ON A CERTAIN SUBCLASS OF MEROMORPHIC FUNCTIONS DEFINED BY HILBERT SPACE OPERATOR

A. Akgul and S. Bulut

Abstract

In this work, using Hilbert space operator we define a new subclass of meromorphic functions and determine coefficient estimates, radii of starlikeness, and convexity for the functions in this class.

2010 Mathematics Subject Classification: Primary 30C45, 30C50, 47B38.
Keywords: Meromorphic functions, coefficient estimates,radius, extreme points, Hadamard product. Hilbert space operator.

1. Introduction

Let Σ denote the class of functions

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the punctured unit disk

$$
\mathbb{U}^{*}=\{z \in \mathbb{C}: 0<|z|<1\}=\mathbb{U} \backslash\{0\},
$$

with a simple pole at the origin.
For functions $f \in \Sigma$ given by (1) and $g \in \Sigma$ defined by

$$
\begin{equation*}
g(z)=\frac{1}{z}+\sum_{n=1}^{\infty} b_{n} z^{n}, \tag{2}
\end{equation*}
$$

the Hadamard product (or convolution) [2] of f and g is given by

$$
(f * g)(z):=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} b_{n} z^{n}=:(g * f)(z) .
$$

A. Akgul and S. Bulut - On a certain subclass of meromorphic functions ...

Lashin [4] defined the following integral operator $Q_{\beta}^{\gamma}: \Sigma \rightarrow \Sigma$:

$$
Q_{\beta}^{\gamma}=Q_{\beta}^{\gamma} f(z)=\frac{\Gamma(\beta+\gamma)}{\Gamma(\beta) \Gamma(\gamma)} \frac{1}{z^{\beta+1}} \int_{0}^{z} t^{\beta}\left(1-\frac{t}{z}\right)^{\gamma-1} f(t) d t \quad\left(\beta>0, \gamma>1 ; z \in \mathbb{U}^{*}\right)
$$

where Γ is the familiar Gamma function. Using the integral representation of the Gamma and Beta functions, it can be shown that

$$
Q_{\beta}^{\gamma} f(z)=\frac{1}{z}+\frac{\Gamma(\beta+\gamma)}{\Gamma(\beta)} \sum_{n=1}^{\infty} \frac{\Gamma(n+\beta+1)}{\Gamma(n+\beta+\gamma+1)} a_{n} z^{n}=\frac{1}{z}+\sum_{n=1}^{\infty} L(n, \beta, \gamma) a_{n} z^{n}
$$

where

$$
L(n, \beta, \gamma)=\frac{\Gamma(\beta+\gamma)}{\Gamma(\beta)} \frac{\Gamma(n+\beta+1)}{\Gamma(n+\beta+\gamma+1)}
$$

Let H be a complex Hilbert space and $L(H)$ denote the algebra of all bounded linear operators on H. For a complex-valued function f analytic in a domain E of the complex plain containing the spectrum $\sigma(T)$ of the bounded linear operator T, let $f(T)$ denote the operator on H defined by the Riesz-Dunford integral [1]

$$
f(A)=\frac{1}{2 \pi i} \int_{C}(z I-A)^{-1} f(z) d z
$$

where I is the identity operator on H and C is a positively oriented simple closed rectifiable closed contour containing the spectrum $\sigma(T)$ in the interior domain [3]. The operator $f(T)$ can also be defined by the following series:

$$
f(T)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} T^{n}
$$

which converges in the norm topology.
The class of all functions $f \in \Sigma$ with $a_{n} \geq 0$, is denoted by Σ_{p}. Now we introduce the following subclass of Σ_{p} associated with the integral operator $Q_{\beta}^{\gamma} f(z)$.

