International Conference on Theory and Applications in Mathematics and Informatics $17^{\text {th }}-20^{\text {th }}$ of September, 2015, Alba-Iulia, Romania
Mathematics Section

CERTAIN CLASS OF ANALYTIC FUNCTIONS WITH VARYING ARGUMENTS DEFINED BY SǍLǍGEAN DERIVATIVE

Á.o. Páll-Szabó, O. Engel

Abstract. In this paper we derive some results for certain new class of analytic functions with varying arguments defined by using Sǎlăgean derivative.

2010 Mathematics Subject Classification: 30C45.
Keywords: analytic functions, Sǎlăgean derivative.
Let \mathcal{A} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \tag{1}
\end{equation*}
$$

which are analytic and univalent in the open unit disc $U=\{z \in \mathbb{C}:|z|<1\}$.
We define the differential operator $\mathscr{D}^{n}: A \rightarrow A, n$ positive integer, by

$$
\begin{gather*}
\mathscr{D}^{0} f(z)=f(z), \\
\mathscr{D}^{1} f(z)=\mathscr{D} f(z)=z f^{\prime}(z), \\
\mathscr{D}^{n} f(z)=\mathscr{D}\left(\mathscr{D}^{n-1} f(z)\right) . \tag{2}
\end{gather*}
$$

We note that the differential operator \mathscr{D}^{n} was introduced by Sǎlǎgean, [6].

$$
\begin{equation*}
\mathscr{D}^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k} . \tag{3}
\end{equation*}
$$

Definition 1. Let f and g be analytic functions in U. We say that the function f is subordinate to the function g, if there exist a function w, which is analytic in U and $w(0)=0 ;|w(z)|<1 ; z \in U$, such that $f(z)=g(w(z)) ; \forall z \in U$. We denote by \prec the subordination relation.

Á.O. Páll-Szabó, O. Engel - Certain class of analytic functions ...

Definition 2. For $\lambda \geq 0 ;-1 \leq A<B \leq 1 ; 0<B \leq 1 ; n \in \mathbb{N}_{0}$ let $S(n, \lambda, A, B)$ denote the subclass of \mathcal{A} which contain functions $f(z)$ of the form (1) such that

$$
\begin{equation*}
(1-\lambda)\left(\mathscr{D}^{n} f(z)\right)^{\prime}+\lambda\left(\mathscr{D}^{n+1} f(z)\right)^{\prime} \prec \frac{1+A z}{1+B z} . \tag{4}
\end{equation*}
$$

Attiya and Aouf defined in [2] the class $\mathscr{R}(n, \lambda, A, B)$ with a condition like (4), but there instead of the operator \mathscr{D} they used the Ruscheweyh operator \mathscr{R}, where

$$
\mathscr{R}^{n} f(z)=z+\sum_{k=2}^{\infty}\binom{n+k-1}{n} a_{k} z^{k}
$$

Definition 3. [3][8]A function $f(z)$ of the form (1) is said to be in the class $V\left(\theta_{k}\right)$ if $f \in A$ and $\arg \left(a_{k}\right)=\theta_{k}, \forall k \geq 2$. If $\exists \delta \in \mathbb{R}$ such that $\theta_{k}+(k-1) \delta \equiv \pi(\bmod 2 \pi), \forall k \geq 2$ then $f(z)$ is said to be in the class $V\left(\theta_{k}, \delta\right)$. The union of $V\left(\theta_{k}, \delta\right)$ taken over all possible sequences $\left\{\theta_{k}\right\}$ and all possible real numbers δ is denoted by V.

Let $V S(n, \lambda, A, B)$ denote the subclass of V consisting of functions $f(z) \in S(n, \lambda, A, B)$.

Coefficient estimates

Theorem 1. Let the function $f(z)$ defined by (1) be in V . Then $f(z) \in V S(n, \lambda, A, B)$, if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n+1} C_{k}\left|a_{k}\right| \leq(B-A)(n+1) \tag{5}
\end{equation*}
$$

where

$$
C_{k}=(1+B)[n+1+\lambda(k-1)] .
$$

The extremal functions are:

$$
f(z)=z+\frac{(B-A)(n+1)}{k^{n+1} C_{k}} e^{i \theta_{k}} z^{k},(k \geq 2) .
$$

