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Abstract. In this paper we will prove, using Pescar’s criterion, the univalence
of an integral operator, considered for analitic functions in the open unit disk U .
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1. Introduction and Preliminaries

Let the unit disk U = {z ∈ C | |z| < 1} and A the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n (1)

which are analytic in U and satisfy the condition f(0) = f ′(0)− 1 = 0.
We denote by S the subclass of A containing univalent and regular functions. In

1996, V. Pescar has proved univalent condition:

Theorem 1. [4] Let α ∈ C with Reα > 0 and c ∈ C with |c| < 1. We consider also
a function f(z) of the form (1) which is analytic in U . If:∣∣∣∣c|z|2α + (1− |z|)2α zf

′′
n(z)

αf ′n(z)

∣∣∣∣ ≤ 1,

for every z ∈ U , then the function Fα(z) defined by:

Fα(z) =

α z∫
0

tα−1f ′(t)dt

 1
α

(2)

is univalent in U .

In [3] Ozaki and Nunokawa gave the following result:
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Theorem 2. If f ∈ A satisfyes the following inequality:∣∣∣∣z2f ′(z)f2(z)
− 1

∣∣∣∣ ≤ 1, (3)

for every z ∈ U , then f is univalent in U .

Also, an important result that we will use in our paper is General Schwarz
Lemma. We remind it here:

Lemma 3. [1] Let the regular function f in the disk UR = {z ∈ C | |z| < R}, with
|f(z)| < M , M fixed. If f has in z = 0 one zero with multiply ≥ m, then

|f(z)| ≤ M

Rm
|z|m , z ∈ UR. (4)

It is obviously that for R = m = 1 the relation (4) becomes:∣∣∣∣f(z)

z

∣∣∣∣ ≤M , z ∈ U . (5)

The goal of our paper is to introduce an integral operator, to prove the univalence
for it and present some properties obtained from here.

2. Main results

Theorem 4. Let fi ∈ A, i = 1, n, the functions that satisfy the inequality (3) αi, γ, c
be complex numbers with Re γ > 0 and Mi, Ni ∈ R∗+,Mi ≥ 1.

If:
i) |fi(z)| ≤Mi, i = 1, n;

ii)
∣∣∣f ′′i (z)f ′i(z)

∣∣∣ ≤ Ni, i = 1, n;

iii) |c| ≤ 1− 1
|γ|

n∑
i=1
|αi| (2Mi +Ni + 1),

then the function:

Gn(z) =

γ z∫
0

uγ−1
n∏
i=1

(
u

fi(u)f ′i(u)

)αi
du

 1
γ

is univalent in U .
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Proof. Let the function gn, regular in U and gn(0) = g′n(0)− 1 = 0, defined as:

gn(z) =

z∫
0

n∏
i=1

(
u

fi(u)f ′i(u)

)αi
du.

For this function we have:

g′n(z) =
n∏
i=1

(
z

fi(z)f ′i(z)

)αi
and:

g′′n(z) =
n∑
i=1


[(

z

fi(z)f ′i(z)

)αi]′
·
n∏
j=1
j 6=i

(
z

fj(z)f ′j(z)

)αj
=

n∏
i=1

(
z

fi(z)f ′i(z)

)αi
·
n∑
i=1

αi

(
1

z
− f ′i(z)

fi(z)
− f ′′i (z)

f ′i(z)

)
.

So we have:
zg′′n(z)

g′n(z)
=

n∑
i=1

αi

(
1− zf ′i(z)

fi(z)
− zf ′′i (z)

f ′i(z)

)
,

hence: ∣∣∣∣zg′′n(z)

g′n(z)

∣∣∣∣ ≤ n∑
i=1

|αi|
(

1 +

∣∣∣∣zf ′i(z)fi(z)

∣∣∣∣+

∣∣∣∣zf ′′i (z)

f ′i(z)

∣∣∣∣)

≤
n∑
i=1

|αi|
(

1 +

∣∣∣∣z2f ′i(z)f2i (z)

