Acta Universitatis Apulensis No. 45/2016
ISSN: 1582-5329 pp. 11-29
http://www.uab.ro/auajournal / doi: 10.17114/j.aua.2016.45.02

NON-ARCHIMEDIAN STABILITY OF GENERALIZED JENSEN’S
AND QUADRATIC EQUATIONS

A. CHARIFI, S. KABBAJ AND D. ZEGLAMI

ABSTRACT. We use the operatorial approach to provide a proof of the Hyers-
Ulam stability for the equations

> f@+dy+a) = Nf(x), v,y €E,
Y]

d f@+ y+a)) = Nf(x)+Nf(y), o,y €E,
AED

where E is a normed space, F' is a non-Archimedean Banach space, ® is a fi-
nite group of automorphisms of E, N = |®| designates the number of its elements,
and {ay, A € ®} are arbitrary elements of E. These equations provides a com-
mon generalization of many functional equations such as Cauchy’s, ®- Jensens’s,
®-quadratic, Lukasik’s equation. Some applications of our results will be illustrated.
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1. INTRODUCTION

In [50], Ulam posed the question of the stability of Cauchy’s equation: If a function
f approximately satisfies Cauchy’s functional equation f(x+vy) = f(x)+ f(y) when
does it has an exact solution which f approximates. The problem has been consid-
ered for various equations, also for mappings with many different types of domains
and ranges by a number of authors including Hyers [22, 23], Aoki [2], T. M. Ras-
sias [41], J.M. Rassias [39, 40], Gajda [19] Gavruta [20] and others. For definitions,
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approaches, and results on Hyers-Ulam-Rassias stability we refer the reader to, e.g.,
([18],[24],[29],[31],[43],[44],[51]-[53]).
The functional equation

fl@+y)+ flz—y) =2f() +2f(y), (1)

is called a quadratic functional equation. The first stability theorem for the Eq.
(1) was proved by Skof [46] for mappings f from a normed space X into a Ba-
nach space Y. Cholewa [12] extended Skof’s theorem by replacing X by an abelian
group G. Skof’s result was later generalized by Czerwik [14] in the spirit of Hyers-
Ulam-Rassias. Since then, a number of stability results have been obtained for
quadratic functional equations and Jensen’s functional equation ([1],[4],[6]-[10],[26]-
[28],[33],[38]). Informations and applications about the Eq. (1) and its further
generalizations can be found e.g. in ([13],[14],[17],[32],[42],[45],[47]-[49]).
The stability problem for the functional equation

|;Mz:f(:wr/\y):f(:tt)+g(y), z,y € X, (2)
AEA

where X is an abelian group, @ is is a finite subgroup of the automorphism group
of X and f,g: X — C was posed and solved by Badora in [4]. Equation (2) is a
joint generalization of Cauchy’s functional equation (® = {id} , g = f), Jensen’s
equation (® = {id, —id}, g = 0) and the quadratic equation (® = {id, —id}, g = f).
This result was published (with a different proof and h = f ) by Ait Sibaha et al.
in [1] and generalized by Charifi et al. in ([6],]7]).

In [10], the authors gave an explicit description of the solutions f : S — H each
of the following generalized equations

Y fl@+Ay+a))=Nf(z), 2,y €S, (3)
red
D fl@+Xy+a)) =Nf()+Nf(y), =,y €5, (4)

D

where S is an abelian monoid, H is an abelian group and @ is a finite subgroup of
authomorphisms of S, and f,g: X — H, which covers the functional equations

fla+y+a)+ flx+o(y)+b) =2f(z), z,y €S, ¢ = {id, o} (6)
flx+y+a)+ flz+o(y) +b) =2f(z) +2f(y), z,y €S, ®={id,oc} (7)
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where a,b are fixed elements of S and o is an involution of S i. e. o(x +y) =
o(y)+o(z) and o(o(z)) =z for all x € S.

In 1897, Hensel [21] has introduced a normed space which does not have the
Archimedean property. Let p be a fixed prime number and x be a non-zero rational
number, there exists a unique integer v,(z) € Z such that x = p”P(w)% where a and
b are integers co-prime to p. The function defined in Q by |:1:]p =p @ ¢ e Q
is called a p-adic, a ultrametric or simply a non-Archimedean absolute value on Q.
By a non-Archimedean field we mean a field K equipped with a function (valuation)
|| : K — [0, +00), called a non-Archimedean absolute value on K and satisfying the
following conditions:

(i) |z|=0<2=0 , z €K,

(i) |zy = |||yl , =,y €K,

(i) |2+ y| < max(fz],|y]) , o,y € K.

