}{\operatorname{Re} \gamma} \cdot\left|\frac{z J^{\prime \prime}(z)}{J^{\prime}(z)}\right| & \leq \frac{1-|z|^{2 \operatorname{Re} \gamma}}{\operatorname{Re} \gamma} \cdot \sum_{i=1}^{n}\left|\alpha_{i}\right| \cdot\left[1+\left(2-\lambda_{i}\right) N_{i}^{\mu_{i}-1}\right] \\
+ & \frac{1-|z|^{2 \operatorname{Re} \gamma}}{\operatorname{Re} \gamma} \cdot|z| \cdot \sum_{i=1}^{n}\left|\alpha_{i}\right| \cdot\left[M_{i}+\left(2-\eta_{i}\right) P_{i}^{\nu_{i}}\right] . \tag{13}
\end{align*}
$$

Since

$$
\begin{equation*}
\max _{|z| \leq 1} \frac{1-|z|^{2 R e \gamma}}{\operatorname{Re} \gamma} \cdot|z|=\frac{2}{(2 \operatorname{Re} \gamma+1)^{\frac{2 R e \gamma+1}{2 R e \gamma}}}, \tag{14}
\end{equation*}
$$

we have

$$
\begin{array}{r}
\frac{1-|z|^{2 \operatorname{Re} \gamma}}{\operatorname{Re} \gamma} \cdot\left|\frac{z J^{\prime \prime}(z)}{J^{\prime}(z)}\right| \leq \frac{1}{\operatorname{Re} \gamma} \sum_{i=1}^{n}\left|\alpha_{i}\right| \cdot\left[1+\left(2-\lambda_{i}\right) N_{i}^{\mu_{i}-1}\right] \\
+\frac{2}{(2 \operatorname{Re} \gamma+1)^{\frac{2 \operatorname{Re\gamma +1}}{2 \operatorname{Re\gamma }}}} \sum_{i=1}^{n}\left|\alpha_{i}\right| \cdot\left[M_{i}+\left(2-\eta_{i}\right) P_{i}^{\nu_{i}}\right] . \tag{15}
\end{array}
$$

If we make use of (6), the last inequality yields

$$
\begin{equation*}
\frac{1-|z|^{2 \operatorname{Re} \gamma}}{\operatorname{Re} \gamma} \cdot\left|\frac{z J^{\prime \prime}(z)}{J^{\prime}(z)}\right| \leq 1, \quad z \in U . \tag{16}
\end{equation*}
$$

Finally by applying Theorem 1 , it results that function $F_{n, \zeta}$ is in the class S.
Letting $\mu_{i}=\nu_{i}=M_{i}=N_{i}=P_{i}=1$ and $\eta_{i}=\lambda_{i}$ for all $i \in\{1, \ldots, n\}$ in Theorem 4, we have

Corollary 5. Let $\gamma, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}, \operatorname{Re} \gamma>0,0 \leq \lambda_{\mathrm{i}}<1$ such that

$$
\begin{equation*}
\left[(2 \operatorname{Re} \gamma+1)^{\frac{2 \operatorname{Re} \gamma+1}{2 \operatorname{Re} \gamma}}+2 \operatorname{Re} \gamma\right] \sum_{i=1}^{n}\left|\alpha_{i}\right|\left(3-\lambda_{i}\right) \leq \operatorname{Re} \gamma(2 \operatorname{Re} \gamma+1)^{\frac{2 \operatorname{Re} \gamma+1}{2 \operatorname{Re} \gamma}}, \mathrm{i} \in\{1, \ldots, \mathrm{n}\} . \tag{17}
\end{equation*}
$$

If $f_{i} \in \mathcal{A}, g_{i}, h_{i} \in S^{*}\left(\lambda_{i}\right)$ and

$$
\begin{equation*}
\left|\frac{f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right| \leq 1, \quad\left|g_{i}(z)\right|<1, \quad\left|h_{i}(z)\right|<1 \quad(z \in U ; i \in\{1, \ldots, n\}), \tag{18}
\end{equation*}
$$

then for every complex number $\zeta, \operatorname{Re} \zeta \geq \operatorname{Re} \gamma$, the function $F_{n, \zeta}$ given by (3) is in the class S.