∣∣∣∣ · ∣∣∣∣fi(z)z

∣∣∣∣+

∣∣∣∣zf ′′i (z)

f ′i(z)

∣∣∣∣) .
Because |fi(z)| ≤Mi and using Schwarz Lemma, we obtain:∣∣∣∣zg′′n(z)

g′n(z)

∣∣∣∣ ≤ n∑
i=1

|αi|
(

1 +

∣∣∣∣z2f ′i(z)f2i (z)

∣∣∣∣ ·Mi +

∣∣∣∣zf ′′i (z)

f ′i(z)

∣∣∣∣)

≤
n∑
i=1

|αi|
(

1 +

∣∣∣∣z2f ′i(z)f2i (z)
− 1

∣∣∣∣ ·Mi +Mi +

∣∣∣∣zf ′′i (z)

f ′i(z)

∣∣∣∣) .
Applying inequality (3) and ii), we have:∣∣∣∣zg′′n(z)

g′n(z)

∣∣∣∣ ≤ n∑
i=1

|αi| (2Mi +Ni + 1) .
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From this relation, we obtain:∣∣∣∣c|z|2γ + (1− |z|)2γ zg
′′
n(z)

γg′n(z)

∣∣∣∣ ≤ |c|+ 1

|γ|

n∑
i=1

|αi| (2Mi +Ni + 1) .

So, because of iii), it results:∣∣∣∣c|z|2γ + (1− |z|)2γ zg
′′
n(z)

γg′n(z)

∣∣∣∣ ≤ 1

and according with Theorem 1, we obtain that the function Gn is in the class S.

Corollary 5. Let f ∈ A a function that satisfy the inequality (3) α, γ, c be complex
numbers with Re γ > 0 and M,N ∈ R∗+,M ≥ 1.

If:
i) |f(z)| ≤M ;

ii)
∣∣∣f ′′(z)f ′(z)

∣∣∣ ≤ N ;

iii) |c| ≤ 1− |α||γ|
n∑
i=1

(2M +N + 1), then the function:

Gn(z) :=

γ z∫
0

uγ−1
(

u

f(u)f ′(u)

)α
du

 1
γ

is univalent in U .

Proof. We consider n = 1 in Theorem 4.

Corollary 6. Let fi ∈ A, i = 1, n, the functions that satisfy the inequality (3) α, γ, c
be complex numbers with Re γ > 0 and Mi, Ni ∈ R∗+,Mi ≥ 1.

If:
i) |fi(z)| ≤Mi, i = 1, n;

ii)
∣∣∣f ′′i (z)f ′i(z)

∣∣∣ ≤ Ni, i = 1, n;

iii) |c| ≤ 1− |α||γ|
n∑
i=1

(2Mi +Ni + 1), then the function:

Gn(z) :=

γ z∫
0

uγ−1
n∏
i=1

(
u

fi(u)f ′i(u)

)α
du

 1
γ

is univalent in U .
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D. Wainberg, M. Aldea, L. Căbulea – Some properties of an integral operator

Proof. We consider α1 = α2 = ... = αn = α in Theorem 4.

Corollary 7. Let fi ∈ A, i = 1, n, the functions that satisfy the inequality (3) αi, c
be complex numbers and Mi, Ni ∈ R∗+,Mi ≥ 1.

If:
i) |fi(z)| ≤Mi, i = 1, n;

ii)
∣∣∣f ′′i (z)f ′i(z)

∣∣∣ ≤ Ni, i = 1, n;

iii) |c| ≤ 1−
n∑
i=1
|αi| (2Mi +Ni + 1),

then the function:

Gn(z) :=

z∫
0

n∏
i=1

(
u

fi(u)f ′i(u)

)αi
du

is univalent in U .

Proof. In Theorem 4, we consider γ = 1.
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Department of Mathematics and Informatics,
”1 Decembrie 1918” University of Alba Iulia,
Romania
email: cabuleal@uab.ro

140


	Introduction and Preliminaries
	Main results

