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1. Introduction

Throughout the paper, we consider connected finite graphs without any loops or
multiple edges. A topological index (also known as graph invariant) is any function
on a graph irrespective of the labeling of its vertices. Several hundreds of different in-
variants have been employed to date with various degrees of success in QSAR/QSPR
studies. We refer the reader to monographs [11, 19] for review.

The oldest topological index is the one put forward in 1947 by Harold Wiener [20]
nowadays referred to as the Wiener index. Wiener used his index for the calculation
of the boiling points of alkanes. The Wiener index W (G) of a graph G is defined as
the sum of distances between all pairs of vertices of G,

W (G) =
∑

{u,v}⊆V (G)

d(u, v |G),

where d(u, v |G) denotes the distance between the vertices u and v of G which is the
length of any shortest path in G connecting u and v. Details on the mathematical
properties of the Wiener index and its applications can be found in [1, 2, 9, 10].

The Hosoya polynomial or Wiener polynomial [17] of a graph G is defined in
terms of a parameter q as

W (G; q) =
∑

{u,v}⊆V (G)

qd(u,v|G ).
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The first derivative of this polynomial at q = 1 is equal to the Wiener index, i.e.,
W ′(G; 1) = W (G). We refer the reader to [12, 13, 14, 15] for more information on
the Wiener polynomial.

In analogy with definition of the Wiener index, the vertex-edge versions of the
Wiener index were defined based on distance between vertices and edges of a graph
[8, 18]. Two possible distances between a vertex u and an edge e = ab of a graph G
can be considered. The first distance is denoted by D1(u, e |G) and defined as [18]

D1(u, e |G) = min{d(u, a |G), d(u, b |G)},

and the second one is denoted by D2(u, e |G) and defined as [8]

D2(u, e |G) = max{d(u, a |G), d(u, b |G)}.

Based on these two distances, two vertex-edge versions of the Wiener index can be
introduced. The first and second vertex-edge Wiener indices of G are denoted by
Wve1(G) and Wve2(G), respectively, and defined as

Wvei(G) =
∑

u∈V (G)

∑
e∈E(G)

Di(u, e |G), i ∈ {1, 2}.

The first and second vertex-edge Wiener polynomials of a graph G are denoted
by Wve1(G; q) and Wve2(G; q), respectively, and defined in terms of a parameter q
as [7]

Wvei(G; q) =
∑

u∈V (G)

∑
e∈E(G)

qDi(u,e|G ), i ∈ {1, 2}.

The first derivative of these polynomials at q = 1 are equal to their corresponding
vertex-edge Wiener indices, i.e., W

′
vei(G; 1) = Wvei(G), i ∈ {1, 2}.

For a graph G, let NG(u) denote the open neighborhood of a vertex u in G which
is the set of all vertices of G adjacent with u. The cardinality of NG(u) is called the
degree of u in G and denoted by dG(u). One can easily see that,∑

uv∈E(G)

|NG(u) ∩NG(v)| = 3∆(G),

where ∆(G) is the number of all triangles (3-cycles) in G. We denote by NG[u] the
closed neighborhood of u in G which is defined as the set NG(u) ∪ {u}. If there is
no ambiguity on G, we will omit the subscript G in NG(u), dG(u), and NG[u].

The first Zagreb index of a graph G is denoted by M1(G) and defined as [16]

M1(G) =
∑

u∈V (G)

dG(u)2.
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The first Zagreb index can also be expressed by the following formulas,

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)],

M1(G) =
∑

u,v∈V (G)

|N(u) ∩N(v)| .

In [4, 8], the vertex-edge Wiener indices of some chemical graphs were computed
and in [3, 5, 6, 7], the behavior of the vertex-edge Wiener indices and/or polynomials
under some graph operations were investigated. In this paper, we compute the
first and second vertex-edge Wiener polynomials and their related indices for the
disjunctive product of graphs.