Definition 1. For $0 \leq \delta<1$ and $0 \leq \alpha<1$, a function $f \in \Sigma_{p}$ given by (1) is in the class $M_{p}(\alpha, \delta, T)$ if

$$
\begin{aligned}
& \left\|T\left(Q_{\beta}^{\gamma} f(T)\right)^{\prime}-\left\{(\delta-1) Q_{\beta}^{\gamma} f(T)+\delta T\left(Q_{\beta}^{\gamma} f(T)\right)^{\prime}\right\}\right\| \\
< & \left\|T\left(Q_{\beta}^{\gamma} f(T)\right)^{\prime}+(1-2 \alpha)\left\{(\delta-1) Q_{\beta}^{\gamma} f(T)+\delta T\left(Q_{\beta}^{\gamma} f(T)\right)^{\prime}\right\}\right\|
\end{aligned}
$$

for all operators T with $\|T\|<1$ and $T \neq \Theta(\Theta$ is the zero operator on $H)$.
In the present paper, we obtain coefficient estimates, radii of starlikeness, and convexity for the functions in the class $M_{p}(\alpha, \delta, T)$.

2. Coefficient Bounds

Theorem 1. A function $f \in \Sigma_{p}$ given by (1) is in the class $M_{p}(\alpha, \delta, T)$ for all proper contraction T with $T \neq \Theta$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma) a_{n} \leq 1-\alpha . \tag{3}
\end{equation*}
$$

The result is sharp for the function

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{1-\alpha}{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)} z^{n} \quad(n \geq 1) . \tag{4}
\end{equation*}
$$

Proof. Assume that (3) holds. Then,

$$
\begin{aligned}
& \left\|T\left(Q_{\beta}^{\gamma} f(T)\right)^{\prime}-\left\{(\delta-1) Q_{\beta}^{\gamma} f(T)+\delta T\left(Q_{\beta}^{\gamma} f(T)\right)^{\prime}\right\}\right\| \\
& -\left\|T\left(Q_{\beta}^{\gamma} f(T)\right)^{\prime}+(1-2 \alpha)\left\{(\delta-1) Q_{\beta}^{\gamma} f(T)+\delta T\left(Q_{\beta}^{\gamma} f(T)\right)^{\prime}\right\}\right\| \\
= & \left\|\sum_{n=1}^{\infty}(n+1)(1-\delta) L(n, \beta, \gamma) a_{n} T^{n}\right\| \\
& -\left\|2(1-\alpha) T^{-1}-\sum_{n=1}^{\infty}[n+(1-2 \alpha)(\delta-1+\delta n)] L(n, \beta, \gamma) a_{n} T^{n}\right\| \\
\leq & \sum_{n=1}^{\infty}(n+1)(1-\delta) L(n, \beta, \gamma) a_{n}\|T\|^{n}-2(1-\alpha)\left\|T^{-1}\right\| \\
& +\sum_{n=1}^{\infty}[n+(1-2 \alpha)(\delta-1+\delta n)] L(n, \beta, \gamma) a_{n}\|T\|^{n} \\
= & 2 \sum_{n=1}^{\infty}[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma) a_{n}\|T\|^{n}-2(1-\alpha)\left\|T^{-1}\right\| \\
\leq & 2(1-\alpha)-2(1-\alpha)=0, \quad(\text { by using }(3))
\end{aligned}
$$

and hence $f \in \Sigma_{p}$ is in the class $M_{p}(\alpha, \delta, T)$.
Conversely, let $f \in M_{p}(\alpha, \delta, T)$, that is,

$$
\begin{aligned}
& \left\|T\left(Q_{\beta}^{\gamma} f(T)\right)^{\prime}-\left\{(\delta-1) Q_{\beta}^{\gamma} f(T)+\delta T\left(Q_{\beta}^{\gamma} f(T)\right)^{\prime}\right\}\right\| \\
< & \left\|T\left(Q_{\beta}^{\gamma} f(T)\right)^{\prime}+(1-2 \alpha)\left\{(\delta-1) Q_{\beta}^{\gamma} f(T)+\delta T\left(Q_{\beta}^{\gamma} f(T)\right)^{\prime}\right\}\right\| .
\end{aligned}
$$

A. Akgul and S. Bulut - On a certain subclass of meromorphic functions ...

From this inequality, it is obtained that

$$
\begin{aligned}
& \left\|\sum_{n=1}^{\infty}(n+1)(1-\delta) L(n, \beta, \gamma) a_{n} T^{n+1}\right\| \\
< & \left\|2(1-\alpha)-\sum_{n=1}^{\infty}[n+(1-2 \alpha)(\delta-1+\delta n)] L(n, \beta, \gamma) a_{n} T^{n+1}\right\| .
\end{aligned}
$$