We assume, throughout this paper that this value absolute is non-trivial i.e.,
there exists an element k of K such that, |k| # 0, 1.

Definition 1. By a non-Archimedean vector space, we mean a vector space E over
a non-Archimedean field K equipped with a function |.|| : E — [0,+00) called a
non-Archimedean norm on E and satisfying the following properties:

(i) |z|=0&2=0, z€E,

(i) |kz| = k| |||, (k=) e KxE,

(ii1) ||z + y|| < max(|[=[, [y[), =,y € E.

Due to the fact that
|Zm — 2n| < max{|lz; —zjall},n+1<j<m ,m>n,

a sequence (), is Cauchy if and only if (z,4+1 — 2, ), converges to zero in a non-
Archimedean normed space. By a complete non-Archimedean normed space, we
mean one in which every Cauchy sequence is convergent.

The most important examples of non-Archimedean spaces are p-adic numbers. A
key property of p-adic numbers is that they do not satisfy the Archimedean axiom:
for all x and y > 0, there exists an integer n such that = < ny.

In [3], Arriola and Beyer initiated the stability of Cauchy’s functional equa-
tion over p-adic fields. Moslehian and T.M. Rassias [37] proved the Hyers Ulam
Rassias stability of Cauchy’s functional and the quadratic functional equations in
non-Archimedean normed space. For various aspects of the theory of stability in
non-Archimedean normed space we can refer to ([8],[9],[16],[36],[37]).

Let K be an ultrametric field of characteristic zero, F be a K-vector space and
F be a complete ultrametric K-vector space (in particular in the field of p-adic
numbers).
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As continuation of some previous works, the purpose of the present paper is to
prove the Hyers—Ulam stability of the functional equations (3) and (4) for mappings
f from a normed space E into a non-Archimedean Banach space F.

2. PRELIMINARIES

To formulate our results we introduce the following notation and assumptions that
will be used throughout the paper:

Let K be an ultrametric field of characteristic zero (in particular in the field of
p-adic numbers), E be a K-vector space, F' be a complete ultrametric K-vector space
and let FF denotes the vector space consisting of all maps from E into F. We let
® denotes a finite group of automorphisms of E, N designates the number of its
elements and {ay, A € ®} are arbitrary elements of E.

We now recall the definition and some necessary notions of multi-additive map-
pings, using the sequel.

A function A: E — F is additive if A(z +vy) = A(z) + A(y) for all z,y € E.

Let k € N, be a function Ay, : E¥ — F is k-additive if it is additive in each vari-
able, in addition we say that Ay is symmetric if it satisfies A (Tr(1), Tr(2), -+ Tr(h)) =
A (21,29, ..., x3) for all (z1,29,...,x1) € E¥ and all permutations 7 of k elements.
Some informations concerning on such mappings can be found for instance in [31].

Let Ay, : E¥ — F be a k-additive and symmetric function and let A E—= F
defined by Aj(x) = A(z,z,...,x) for all € E. Such a function Aj, will be called
a monomial function of degree k (if A} # 0). We note that it is easily seen that
A (rz) = vk A5 (z) for all z € E and all r € Q.

A function P : E — F is called a GP function (generalized polynomial function)
of degree m € N iff there exist Ag € F and symmetric k-additive functions Ay :
EF — F (for 1 < k < m) such that

A, #0and P(z) = Ag+ Y _ Aj(x) for all z € E.
k=1
For h € E we define the linear difference operator A;, on F¥ by
Ap(f)(x) = f(z +h) — f(z),

for all f € F¥ and 2 € E. Notice that these difference operators commute (ApAj =
Ap Ay for all h,h' € E) and if h € E, n € N then A} the n-th iterate of Ay, satisfies

AR (f)(x) = Zn:(—l)”_k (Z) f(z+Ekh), forall z,h € E and f € FE.
k=0
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Now we note some results for later use.

Theorem 1. [5] Let n € N, f € FF and 6 € RY. Then the following statements
are equivalent.

i) |AL f(2z)|| <0 for all z,h € E.

it) There is, up to a constant, a unique GP function P of degree at most n — 1
such that || f(x) — f(0) — P(z)|| < ¢ for all z € E.