2. Results and discussion

Let G1 and G2 be two connected graphs. We denote by V (Gi) and E(Gi) the
vertex set and edge set of Gi and by ni and ei its order and size, respectively, where
i ∈ {1, 2}. The disjunctive product G1 ∨ G2 of graphs G1 and G2 is a graph with
the vertex set V (G1) × V (G2) and two vertices u = (u1, u2) and v = (v1, v2) are
adjacent if and only if u1v1 ∈ E(G1) or u2v2 ∈ E(G2). The disjunctive product of
two graphs is also known as their co-normal product or OR product. The distance
between the vertices u = (u1, u2) and v = (v1, v2) of G1 ∨G2 is given by

d(u, v |G1 ∨G2 ) =


0 if u1 = v1, u2 = v2,
1 if u1v1 ∈ E(G1) or u2v2 ∈ E(G2),
2 otherwise.

In this section, we compute the first and second vertex-edge Wiener polynomials
and their related indices for the disjunctive product of G1 and G2. To do this, we
first consider three subsets of E(G1 ∨G2) as follows.

E1 ={(u1, u2)(v1, v2)|u1v1 ∈ E(G1), u2, v2 ∈ V (G2)},
E2 ={(u1, u2)(v1, v2)|u2v2 ∈ E(G2), u1, v1 ∈ V (G1)},
E3 ={(u1, u2)(v1, v2)|u1v1 ∈ E(G1), u2v2 ∈ E(G2)}.

It is clear that, E(G1 ∨ G2) =
⋃3

i=1Ei and |E(G1 ∨G2)| = e1n
2
2 + e2n

2
1 − 2e1e2.

Throughout the section, let G = G1 ∨G2.
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2.1. The first vertex-edge Wiener polynomial and index

In this subsection, we compute the first vertex-edge Wiener polynomial and index
for the disjunctive product of G1 and G2. At first, we prove some lemmas which
will be used in the proof of our main theorem.

Lemma 1.∑
u∈V (G)

∑
e∈E1

qD1(u,e|G) = 2e1n
2
2 +

[
n3

2

(
M1(G1)− 3∆(G1)

)
− 2e1n

2
2

+
(
n1e1 −M1(G1) + 3∆(G1)

)(
4n2e2 −M1(G2)

)]
q

+
(
n1e1 −M1(G1) + 3∆(G1)

)(
n3

2 − 4n2e2 +M1(G2)
)
q2.

(1)

Proof. Let A =
∑

u∈V (G)

∑
e∈E1

qD1(u,e|G). By definition of the set E1, we have

A =
∑

(u1,u2)∈V (G)

∑
(a1,a2)(b1,b2)∈E1

qmin{d((u1,u2),(a1,a2)|G ),d((u1,u2),(b1,b2)|G )}

=
∑

a1b1∈E(G1)

∑
a2∈V (G2)

∑
b2∈V (G2)

[ ∑
u1=a1

∑
u2=a2

q0 +
∑
u1=b1

∑
u2=b2

q0

+
∑

u1=a1

∑
u2∈V (G2)−{a2}

q1 +
∑
u1=b1

∑
u2∈V (G2)−{b2}

q1

+
∑

u1∈(N(a1)∪N(b1))−{a1,b1}

∑
u2∈V (G2)

q1 +
∑

u1∈V (G1)−(N(a1)∪N(b1))

∑
u2∈N(a2)∪N(b2)

q1

+
∑

u1∈V (G1)−(N(a1)∪N(b1))

∑
u2∈V (G2)−(N(a2)∪N(b2))

q2
]

=2e1n
2
2 +

[
2e1n

2
2(n2 − 1) + n3

2

∑
a1b1∈E(G1)

(
d(a1) + d(b1)− |N(a1) ∩N(b1)| − 2

)
+

∑
a1b1∈E(G1)

(
n1 − d(a1)− d(b1) + |N(a1) ∩N(b1)|

)
∑

a2∈V (G2)

∑
b2∈V (G2)

(
d(a2) + d(b2)− |N(a2) ∩N(b2)|

)]
q

+
∑

a1b1∈E(G1)

(
n1 − d(a1)− d(b1) + |N(a1) ∩N(b1)|

)
∑

a2∈V (G2)

∑
b2∈V (G2)

(
n2 − d(a2)− d(b2) + |N(a2) ∩N(b2)|

)
q2.