By choosing $T=r I(0<r<1)$ in above inequality, we get

$$
\frac{\sum_{n=1}^{\infty}(n+1)(1-\delta) L(n, \beta, \gamma) a_{n} r^{n+1}}{2(1-\alpha)-\sum_{n=1}^{\infty}[n+(1-2 \alpha)(\delta-1+\delta n)] L(n, \beta, \gamma) a_{n} r^{n+1}}<1 .
$$

As $r \rightarrow 1^{-}$, (3) is obtained.
Corollary 2. If a function $f \in \Sigma_{p}$ given by (1) is in the class $M_{p}(\alpha, \delta, T)$, then

$$
a_{n} \leq \frac{1-\alpha}{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)} \quad(n \geq 1) .
$$

The result is sharp for the function f of the form (4).
Theorem 3. The class $M_{p}(\alpha, \delta, T)$ is closed under convex combination.
Proof. Let the functions

$$
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=\frac{1}{z}+\sum_{n=1}^{\infty} b_{n} z^{n}
$$

be in the class $M_{p}(\alpha, \delta, T)$. Then, by Theorem 1, we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty}[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma) a_{n} \leq 1-\alpha \\
& \sum_{n=1}^{\infty}[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma) b_{n} \leq 1-\alpha
\end{aligned}
$$

For $0 \leq \tau \leq 1$, define the function h as

$$
h(z)=\tau f(z)+(1-\tau) g(z) .
$$

Then, we get

$$
h(z)=\frac{1}{z}+\sum_{n=1}^{\infty}\left[\tau a_{n}+(1-\tau) b_{n}\right] z^{n} .
$$

Now, we obtain

$$
\begin{aligned}
& \sum_{n=1}^{\infty}[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)\left[\tau a_{n}+(1-\tau) b_{n}\right] \\
= & \tau \sum_{n=1}^{\infty}[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma) a_{n}+(1-\tau) \sum_{n=1}^{\infty}[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma) b_{n} \\
\leq & \tau(1-\alpha)+(1-\tau)(1-\alpha) \\
= & (1-\alpha) .
\end{aligned}
$$

So, $h \in M_{p}(\alpha, \delta, T)$.

3. Extreme points

Theorem 4. Let

$$
f_{0}(z)=\frac{1}{z}
$$

and

$$
\begin{equation*}
f_{n}(z)=\frac{1}{z}+\frac{1-\alpha}{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)} z^{n} \quad(n=1,2, \ldots) . \tag{5}
\end{equation*}
$$

Then $f \in M_{p}(\alpha, \delta, T)$ if and only if it can be represented in the form

$$
f(z)=\sum_{n=0}^{\infty} \mu_{n} f_{n}(z) \quad\left(\mu_{n} \geq 0, \sum_{n=0}^{\infty} \mu_{n}=1\right) .
$$

Proof. Assume that $f(z)=\sum_{n=0}^{\infty} \mu_{n} f_{n}(z),\left(\mu_{n} \geq 0, n=0,1,2, \ldots ; \sum_{n=0}^{\infty} \mu_{n}=1\right)$. Then, we have

$$
\begin{aligned}
f(z) & =\sum_{n=0}^{\infty} \mu_{n} f_{n}(z) \\
& =\mu_{0} f_{0}(z)+\sum_{n=1}^{\infty} \mu_{n} f_{n}(z) \\
& =\frac{1}{z}+\sum_{n=1}^{\infty} \mu_{n} \frac{1-\alpha}{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)} z^{n} .
\end{aligned}
$$

A. Akgul and S. Bulut - On a certain subclass of meromorphic functions ...

Therefore,

$$
\begin{aligned}
\sum_{n=1}^{\infty}[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma) \mu_{n} \frac{1-\alpha}{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)} & =(1-\alpha) \sum_{n=1}^{\infty} \mu_{n} \\
& =(1-\alpha)\left(1-\mu_{0}\right) \\
& \leq(1-\alpha)
\end{aligned}
$$