Theorem 2. [9] Let (S,+) be an abelian monoid, ® be a finite subgroup of the group
of automorphisms of S, N = card(®), (H,+) be an abelian group uniquely divisible
by (N +1)! and ay € S (A € ®). Then the function f : S — G is a solution of
equation

Zf + Ay +ay) =xf(z +Zf)\y z,y €585, (8)

red PN
if and only if f has the following form

N
fla)=Ao+ ) Ai(x), z €5, (9)

=1

where Ay € G and Ay, : S* — G, k € {1,2,..., N} are symmetric and k-additive
functions satisfying the two conditions:

_ N o
0) D i e (;)(’kj) YoreaAilx, T, x an, o an, Ay, Ay, Ay) = 0, x,y €S,
k J
0<kEk<N-1,0<j<N-—k 2<max = maz{j+1L,k+ 1,k+j}
and

ii) Z)\eb Zf\il A (ax) = NAo.

Theorem 3. [8] Let ® be a finite subgroup of the group of automorphisms of E,
N = card(®), {ax, A € ®} are arbitrary elements of E and f : E — F satisfying the
nequality

Y fa+dy+an) - ) =) fw)|| <

A€ Acd

for all x,y € E. Then there exists a unique GP function P : E — F of degree at
most N solution of the equation

Zf(x—i-/\y—i-cu) Nf(x +Zf)\y x,y € E, (10)

Aed AeD

such that 5
flx < forall x € E.
| f(z) — P(2)]| < il
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Lemma 4. [8] Let ® be a finite automorphism group of E, N = card®, §,0' € RT,
ax€E (A\€®), and f € F¥ such that

Y fle+dytan) = Nf@) =Y f(Ww)|| <6, z,yek. (11)

Acd Aed

Then, there exists a mapping h € F¥ which satisfies

)
HAéVf(x) - h(y)H < W, r,y € E,

and

HAéVHf(:):)H < x,y € E. (12)

9
||’

Furthermore, if ||Z>\€¢()\y)H <, ye€E, then !‘Aévf(:c)H < max(ﬁ, \Lf\;l)’ T,y €
E.

In the next two theorems the solutions of the functional equations (3) and (4),
respectively, will be expressed in terms of GP functions.

Theorem 5. [10] Let (S,+) be an abelian monoid, ® be a finite subgroup of the
group of automorphisms of S, N = card(®), (H,+) be an abelian group uniquely
divisible by N! and {ax, A € ®} are arbitrary elements of S. Then the function
f:8S — H is a solution of the equation (3) if and only if f has the following form

N-1

fl@)=Ao+ > Ai(z), €S, (13)

i=1

where Ay € H and Ay : S*¥ — H, k€ {1,2,..., N — 1} are k-additive and symmetric
functions which satisfy the following conditions

N
> ()( i )/\;@Ai(x, T ANy ey ANy NYy s AY) = 0 for x,y €S,

i=maz(k+j,k+1) k 7
0<k<N-2 0<j<N-Fk—1.

Theorem 6. [10] Let (S,+) be an abelian semigroup, ® be a finite subgroup of the
group of automorphisms of S, N = card(®), (H,+) be an abelian group uniquely
divisible by (N 4+ 1)! and {ax, A € ®} are arbitrary elements of S. Then the function
f:S — H is a solution of the equation (4) if and only if f has the following form

N
fl@)=Ao+)_ Af(z), z €8, (14)

i=1
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where Ay € H and Ay, : S¥ — H, k € {1,2,..., N} are symmetric and k-additive
functions satisfying the three conditions:

»> S At(ax) = NAy,

€P k=1
N L
i1) > DRSS A, ey an, o an, Ay, Ay) = 0, 2,y €S,
2<i=maz(k+j,k+1) (k)( J ) AED ' S—— N—

J
1<kE<N-1,0<j<N—-Fkand

N .
wi) Y. (1) > Ar(Az, .., Az, ay,...,an) = NAf(z), x € S, 1 <i<N.
k=i (k) AED ~—

3. MAIN RESULTS

The following lemma will be used in the proof of our main results namely Theorems
8 and 11.

Lemma 7. Let K be an ultrametric field of characteristic zero and K its completion,
F be a complete ultrametric K-vector space, § € Rt and P be a polynomial function
of degree n, n > 1, with rational variable and with coefficients in F. Suppose that

|P(2)|| <9 for all z € Q. (15)
Then, there exists a prime number p such that Q, C K and
P(z) = P(0) for all z € Qy,
i.e. all non-constant coefficients of P are zero.