Letting $n=1$ in Theorem 4, we have
Corollary 6. Let $\gamma, \alpha \in \mathbb{C}$ with $\operatorname{Re} \gamma>0$ and $N, M, P \geq 1$. Suppose that $f \in$ $\mathcal{A}, g \in B(\mu, \lambda), h \in B(\nu, \eta)$ such that

$$
\begin{equation*}
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq M, \quad|g(z)|<N, \quad|h(z)|<P, \tag{19}
\end{equation*}
$$

for all $z \in U$. If

$$
\begin{align*}
&(2 \operatorname{Re} \gamma+1)^{\frac{2 \operatorname{Re} \gamma+1}{2 \operatorname{Re} \gamma}}|\alpha|\left[1+(2-\lambda) \mathrm{N}^{\mu-1}\right]+ 2 \operatorname{Re} \gamma|\alpha|\left[\mathrm{M}+(2-\eta) \mathrm{P}^{\nu}\right] \\
& \leq \operatorname{Re} \gamma(2 \operatorname{Re} \gamma+1)^{\frac{2 \operatorname{Re}++1}{2 \operatorname{Re} \gamma}}, \tag{20}
\end{align*}
$$

then for every complex number $\zeta, \operatorname{Re} \zeta \geq \operatorname{Re} \gamma$, the function

$$
\begin{equation*}
F_{\zeta}(z)=\left(\zeta \int_{0}^{z} t^{\alpha+\zeta-1}\left[\frac{f^{\prime}(t)}{g(t)} e^{h(t)}\right]^{\alpha} d t\right)^{\frac{1}{\zeta}} \tag{21}
\end{equation*}
$$

is in the class S.
Letting $g_{i}(z)=z, i \in\{1, \ldots, n\}$, Theorem 4 reduces to the following result.
Example 1. Let $\gamma, \alpha_{i} \in \mathbb{C}, \operatorname{Re} \gamma>0$ and $M_{i}, P_{i} \geq 1, i \in\{1, \ldots, n\}$, such that

$$
\begin{align*}
3(2 \operatorname{Re} \gamma+1)^{\frac{2 \operatorname{Re} e+1}{2 \operatorname{Re} \gamma}} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\alpha_{\mathrm{i}}\right|+2 \operatorname{Re} \gamma & \sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\alpha_{\mathrm{i}}\right|\left[\mathrm{M}_{\mathrm{i}}+\left(2-\eta_{\mathrm{i}}\right) \mathrm{P}_{\mathrm{i}}^{\nu_{\mathrm{i}}}\right] \\
& \leq \operatorname{Re} \gamma(2 \operatorname{Re} \gamma+1)^{\frac{2 \operatorname{Re} \gamma+1}{2 \operatorname{Re} \gamma}} . \tag{22}
\end{align*}
$$

If $f_{i} \in \mathcal{A}, h_{i} \in B\left(\nu_{i}, \eta_{i}\right)$ satisfies

$$
\begin{equation*}
\left|\frac{f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right| \leq M_{i}, \quad\left|h_{i}(z)\right|<P_{i}, \tag{23}
\end{equation*}
$$

for all $z \in U, i \in\{1, \ldots, n\}$, then for every complex number $\zeta, \operatorname{Re} \zeta \geq \operatorname{Re} \gamma$, the function

$$
\begin{equation*}
J_{1}(z)=\left(\zeta \int_{0}^{z} t^{\zeta-1} \prod_{i=1}^{n}\left[f_{i}^{\prime}(t) e^{h_{i}(t)}\right]^{\alpha_{i}} d t\right)^{\frac{1}{\zeta}} \tag{24}
\end{equation*}
$$

is in the class S.
Theorem 7. Let $c, \alpha_{1}, \ldots, \alpha_{n}, \zeta \in \mathbb{C}$ with $\operatorname{Re} \zeta>0$ and $M_{i}, N_{i}, P_{i} \geq 1, i \in$ $\{1, \ldots, n\}$. Suppose that $f_{i} \in \mathcal{A}, g_{i} \in B\left(\mu_{i}, \lambda_{i}\right), h_{i} \in B\left(\nu_{i}, \eta_{i}\right)$ satisfies

$$
\begin{equation*}
\left|\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right|<M_{i}, \quad\left|g_{i}(z)\right|<N_{i}, \quad\left|z h_{i}^{\prime}(z)\right|<P_{i}, \quad z \in U, i \in\{1, \ldots, n\} \tag{25}
\end{equation*}
$$

If

$$
\operatorname{Re} \zeta \geq \sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\alpha_{\mathrm{i}}\right|\left[1+\mathrm{M}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}}+\left(2-\lambda_{\mathrm{i}}\right) \mathrm{N}_{\mathrm{i}}^{\mu_{\mathrm{i}}-1}\right]
$$

and

$$
|c| \leq 1-\frac{1}{\operatorname{Re} \zeta} \sum_{i=1}^{n}\left|\alpha_{i}\right|\left[1+M_{i}+P_{i}+\left(2-\lambda_{i}\right) N_{i}^{\mu_{i}-1}\right]
$$

for all $i \in\{1, \ldots, n\}$, then the function $F_{n, \zeta}$ given by (3) is in the class S.
Proof. Let the function J be defined in (8). So, for a given constant $c \in \mathbb{C}$, we obtain