Hence, by Theorem 1, $f \in M_{p}(\alpha, \delta, T)$.
Conversely, suppose that $f \in M_{p}(\alpha, \delta, T)$. Since, by Corollary 2 ,

$$
a_{n} \leq \frac{1-\alpha}{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)} \quad(n \geq 1)
$$

setting

$$
\mu_{n}=\frac{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)}{1-\alpha} a_{n} \quad(n \geq 1)
$$

and $\mu_{0}=1-\sum_{n=1}^{\infty} \mu_{n}$, we obtain

$$
f(z)=\mu_{0} f_{0}(z)+\sum_{n=1}^{\infty} \mu_{n} f_{n}(z) .
$$

This completes the proof of the theorem.

4. Radil of Starlikeness and Convexity

We now find the radii of meromorphically close-to-convexity, starlikeness and convexity for functions f in the class $M_{p}(\alpha, \delta, T)$.

Theorem 5. Let $f \in M_{p}(\alpha, \delta, T)$. Then f is meromorphically close-to-convex of order $\mu(0 \leq \mu<1)$ in the disk $|z|<r_{1}$, where

$$
r_{1}=\inf _{n}\left[\frac{(1-\mu)[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)}{n(1-\alpha)}\right]^{\frac{1}{n+1}} \quad(n \geq 1)
$$

The result is sharp for the extremal function f given by (5).
Proof. It is sufficient to show that

$$
\begin{equation*}
\left\|\frac{f^{\prime}(T)}{T^{-2}}+1\right\|<1-\mu . \tag{6}
\end{equation*}
$$

A. Akgul and S. Bulut - On a certain subclass of meromorphic functions ...

By Theorem 1, we have

$$
\sum_{n=1}^{\infty} \frac{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)}{1-\alpha} a_{n} \leq 1
$$

So the inequality

$$
\left\|\frac{f^{\prime}(T)}{T^{-2}}+1\right\|=\left\|\sum_{n=1}^{\infty} n a_{n} T^{n+1}\right\| \leq \sum_{n=1}^{\infty} n a_{n}\|T\|^{n+1}<1-\mu
$$

holds true if

$$
\frac{n\|T\|^{n+1}}{1-\mu} \leq \frac{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)}{1-\alpha} .
$$

Then, (6) holds true if

$$
\|T\|^{n+1} \leq \frac{(1-\mu)[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)}{n(1-\alpha)} \quad(n \geq 1)
$$

which yields the close-to-convexity of the family and completes the proof.
Theorem 6. Let $f \in M_{p}(\alpha, \delta, T)$. Then f is meromorphically starlike of order $\mu(0 \leq \mu<1)$ in the disk $|z|<r_{2}$, where

$$
r_{2}=\inf _{n}\left[\left(\frac{1-\mu}{n+2-\mu}\right) \frac{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)}{1-\alpha}\right]^{\frac{1}{n+1}} \quad(n \geq 1)
$$

The result is sharp for the extremal function f given by (5).
Proof. By using the technique employed in the proof of Theorem 5, we can show that

$$
\left\|\frac{T f^{\prime}(T)}{f(T)}+1\right\|<1-\mu
$$

for $|z|<r_{2}$, and prove that the assertion of the theorem is true.
Theorem 7. Let $f \in M_{p}(\alpha, \delta, T)$. Then f is meromorphically convex of order $\mu(0 \leq \mu<1)$ in the disk $|z|<r_{3}$, where

$$
r_{3}=\inf _{n}\left[\left(\frac{1-\mu}{n+2-\mu}\right) \frac{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)}{n(1-\alpha)}\right]^{\frac{1}{n+1}} \quad(n \geq 1)
$$

The result is sharp for the extremal function f given by

$$
f_{n}(z)=\frac{1}{z}+\frac{n(1-\alpha)}{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)} z^{n} \quad(n \geq 1) .
$$

A. Akgul and S. Bulut - On a certain subclass of meromorphic functions ...

Proof. By using the technique employed in the proof of Theorem 5, we can show that

$$
\left\|\frac{T f^{\prime \prime}(T)}{f^{\prime}(T)}+2\right\|<1-\mu,
$$

for $|z|<r_{3}$, and prove that the assertion of the theorem is true.