Proof. There exist ag, a1, ..., a, € F such that

The theorem of Ostrowski shows that there exists a prime number p for which
Qp C K. An extension by continuity of the external law of F from K to K allows us
to write,

|P(2)|| <9 for z € Qp.

Let ¢ : ' — @Q, be a continuous Qp-linear functional. Taking into account the
previous inequality we have for all z € Q):

le(P ()]l < gl for z € Qp,
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wich means that

< |¢| forze Q.

PEICHEL
=0

It results, since a polynomial function is bounded if and only if it is constant, that
¢(a;) = 0 for 1 < ¢ < n and for any continuous Q,-linear functional ¢ : F' — Q,,.
Thus ultrametric version Hahn Banach Theorem gives a; = 0, 1 < i < n i.e.
P(z) = P(0) for all z € Q,.

In the following theorem, using the operatorial approach we obtain the non-
Archimedean stability in the sense of Hyers-Ulam of the generalised ®-Jensen func-
tional equation.

Theorem 8. Assume that ® is a finite subgroup of the group of automorphisms of
E, N = card(®), {ax, A € ®} are arbitrary elements of E and f : E — F satisfying
the following inequality:

Y fla+dy+ay) - Nf(z)|| <6
A€D
for all x,y € E. Then there exists, up to a constant, a unique GP function P : £ —

F solution of the equation (3), of degree at most N — 1, such that

1)
Hf(x) - f(O) - P(ZE)H § W fO’/’ allx € E.
Proof. Suppose that f satisfies the inequality (16). Letting y = 0 and = 0 in (16),
respectively, we get

: (16)

Y fm+an) - Nf(@)|| <6, z€E,
\ed

and
S fOw+ay) - Nf(O)|| <6, yeE.
AeD

By replacing, in the last inequality, y by uy we obtain

)

||N2f(0) ~ N fy)
veED
<maX{ N2F0) =D fludy +ay) }
HED NP

<5, (17)

YD fwytan) N fvy)

ved Aed ved
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for all y € E. Tt follows, by taking ¢g := f — f(0) and the use of (16) and (17) that

> gz + Xy +ax) - Ng(z) =Y g(\)

Aed AED
= | fl@+dy+an) = Nf(@) +NfO) - ) fOw)
AED A€d
< ax{ Zf(x—i—)\y—i-a)\)—Nf(x) _Zf()\y) }
red AED
)
< IENAE
N

for all z,y € E. In virtue of Theorem 3, there exists, in the class of function g : £ —
F with g(0) = 0, a GP function P of degree at most N solution of the functional
equation

> gle+ Ay +axn) =Ngl@)+ > g(\y) (18)
A€ A€
such that 5
llg(x) — P(x)]| < W forall z € E. (19)

According to Theorem 2, P(z) = Zi\il A’ (x) with

N
S Aifan) =0 (20)

AP i=1
and
N
Z ( > ( > ZA a; ANy ey ANy AY, ooy AY) = 0 (21)
i=mazx AeD §

forallz,y e E,0< k< N-1,0<j < N—kand2 < mazx = mazx(k+1,j+1,k+7).
In addition by (17),

Y Py)| < max{ > (POw) - ' > g(w) }
Acd Acd Acd
5
o NP

for all y € E. In view of Lemma 4, Theorem 1 and Lemma 7, we have

Ay =0 (22)

19



A. Charifi, S. Kabbaj and D. Zeglami — &-Jensen and ®-quadratic ...

and by Lemma 7,

S A =0,yeB 1<i<N-1 (23)
Aed

Taking into account of (20) (21), (22) and (23) we get

N-1 . .
i\ [i—k
. Ai(z,...,z,ay,...,ax, \y, ..., \y) =0, x,y € E,
S () St ooy 0
k

i=maz(k+j,k+1) Acd j

0<EkE<N-2 0<j5<N—k-—1. This shows, using Theorem 5, that P is a
solution of the Eq. (3).

The uniqueness is giving by Lemma 7. In fact, let (Q be another GP function of
degree at most N — 1, solution of Eq. (3) and satisfying the inequality (19) then we
get

[1P(z) = Q@) < max(|P(z) - g(2)[|, [lg(z) — Q)]])

< ’N(S’Q,xGE.