$$
\begin{align*}
& \left.\left.|c| z\right|^{2 \zeta}+\left(1-|z|^{2 \zeta}\right) \frac{z J^{\prime \prime}(z)}{\zeta J^{\prime}(z)} \right\rvert\, \\
& \left.=\left.|c| z\right|^{2 \zeta}+\left(1-|z|^{2 \zeta}\right) \frac{1}{\zeta} \sum_{i=1}^{n} \alpha_{i} \cdot\left[1+\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}-\frac{z g_{i}^{\prime}(z)}{g_{i}(z)}+z h_{i}^{\prime}(z)\right] \right\rvert\, \\
& \leq|c|+\frac{1}{|\zeta|} \sum_{i=1}^{n}\left|\alpha_{i}\right| \cdot\left[1+\left|\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right|+\left|\frac{z g_{i}^{\prime}(z)}{g_{i}(z)}\right|+\left|z h_{i}^{\prime}(z)\right|\right] . \tag{26}
\end{align*}
$$

Now, applying the General Schwarz Lemma to the functions g_{1}, \ldots, g_{n}, we find that

$$
\begin{equation*}
\left|g_{i}(z)\right| \leq N_{i}|z| . \tag{27}
\end{equation*}
$$

Using the hypothesis and (27) in inequality (26), we have

$$
\begin{align*}
& \left.\left.|c| z\right|^{2 \zeta}+\left(1-|z|^{2 \zeta}\right) \frac{z J^{\prime \prime}(z)}{\zeta J^{\prime}(z)} \right\rvert\, \\
& \leq|c|+\frac{1}{|\zeta|} \sum_{i=1}^{n}\left|\alpha_{i}\right| \cdot\left[1+M_{i}+P_{i}+\left(\left|g_{i}^{\prime}(z)\left(\frac{z}{g_{i}(z)}\right)^{\mu_{i}}-1\right|+1\right) N_{i}^{\mu_{i}-1}\right] \\
& \leq|c|+\frac{1}{\operatorname{Re} \zeta} \sum_{i=1}^{n}\left|\alpha_{i}\right| \cdot\left[1+M_{i}+P_{i}+\left(2-\lambda_{i}\right) N_{i}^{\mu_{i}-1}\right] \leq 1 . \tag{28}
\end{align*}
$$

Finally, by applying Lemma 2 to the function J, we deduce that function $F_{n, \zeta}$ is in the class S.

Letting $\mu_{i}=\nu_{i}=M_{i}=N_{i}=P_{i}=1$ and $\eta_{i}=\lambda_{i}$ for all $i \in\{1, \ldots, n\}$ in Theorem 7, we have

Corollary 8. Let $c, \alpha_{1}, \ldots, \alpha_{n}, \zeta \in \mathbb{C}$ with $\operatorname{Re} \zeta>0$. Suppose that $f_{i} \in \mathcal{A}, g_{i}, h_{i} \in$ $S^{*}\left(\lambda_{i}\right)$ satisfies

$$
\begin{equation*}
\left|\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right|<1, \quad\left|g_{i}(z)\right|<1, \quad\left|z h_{i}^{\prime}(z)\right|<1 \tag{29}
\end{equation*}
$$

for all $z \in U$ and $i \in\{1, \ldots, n\}$. If

$$
\operatorname{Re} \zeta \geq \sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\alpha_{\mathrm{i}}\right|\left(5-\lambda_{\mathrm{i}}\right) \quad \text { and } \quad|\mathrm{c}| \leq 1-\frac{1}{\operatorname{Re} \zeta} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\alpha_{\mathrm{i}}\right|\left(5-\lambda_{\mathrm{i}}\right),
$$

for all $i \in\{1, \ldots, n\}$, then the function $F_{n, \zeta}$ given by (3) is in the class S.
Letting $n=1$ in Theorem 7, we have
Corollary 9. Let $c, \alpha, \zeta \in \mathbb{C}$ with $\operatorname{Re} \zeta>0$ and $M, N, P \geq 1$. Suppose that $f \in$ $\mathcal{A}, g \in B(\mu, \lambda), h \in B(\nu, \eta)$ satisfies