5. Hadamard Product

Theorem 8. For functions $f, g \in \Sigma_{p}$ defined by (1) and (2), respectively, let $f, g \in$ $M_{p}(\alpha, \delta, T)$. Then the Hadamard product $f * g \in M_{p}(\rho, \delta, T)$, where

$$
\rho \leq \frac{[n+\alpha-\alpha \delta(n+1)]^{2} L(n, \beta, \gamma)-n(1-\alpha)^{2}}{[n+\alpha-\alpha \delta(n+1)]^{2} L(n, \beta, \gamma)+(1-\alpha)^{2}[1-\delta(n+1)]}
$$

Proof. From Theorem 1, we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)}{1-\alpha} a_{n} \leq 1 \tag{7}\\
& \sum_{n=1}^{\infty} \frac{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)}{1-\alpha} b_{n} \leq 1 \tag{8}
\end{align*}
$$

We need to find the largest ρ such that

$$
\sum_{n=1}^{\infty} \frac{[n+\rho-\rho \delta(n+1)] L(n, \beta, \gamma)}{1-\rho} a_{n} b_{n} \leq 1
$$

From (7) and (8) we find, by means of the Cauchy-Schwarz inequality, that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)}{1-\alpha} \sqrt{a_{n} b_{n}} \leq 1 \tag{9}
\end{equation*}
$$

Thus it is enough to show that

$$
\frac{[n+\rho-\rho \delta(n+1)] L(n, \beta, \gamma)}{1-\rho} a_{n} b_{n} \leq \frac{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)}{1-\alpha} \sqrt{a_{n} b_{n}},
$$

that is,

$$
\begin{equation*}
\sqrt{a_{n} b_{n}} \leq \frac{(1-\rho)[n+\alpha-\alpha \delta(n+1)]}{(1-\alpha)[n+\rho-\rho \delta(n+1)]} \tag{10}
\end{equation*}
$$

A. Akgul and S. Bulut - On a certain subclass of meromorphic functions ...

On the other hand, from (9) we have

$$
\begin{equation*}
\sqrt{a_{n} b_{n}} \leq \frac{1-\alpha}{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)} \tag{11}
\end{equation*}
$$

Therefore in view of (10) and (11) it is enough to show that

$$
\frac{1-\alpha}{[n+\alpha-\alpha \delta(n+1)] L(n, \beta, \gamma)} \leq \frac{(1-\rho)[n+\alpha-\alpha \delta(n+1)]}{(1-\alpha)[n+\rho-\rho \delta(n+1)]}
$$

which simplifies to

$$
\rho \leq \frac{[n+\alpha-\alpha \delta(n+1)]^{2} L(n, \beta, \gamma)-n(1-\alpha)^{2}}{[n+\alpha-\alpha \delta(n+1)]^{2} L(n, \beta, \gamma)+(1-\alpha)^{2}[1-\delta(n+1)]} .
$$

References

[1] N. Dunford and J.T. Schwartz, Linear Operators, Part I: General Theory,WileyInterscience, New York, NY, USA, 1958.
[2] P.L. Duren, Univalent Functions, Springer, New York, NY, USA, 1983.
[3] K. Fan, Analytic functions of a proper contraction, Math. Z. 160 (3) (1978), 275-290.
[4] A.Y. Lashin, On certain subclasses of meromorphic functions associated with certain integral operators, Comput. Math. Appl. 59 (1) (2010), 524-531.

Arzu Akgül
Department of Mathematics, Faculty of Science, Kocaeli University, Umuttepe Campus, Izmit-Kocaeli, TURKEY
email: akgul@kocaeli.edu.tr
Serap Bulut
Faculty of Aviation and Space Sciences,
Kocaeli University,
Arslanbey Campus,Kartepe-Kocaeli, TURKEY
email: serap.bulut@kocaeli.edu.tr