According to Lemma 7 we get P — @ is constant. This completes the proof.

Corollary 9. Assume that a,b are arbitrary elements of E and f : E — F satisfying
the following inequality:

If(@+y+a)+ flz+o(y) +b) —2f(2)] <4, (24)

for all x,y € E. Then there exists, up to a constant, a unique GP function P : £ —
F solution of the equation (6), of degree at most 1, such that

| f(z) — f(0) — P(z)|| < é‘ for all x € E.

Proof. The proof follows on putting ® = {I,c} in Theorem 8.

Corollary 10. Let p be a prime number, C, = Q,+1iQ,, (i* = —1), j be a primitive
cube root of unity, a be a nonzero complex number and f : C, — C,, be a continuous
function satisfying the following inequality

|f(z+y+ja) + flz+ jy + 5°a) + fx + >y +a) = 3f(2)|| <6, =,y€Cp, (25)

for all x,y € C,. Then there ewists, up to a constant, a unique GP function P :
Cp, — C, of degree at most 2, solution of the equation

flx+y+ja)+ flz+jy+j%a) + f(z+ %y +a) = 3f(z), 2,y €C,,  (26)
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such that 5
| f(z) — P(z)]| < o €E.

Now we investigate the non-Archimedean stability, in the sense of Hyers-Ulam,
of the equation (4).

Theorem 11. Assume that ® is a finite subgroup of the group of automorphisms of
E, N = card(®), {ax, A € ®} are arbitrary elements of E and f : E — F satisfying
the following inequality:

> @+ y+an) - Nf(x) - Nf(y)|| <9, (27)
AP
for all x,y € E. Then there exists a unique GP function P : E — F solution of the
equation (4), of degree at most N, such that

)
| f(z) — P(z)]| < W forxz € E.

Proof. Suppose that f satisfies the inequality (27). Letting x = y = 0, y = 0 and
x = 0, respectively, in (27) we obtain

> flax) —2Nf(0)|| <6,

D
> fl@+an) = Nf(z) = NfO)| <6,
AED
> fa+ay) - Nf(z) = Nf(0)|| <,
AEeD

for all z,y € E. Taking into account the above inequalities and (27) we get that

N2f(z)+ N f(uy) = N*f(0) = N> f(z +vy)

pned ved
< max{ N2 f(2) + N Y Fluy) = D> fla+ Ay +an)]| |
ped AED ped
YN fletvy+an) =N’ f(0) =N f(z+vy) }
ved \ed ved

< 4,
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for all z,y € E. With the notation g := f — f(0) we can reformulate the previous
inequality to

0
> gl@+ py) — Ng(z) = gluy)| < ik
pned pned
for all x,y € E. Theorem 3 shows that there exists a GP function @ : £ — F of
degree at most N solution of the equation
> gl@+py) = Ng(z)+ Y g(py), 2,y € E

pned ned

such that

lo(x) — Q)| < rz\ir xeE. (28)

Then there exist k-additive and symmetric functions Ay : E¥ — F, k € {1,2,..., N} such
N

that Q(z) = > Af(x), z € E and we have
i=1

S Q@+ ) = NQ(2) + 3 Quy), .y € E.

pned ned

Let P be the GP function defined by

N
Pa)= Q) + 3 M), v € B,

€D i=1

so we have the following inequality

[f(z) = P()| = ||g(z) — Q=) — %(Z flax) + 2Nf(0))H
AED
) 0
< max(W,W)
<« 9
TN

for all z € E. To prove that P is a solution of the equation (4) we define the
functions Ip, Jp : E x E — F by the formulas

IP(J/‘,y):ZP($+Vy+aV)—NP($)—NP(y), xvyeE
ved
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and

JP(xay) = Ip(l’,y) - IP(Ovy)7 T,y € E.

We have therefore

IP(Ov 0)

= > P(ay) - 2NP(0)

ved
N N
= {Z Qay) + EA;‘(a,,)} —2 {ZZA;(%)}
ved ved i=1 ved i=1
= 0.