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<M, \quad|g(z)|<N, \quad\left|z h^{\prime}(z)\right|<P, \tag{30}
\end{equation*}
$$

for all $z \in U$. If

$$
\operatorname{Re} \zeta \geq|\alpha|\left[1+\mathrm{M}+\mathrm{P}+(2-\lambda) \mathrm{N}^{\mu-1}\right]
$$

and

$$
|c| \leq 1-\frac{|\alpha|}{\operatorname{Re} \zeta}\left[1+M+P+(2-\lambda) N^{\mu-1}\right]
$$

then the function F_{ζ} given by (21) is in the class S.
Letting $g_{i}(z)=z, i \in\{1, \ldots, n\}$, Theorem 7 reduces to the following result.
Example 2. Let $c, \alpha_{1}, \ldots, \alpha_{n}, \zeta \in \mathbb{C}$ with $\operatorname{Re} \zeta>0$ and $M_{i}, P_{i} \geq 1, i \in\{1, \ldots, n\}$. Suppose that $f_{i} \in \mathcal{A}, h_{i} \in B\left(\nu_{i}, \eta_{i}\right)$ satisfies

$$
\begin{equation*}
\left|\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right|<M_{i}, \quad\left|z h_{i}^{\prime}(z)\right|<P_{i}, \quad z \in U, i \in\{1, \ldots, n\} . \tag{31}
\end{equation*}
$$

If

$$
\operatorname{Re} \zeta \geq \sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\alpha_{\mathrm{i}}\right|\left(3+\mathrm{M}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}}\right)
$$

and

$$
|c| \leq 1-\frac{1}{\operatorname{Re} \zeta} \sum_{i=1}^{n}\left|\alpha_{i}\right|\left(3+M_{i}+P_{i}\right)
$$

for all $i \in\{1, \ldots, n\}$,

$$
\begin{equation*}
J_{1}(z)=\left(\zeta \int_{0}^{z} t^{\zeta-1} \prod_{i=1}^{n}\left[f_{i}^{\prime}(t) e^{h_{i}(t)}\right]^{\alpha_{i}} d t\right)^{\frac{1}{\zeta}} \tag{32}
\end{equation*}
$$

is in the class S.
Remark 1. Many other interesting corollaries of Theorems 4 and 7 can be obtained by suitably specializing the parameters and the functions involved.

References

[1] D. Breaz, S. Owa and N. Breaz, A new integral univalent operator, Acta Universitatis Apulensis, 16 (2008).
[2] R. Bucur, L. Andrei and D. Breaz, Geometric Properties of a New Integral Operator, Abstract and Applied Analysis, Vol. 2015, Art. ID 430197 (2015).
[3] R. Bucur, L. Andrei and D. Breaz, Univalence criterion, starlikeness and convexity for a new integral operator, International Electronic Journal of Pure and Applied Mathematics, Vol.9, No. 3 (2015), 215-223.
[4] R. Bucur, L. Andrei and D. Breaz, Some Results of a New Integral Operator, Journal of Computational Analysis and Applications, No. 194 (2016), to appear.
[5] R. Bucur and D. Breaz, Univalence Conditions and Properties of a New General Integral Operator, Carpathian J. Math., to appear.
[6] R. Bucur, D. Breaz, Properties of a general integral operator, submitted.
[7] B. A. Frasin, D. Breaz, Univalence conditions of general integral operator, Matematiqki Vesnik 65, 3 (2013), 394-402.
[8] B. A. Frasin and J. Jahangiri, A new and comprehensive class of analytic functions, Analele Univ. Oradea, Fasc. Math. XV (2008), 59-62.
[9] B. A. Frasin, and M. Darus, On certain analytic univalent functions, Int. J. Math. and Math. Sci. 25, 5 (2001), 305-310.
[10] Y. J. Kim and E. P. Merkes, On an integral of powers of a spirallike function, Kyungpook Math. J. 12, 2 (1972), 249-252.
[11] O. Mayer, The functions theory of one variable complex, Bucuresti, 1981.
[12] N. Ularu and D. Breaz, Univalence criterion and convexity for an integral operator, Applied Mathematics Letter, 25 (2012), 658-661.
[13] N. Ularu and D. Breaz, Univalence condition and properties for two integral operators, 15 (2013), 658-661.
[14] A. Oprea and D. Breaz, Univalence conditions for two general integral operators, Advances in Pure Mathematics 4, 8 (2014), 487-493.
[15] N. N. Pascu, An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, Brasov, Preprint (1987), 43-48.
[16] N. N. Pascu and V. Pescar, On the integral operators of Kim-Merkes and Pfaltzgraff, Mathematica, Universitatis Babes-Bolyai Cluj-Napoca 32, 2 (1990), 185-192.
[17] V. Pescar, A new generalization of Ahlfors's and Becker's criterion of univalence, Bull. Malaysian Math. Soc., Ser. 2, 19 (1996), 53-54.
[18] V. Pescar, Some Integral Operators and Their Univalence, The Journal of Analysis, 5 (1997), 157-162.
[19] V. Pescar, New univalence criteria for some integral operators, Stud. Univ. Babes-Bolyai Math. 59, 2 (2014), 167-176.

Roberta Bucur,
Department of Mathematics, University of Piteşti,
Piteşti, România
email: roberta_bucur@yahoo.com
Daniel Breaz,
Department of Mathematics, "1 Decembrie 1918" University of Alba Iulia, email:dbreaz@uab.ro