Proof. We work with the technique used in [3].
Suppose that $f(z) \in V S(n, \lambda, A, B)$. Then

$$
\begin{equation*}
h(z)=(1-\lambda)\left(\mathscr{D}^{n} f(z)\right)^{\prime}+\lambda\left(\mathscr{D}^{n+1} f(z)\right)^{\prime}=\frac{1+A w(z)}{1+B w(z)}, \tag{6}
\end{equation*}
$$

where

$$
w \in H=\{w \text { analytic, } w(0)=0 \text { and }|w(z)|<1, z \in U\} .
$$

From this we have

$$
w(z)=\frac{1-h(z)}{B h(z)-A} .
$$

Therefore

$$
h(z)=1+\sum_{k=2}^{\infty} \frac{k^{n+1}[n+1+\lambda(k-1)]}{n+1} a_{k} z^{k-1}
$$

and $|w(z)|<1$ implies

$$
\begin{equation*}
\left|\frac{\sum_{k=2}^{\infty} \frac{k^{n+1}[n+1+\lambda(k-1)]}{n+1} a_{k} z^{k-1}}{(B-A)+B \sum_{k=2}^{\infty} \frac{k^{n+1}[n+1+\lambda(k-1)]}{n+1} a_{k} z^{k-1}}\right|<1 . \tag{7}
\end{equation*}
$$

Since $f(z) \in V, f(z)$ lies in the $V\left(\theta_{k}, \delta\right)$ for some $\left\{\theta_{k}\right\}$ sequence and a real number δ such that $\theta_{k}+(k-1) \delta \equiv \pi(\bmod 2 \pi), \forall k \geq 2$.
Set $z=r e^{i \delta}$ in (7), then

$$
\begin{equation*}
\left|\frac{\sum_{k=2}^{\infty} \frac{k^{n+1}[n+1+\lambda(k-1)]}{n+1}\left|a_{k}\right| r^{k-1}}{(B-A)-B \sum_{k=2}^{\infty} \frac{k^{n+1}[n+1+\lambda(k-1)]}{n+1}\left|a_{k}\right| r^{k-1}}\right|<1 . \tag{8}
\end{equation*}
$$

Since $\operatorname{Re}\{w(z)\}<|w(z)|<1$ we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\sum_{k=2}^{\infty} \frac{k^{n+1}[n+1+\lambda(k-1)]}{n+1}\left|a_{k}\right| r^{k-1}}{(B-A)-B \sum_{k=2}^{\infty} \frac{k^{n+1}[n+1+\lambda(k-1)]}{n+1}\left|a_{k}\right| r^{k-1}}\right\}<1 . \tag{9}
\end{equation*}
$$

So

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n+1} C_{k}\left|a_{k}\right| r^{k-1} \leq(B-A)(n+1) . \tag{10}
\end{equation*}
$$

$r \rightarrow 1$

$$
\sum_{k=2}^{\infty} k^{n+1} C_{k}\left|a_{k}\right| \leq(B-A)(n+1)
$$

Conversely, $f(z) \in V$ and satisfies (5). Since $r^{k-1}<1$, we have

$$
\left|\sum_{k=2}^{\infty} \frac{k^{n+1}[n+1+\lambda(k-1)]}{n+1}\right| a_{k}\left|z^{k-1}\right| \leq \sum_{k=2}^{\infty} \frac{k^{n+1}[n+1+\lambda(k-1)]}{n+1}\left|a_{k}\right| r^{k-1}
$$

Á.O. Páll-Szabó, O. Engel - Certain class of analytic functions ...

$$
\begin{aligned}
& \leq(B-A)-B \sum_{k=2}^{\infty} \frac{k^{n+1}[n+1+\lambda(k-1)]}{n+1}\left|a_{k}\right| r^{k-1} \\
& \leq\left|(B-A)+B \sum_{k=2}^{\infty} \frac{k^{n+1}[n+1+\lambda(k-1)]}{n+1} a_{k} z^{k-1}\right|
\end{aligned}
$$

which gives (7) and hence follows that

$$
(1-\lambda)\left(\mathscr{D}^{n} f(z)\right)^{\prime}+\lambda\left(\mathscr{D}^{n+1} f(z)\right)^{\prime}=\frac{1+A w(z)}{1+B w(z)}
$$

that is $f(z) \in V S(n, \lambda, A, B)$.