Furthermore we have,

[1p(z, )| < max {

ZP(m+)\y+a,\)—f(a:+)\y+a,\)

AED
|INP(z) = Nf(@)|l, INP(y) = Nf(y)ll, o}
< max(w,é)
< 9
TN

forall z,y € E. Replacing P by its expression (as a GP function) in Ip(0,y), Ip(z,y)
we get, that for all x,y € F

IP(O7 y)

> P(Ay+ay) — NP(0) - NP(y)

AED
N N
= Y Y Ly +a) - NI Al(y) - NP(0)
AED i=1 i—1
¢ N
= ZZ < > Z.A )\y,.. AY, Gxyeeey @ —NZA;(y) — NP((])
=1 j=0 J AED : i=1
N .
= 2 Z()ZA My, o My ay, s 03) — NAS(y)
Jj=1 \ i=j Aed )
N—kN-1 ‘ o
Z ( t ) ( ( k;j )Ai(x,...x,aA,...,a)\,/\y,...,)\y).
AED j=0 k=1 i=max(k+jk+1)<N J T N

J
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Making the substitution y by Zy, Z € Q in Ip(0,y) we obtain a polynomial function
R(Z) with rational variable and with coefficients in F),

N N .
R(Z)=S "7z <Z> ANy s My, ax, say) — NAY) |, y e B, Z € Q.
(Z) JZ; ZZJ: j A;) ( j ) i (v)
(29)
It satisfies 5
IR(Z)]| < N ZeQ.

In view of Lemma 7, R(Z) = 0, Z € Q. Consequently Jp(z,y) = Ip(x,y), z,y € E.
In addition, a similar reasoning, making the substitution z by Zz, Z € Q in Jp(z,y),
we can show that Ip(z,y) =0, x,y € E which means that (p, q) is a solution of the
equation (4).

It is left to prove the uniqueness statement. Let T" be another GP function of
degree at most N, solution of the Eq. (4) such that

lo(@) - T(@)]| < ‘Jg reE. (30)

From (28) and (30) we infer that we have

[1P(z) = T(@)|| = [P(z)-g(x) +9(z) - T(z)]
< max {[|P(x) — g(@)]|, lg(x) — T (=)}
< 0 ,
TN

for all x € E. So, by Lemma 7 we conclude that T'— P is a constant, and by the fact
that T and P are solution of the Eq. (4) we get T'= P. This completes the proof of
Theorem 11.

Corollary 12. Assume that a,b are arbitrary elements of E and f : E — F satis-
fying the following inequality:

If(@x+y+a)+flz+o(y) +b) —2f(x) = 2f ()] <0, (31)

for all x,y € E. Then there exists a unique GP function P : E — F solution of the
equation (7), of degree at most 2, such that

1)
| f(xz) = P(x)|| < m forallx € E.
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Proof. The proof follows on putting ® = {I,c} in Theorem 11.

Corollary 13. Let w be a primitive N*" root of unity, N > 2, let a be a complex
constant, p be a prime number, C, = Q, + iQ,, i* = —1 and f : C, — C, be a
continuous function satisfying the inequality

N-1

Y fle+w'y+w"a) = Nf(z) - Nf(y)

n=0

<0, z,y€C,.

Then there exist a unique GP function P : C, — C,, of degree at most N, solution
of the equation,

N-1
d fletuw'y+w"a) = Nf(x)+ Nf(y), z,y€Cp,
n=0
such that 5
z)— PR < —=, z€C,.
1f(2) = P(2)[| < e p
REFERENCES

[1] M. Ait Sibaha, B. Bouikhalene, and E. Elqorachi, Hyers-Ulam-Rassias stability
of the K -quadratic functional equation, J. Ineq. Pure and appl. Math.8(2007), article
89.

[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math.
Soc. Japan 2 (1950) 64-66.

[3] L.M. Arriola, and W.A. Beyer: Stability of the Cauchy functional equation over
p-adic fields, Real Analysis Exchange, 31(2005/2006), 125-132.

[4] R. Badora, Stability Properties of Some Functional Equations, equations in
mathematical analysis. Springer Optimization 398 and Its Applications vol. 52, p.
26. doi:10.1007/978-1-4614-0055-4.

[5] J. A. Baker: A general functional equation and its stability, Proc. Amer. Math.
Soc. 133(2005), no 6, 1657-1664.

[6] A. Charifi, B. Bouikhalene, E. Elqorachi: Hyers-Ulam-Rassias stability of a
generalized Pezider functional equation, Banach J. Math. Anal. 1 (2007), no. 2, 176-
185.

[7] A. Charifi, B. Bouikhalene, E. Elqorachi, A. Redouani: Hyers Ulam Rassias
stability of a generalized Jensen functional equation , The Australian J. of Math.
Analysis and App., 6(2009), no 1, Article 19, 1-16.

25



A. Charifi, S. Kabbaj and D. Zeglami — &-Jensen and ®-quadratic ...

[8] A. Charifi, JM. Rassias, M. Almahalebi, S. Kabbaj, A Ultrametric approzima-
tions of Drygas functional equation, (Submited).
[9] A. Charifi, M. Almahalebi, S. Kabbaj, A generalization of Drygas functional
equation on groups, (Submited).
[10] A. Charifi, D. Zeglami, S. Kabbaj, Solution of generalized Jensen and quadratic
functional equations, (Submited).
[11] A. Chehbi, A. Charifi, B. Bouikhalene, S. Kabbaj: Operatorial approach to

the non-Archimedean stability of a Pexider K-quadratic functional equation, Arab J
Math Sci 21(1) (2015), 67-83.

[12] P. W. Cholewa: Remarks on the stability of functional equations, Aequationes
Math. 27 (1984), 76-86.

[13] J.K. Chung, B.R. Ebanks, C.T. Ng, P.K. Sahoo: On a quadratic trigonometric
functional equation and some applications. Trans. Amer. Math. Soc. 347 (1995), 1131-
1161.

[14] S. Czerwik: On the stability of the quadratic mapping in normed spaces. Abh.
Math. Sem. Univ. Hamburg, 62 (1992), 59-64.

[15] B.R. Ebanks, PL. Kannappan and P.K. Sahoo: A common generalization of
functional equations characterizing normed and quasi-inner-product spaces, Canad.
Math. Bull. 35 (1992), 321-327.

[16] M. Eshaghi Gordji, M.B. Savadkouhi: Stability of a mized type cubic quartic
functional equation in non-Archimedean spaces, Applied Math. Letters 23 (2010)
1198 1202.

[17] B. Fadli, D. Zeglami, S. Kabbaj: On a Gajda’s type quadratic equa-
tion on a locally compact abelian group, Indagationes Math. (2015) DOL:
10.1016/j.indag.2015.05.001.

[18] G.L. Forti: Hyers-Ulam stability of functional equations in several variables,
Aequationes Math. 50 (1995), 143-190.

[19] Z. Gajda: On stability of additive mappings, Internat. J. Math. Math. Sci. 14
(1991), 431-434. 15.

[20] P. Gavruta: A generalization of the Hyers-Ulam-Rassias stability of approxi-
mately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436. K.

[21] K. Hensel: Uber eine neue Begrundung der Theorie der algebraischen Zahlen,
Jahresber. Deutsch. Math. Verein, 6(1897), 83-88.

[22] D.H. Hyers: On the stability of the linear functional equation, Proc. Nat. Acad.
Sci. U. S. A. 27 (1941), 222-224.

[23] D.H. Hyers: Transformations with bounded n-th differences, Pacific J. Math. 11
(1961), 591-602.

26



A. Charifi, S. Kabbaj and D. Zeglami — &-Jensen and ®-quadratic ...

[24] D.H. Hyers, G.I. Isac, and Th. M. Rassias, Th.M.: Stability of Functional Equa-
tions in Several Variables, Birkhauser, Basel, 1998.

[25] K. W. Jun, and Y. H. Lee: A generalization of the Hyers-Ulam-Rassias stability
of Jensen’s equation, J. Math. Anal. Appl. 238 (1999), 305-315.

[26] S. M. Jung: Stability of the quadratic equation of Pexider type, Abh. Math.
Sem. Univ. Hamburg, 70 (2000), 175-190.

[27] S. M. Jung and P. K. Sahoo: Hyers-Ulam stability of the quadratic equation of
Pezider type, J. Korean Math. Soc., 38 (2001), No. 3, 645-656.

[28] S. M. Jung and P. K. Sahoo: Stability of a functional equation of Drygas,
Aequati. Math. 64 (2002), No. 3, 263-273.

[29] S. M. Jung: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear
Analysis, Springer, New York, 2011.

[30] P. Kannappan: Quadratic functional equation and inner product spaces, Results
Math. 27(1995), no. 3-4, 368-372.

[31] M. Kuczma: An introduction to the theory of functional equations and inequal-
ities. Cauchy’s equation and Jensen’s inequality. Birkh&user, Basel (2009).

[32] R. Lukasik: Some generalization of Cauchys and the quadratic functional equa-
tions, Aequat. Math. 83 (2012), 75-86.