Corollary 1. Let the function $f(z)$ define by (1) be in the class $\operatorname{VS}(n, \lambda, A, B)$. Then

$$
\left|a_{k}\right| \leq \frac{(B-A)(n+1)}{k^{n+1} C_{k}},(k \geq 2) .
$$

The result (5) is sharp for the functions

$$
f(z)=z+\frac{(B-A)(n+1)}{k^{n+1} C_{k}} e^{i \theta_{k}} z^{k},(k \geq 2) .
$$

DISTORTION THEOREMS

Theorem 2. Let the function $f(z)$ defined by (1) be in the class $V S(n, \lambda, A, B)$. Then

$$
\begin{equation*}
|z|-\frac{(B-A)(n+1)}{2^{n+1} C_{2}}|z|^{2} \leq|f(z)| \leq|z|+\frac{(B-A)(n+1)}{2^{n+1} C_{2}}|z|^{2} . \tag{11}
\end{equation*}
$$

Proof. We work with the technique used by Silverman [8]. Let

$$
\begin{equation*}
\Phi(k)=k^{n} C_{k} . \tag{12}
\end{equation*}
$$

It is an increasing function of $k(k \geq 2)$,so

$$
\Phi(2) \sum_{k=2}^{\infty}\left|a_{k}\right| \leq \sum_{k=2}^{\infty} \Phi(k)\left|a_{k}\right| \leq(B-A)(n+1)
$$

or equivalently

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left|a_{k}\right| \leq \frac{(B-A)(n+1)}{2 \Phi(2)}=\frac{(B-A)(n+1)}{2^{n+1} C_{2}} . \tag{13}
\end{equation*}
$$

This way we have

$$
|f(z)| \leq|z|+\sum_{k=2}^{\infty}\left|a_{k}\right||z|^{k} \leq|z|+|z|^{2} \sum_{k=2}^{\infty}\left|a_{k}\right|,
$$

so

$$
|f(z)| \leq|z|+\frac{(B-A)(n+1)}{2^{n+1} C_{2}}|z|^{2} .
$$

Also, we have

$$
|f(z)| \geq|z|-\sum_{k=2}^{\infty}\left|a_{k}\right||z|^{k} \geq|z|-|z|^{2} \sum_{k=2}^{\infty}\left|a_{k}\right| .
$$

So

$$
|f(z)| \geq|z|-\frac{(B-A)(n+1)}{2^{n+1} C_{2}}|z|^{2} .
$$

The result is sharp for the function

$$
f(z)=z+\frac{(B-A)(n+1)}{2^{n+1} C_{2}} e^{i \theta_{2}} z^{2},
$$

at $z= \pm|z| e^{-i \theta_{2}}$.

Corollary 2. $f(z) \in U\left(0, r_{1}\right)$, where $r_{1}=1+\frac{(B-A)(n+1)}{2^{n+1} C_{2}}$.
Theorem 3. Let the function $f(z)$ defined by (1) be in the class $V S(n, \lambda, A, B)$. Then

$$
\begin{equation*}
1-\frac{(B-A)(n+1)}{2^{n} C_{2}}|z| \leq\left|f^{\prime}(z)\right| \leq 1+\frac{(B-A)(n+1)}{2^{n} C_{2}}|z| . \tag{14}
\end{equation*}
$$

The result is sharp.
Proof. Let $\frac{\Phi(k)}{k}=k^{n-1} C_{k}$. It is an increasing function of $k(k \geq 2)$. According to Theorem 1, we have

$$
\frac{\Phi(2)}{2} \sum_{k=2}^{\infty} k\left|a_{k}\right| \leq \sum_{k=2}^{\infty} \Phi(k)\left|a_{k}\right| \leq(B-A)(n+1),
$$

or equivalently

$$
\sum_{k=2}^{\infty} k\left|a_{k}\right| \leq \frac{(B-A)(n+1)}{\Phi(2)}=\frac{(B-A)(n+1)}{2^{n} C_{2}} .
$$

This way we have

$$
\left|f^{\prime}(z)\right| \leq 1+|z| \sum_{k=2}^{\infty} k\left|a_{k}\right| \leq 1+\frac{(B-A)(n+1)}{2^{n} C_{2}}|z| .
$$

So

$$
\left|f^{\prime}(z)\right| \geq 1-|z| \sum_{k=2}^{\infty} k\left|a_{k}\right| \geq 1-\frac{(B-A)(n+1)}{2^{n} C_{2}}|z|
$$

Corollary 3. $f^{\prime}(z) \in U\left(0, r_{2}\right)$, where $r_{2}=1+\frac{(B-A)(n+1)}{2^{n} C_{2}}$.

Extreme points

Theorem 4. Let the function $f(z)$ defined by (1) be in the class $V S(n, \lambda, A, B)$, with $\arg \left(a_{k}\right)=\theta_{k}$ where $\theta_{k}+(k-1) \delta \equiv \pi(\bmod 2 \pi), \forall k \geq 2$. Define

$$
f_{1}(z)=z
$$

and

$$
f_{k}(z)=z+\frac{(B-A)(n+1)}{k^{n+1} C_{k}} e^{i \theta_{k}} z^{k},(k \geq 2 ; z \in U)
$$

Then $f(z) \in V S(n, \lambda, A, B)$ if and only if $f(z)$ can expressed by $f(z)=\sum_{k=1}^{\infty} \mu_{k} f_{k}(z)$, where $\mu_{k} \geq 0$ and $\sum_{k=1}^{\infty} \mu_{k}=1$.
Proof. If $f(z)=\sum_{k=1}^{\infty} \mu_{k} f_{k}(z), \mu_{k} \geq 0$ and $\sum_{k=1}^{\infty} \mu_{k}=1$, then

$$
\begin{gathered}
\sum_{k=2}^{\infty} k^{n+1} C_{k} \frac{(B-A)(n+1)}{k^{n+1} C_{k}} \mu_{k}=\sum_{k=2}^{\infty}(B-A)(n+1) \mu_{k}= \\
=\left(1-\mu_{1}\right)(B-A)(n+1) \leq(B-A)(n+1) .
\end{gathered}
$$

Hence $f(z) \in V S(n, \lambda, A, B)$. Conversly, let the function $f(z)$ defined by (1) be in the class $V S(n, \lambda, A, B)$, define

$$
\mu_{k}=\frac{k^{n+1} C_{k}}{(B-A)(n+1)}\left|a_{k}\right|,(k \geq 2)
$$

Á.O. Páll-Szabó, O. Engel - Certain class of analytic functions ...
and

$$
\mu_{1}=1-\sum_{k=2}^{\infty} \mu_{k} .
$$

From Theorem 1, $\sum_{k=2}^{\infty} \mu_{k} \leq 1$ and so $\mu_{1} \geq 0$. Since $\mu_{k} f_{k}(z)=\mu_{k} z+a_{k} z^{k}$, then

$$
\sum_{k=1}^{\infty} \mu_{k} f_{k}(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}=f(z)
$$

Acknowledgements. This paper, for Páll-Szabó Ágnes Orsolya, is a result of a doctoral research made possible by the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project POSDRU/187/1.5/S/155383- "Quality, excellence, transnational mobility in doctoral research."

References

[1] H. S. Al-Amiri , On Ruscheweyh derivatives, Ann. Polon. Math., 38(1980), 8794.
[2] A. A. Attiya and M. K. Aouf, A study on certain class of analytic functions defined by Ruscheweyh derivative, Soochow J. Math., 33(2)(2007), 273-289.
[3] R. M. El-Ashwah, M. K. Aouf,A. A. Hassan and A. H. Hassan, Certain Class of Analytic Functions Defined by Ruscheweyh Derivative with Varying Arguments, Kyungpook Math. J., 54(3)(2014), 453-461.
[4] H. M. Hossen, G. Ş. Salagean, M. K. Aouf, Noteson certain classes of analytic functions with negative coefficients, Mathematica(Cluj), 39(62) no.2(1997), 165-179.
[5] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
[6] G. S. Sǎlăgean, Subclasses of univalent functions, Lecture Notes in Math. (Springer Verlag), 1013(1983), 362-372.
[7] G. S. Sǎlăgean, Integral properties of certain classes of analytic functions with negative coefficients, Int. Journal of Math. and Math. Sci., 1(2005), 125-131.
[8] H. Silverman, Univalent functions with varying arguments, Houston J. Math., 17(1981), 283-287.

Á.O. Páll-Szabó, O. Engel - Certain class of analytic functions ...

Ágnes Orsolya Páll-Szabó,
Babeş-Bolyai University, Cluj-Napoca, Romania
email: kicsim21@yahoo.com
Olga Engel
Babeş-Bolyai University, Cluj-Napoca, Romania, email: engel_olga@hotmail.com