[33] R. Lukasik: The solution and the stability of the Pexiderized K-quardratic func-
tional equation, 12th Debrecen-Katowice Winter Seminar on Functional Equation-
sand Inequalities, Hajduszoboszlo, Hungary, January 25-28, 2012.

[34] S. Mazur, and W. Orlicz: Grundlegende Eigenschaften der Polynomischen Op-
erationen, Erst Mitteilung, Studia Math. 5 (1934), 50-68.

[35] S. Mazur, and W. Orlicz: Grundlegende Eigenschaften der Polynomischen Op-
erationen, Zweite Mitteilung, ibidem 5 (1934), 179-189.

[36] A. K. Mirmostafaee: Non-Archimedean stability of quadratic equations, Fixed
Point Theory, 11(2010), No. 1, 67-75.

[37] M.S. Moslehian, Th. M. Rassias: Stability of functional equations in non-
Archimedea spaces, Applicable Analysis and Discrete Math., 1 (2007), 325-334.

[38] C.Park: On the stability of the quadratic mapping in Banach modules. J. Math.
Anal. Appl., 276 (2002), 135-144.

[39] J. M. Rassias, On the Ulam stability of mized type mappings on restricted do-
mains, J. Math. Anal. Appl. 281 (2002) 747-762. 16

[40] J.M. Rassias: Solution of a problem of Ulam. J. Approx. Theory 57 (1989),
268-273.

[41] Th. M. Rassias: On the stability of linear mapping in Banach spaces, Proc.
Amer. Math. Soc., 72 (1978), 297-300.

27



A. Charifi, S. Kabbaj and D. Zeglami — &-Jensen and ®-quadratic ...

[42] Th. M. Rassias: Inner Product Spaces and Applications, Pitman Research Notes
in Mathematics Series, Addison Wesley Longman Ltd, No. 376, 1997.

[43] Th. M. Rassias and J. Tabor: Stability of Mappings of Hyers—Ulam Type,
Hardronic Press, Inc., Palm Harbor, Florida, 1994.

[44] Th. M. Rassias: Handbook of Functional Equations: Stability Theory, Springer
Optimization and Its Applications 96 (2014), DOI 10.1007/978-1-4939-1286-5_17.

[45] P. Sinopoulos:  Functional equations on semigroups. Aequationes Math.
59(2000) no.3, , 255-261.

[46] S. Skof: Local properties and approzimations of operators, Rend. Sem. mat. Fis.
Milano, 53(1983), 113-129.

[47] H. Stetkeer: Functional equations on abelian groups with involution, Aequat.
Math. 54 (1997), 144-172.

[48] H. Stetkeer: Functional equations involving means of functions on the complex
plane. Aequat. Math. 55 (1998), 47-62.

[49] H. Stetkeer: Functional equations and matriz-valued spherical functions. Ae-
quat. Math. 69(2005), 271-292.

[50] S. M. Ulam: A Collection of Mathematical Problems, Interscience Publ. New
York, 1961. Problems in Modern Mathematics, Wiley, New York 1964. 1.

[61] D. Zeglami, A. Charifi, S. Kabbaj: On the superstability of the pexider type gen-
eralized trigonometric functional equations. Acta Math. Sci. 34(6), 1749-1760 (2014).

[52] D. Zeglami, S. Kabbaj, A. Charifi: On the stability of the generalized mized
trigonometric functional equations. Adv. Pure Appl. Math. 5(4), 209-222 (01/2014).

[53] D. Zeglami, A. Charifi, S. Kabbaj: Superstability problem for a large class of
functional equations, Afr. Math. (2015), DOI: 10.1007/s13370-015-0353-4.

Ahmed Charifi

Department of Mathematics, Faculty of Science,
University of Ibn Tofail,

Kenitra, Morocco

email: charifi2000@yahoo.fr

Samir Kabbaj

Department of Mathematics, Faculty of Science,
University of Ibn Tofail,

Kenitra, Morocco

email: samkabbaj@yahoo.fr

28



A. Charifi, S. Kabbaj and D. Zeglami — &-Jensen and ®-quadratic ...

Driss Zeglami

Department of Mathematics, E.N.S.A.M,
Moulay Ismail University,

Meknes, Morocco

email: zeglamidriss@yahoo.fr

29



	Introduction
	Preliminaries
	Main results