Eq. (1) is obtained after simplifying the above expression.
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Lemma 2.∑
u∈V (G)

∑
e∈E2

qD1(u,e|G) = 2e2n
2
1 +

[
n3

1

(
M1(G2)− 3∆(G2)

)
− 2e2n

2
1

+
(
n2e2 −M1(G2) + 3∆(G2)

)(
4n1e1 −M1(G1)

)]
q

+
(
n2e2 −M1(G2) + 3∆(G2)

) (
n3

1 − 4n1e1 +M1(G1)
)
q2.

(2)

Proof. The proof is similar to the proof of Lemma 1.

Lemma 3.∑
u∈V (G)

∑
e∈E3

qD1(u,e|G) = 2e1e2 +
[
n2e2

(
M1(G1)− 3∆(G1)

)
− 2e1e2

+
(
n1e1 −M1(G1) + 3∆(G1)

)(
M1(G2)− 3∆(G2)

)]
q

+
(
n1e1 −M1(G1) + 3∆(G1)

)(
n2e2 −M1(G2) + 3∆(G2)

)
q2.

(3)

Proof. Let C =
∑

u∈V (G)

∑
e∈E3

qD1(u,e|G). By definition of the set E3, we have

C =
∑

(u1,u2)∈V (G)

∑
(a1,a2)(b1,b2)∈E3

qmin{d((u1,u2),(a1,a2)|G ),d((u1,u2),(b1,b2)|G )}

=
∑

a1b1∈E(G1)

∑
a2b2∈E(G2)

[ ∑
u1=a1

∑
u2=a2

q0 +
∑
u1=b1

∑
u2=b2

q0 +
∑

u1=a1

∑
u2∈V (G2)−{a2}

q1

+
∑
u1=b1

∑
u2∈V (G2)−{b2}

q1 +
∑

u1∈(N(a1)∪N(b1))−{a1,b1}

∑
u2∈V (G2)

q1

+
∑

u1∈V (G1)−(N(a1)∪N(b1))

∑
u2∈N(a2)∪N(b2)

q1

+
∑

u1∈V (G1)−(N(a1)∪N(b1))

∑
u2∈V (G2)−(N(a2)∪N(b2))

q2
]

=2e1e2 +
[
2e1e2(n2 − 1) + n2e2

∑
a1b1∈E(G1)

(
d(a1) + d(b1)− |N(a1) ∩N(b1)| − 2

)
+

∑
a1b1∈E(G1)

(
n1 − d(a1)− d(b1) + |N(a1) ∩N(b1)|

)
∑

a2b2∈E(G2)

(
d(a2) + d(b2)− |N(a2) ∩N(b2)|

)]
q

+
∑

a1b1∈E(G1)

(
n1 − d(a1)− d(b1) + |N(a1) ∩N(b1)|

)
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∑
a2b2∈E(G2)

(
n2 − d(a2)− d(b2) + |N(a2) ∩N(b2)|

)
q2.

Eq. (3) is obtained after simplifying the above expression.

Let e = (a1, a2)(b1, b2) be an edge of G which belongs to E3. Then, obviously,
(a1, b2)(b1, a2) is also an edge in E3. We denote the edge (a1, b2)(b1, a2) by ē.

Lemma 4. ∑
u∈V (G)

∑
e∈E3

qD1(u,e|G) =
∑

u∈V (G)

∑
e∈E3

qD1(u,ē|G). (4)

Proof. The formula of
∑

u∈V (G)

∑
e∈E3

qD1(u,ē|G) can easily be obtained by changing
the role of the vertices a2 and b2 in the proof of Lemma 3. On the other hand, one
can easily check that, changing the role of a2 and b2 in the proof of Lemma 3 does
not influence the obtained result. So, Eq. (4) holds.

Now, we are ready to compute the first vertex-edge Wiener polynomial of the
disjunctive product of G1 and G2.

Theorem 5. The first vertex-edge Wiener polynomial of the disjunctive product of
G1 and G2 is given by

Wve1(G; q) =2e1(n2
2 − e2) + 2e2(n2

1 − e1) +
[
4e1e2(2n1n2 + 1)− 2(e1n

2
2 + e2n

2
1)

+ (n3
2 − 7n2e2)M1(G1) + (n3

1 − 7n1e1)M1(G2)− 3(n3
2 − 6n2e2)∆(G1)

− 3(n3
1 − 6n1e1)∆(G2)− 9∆(G1)M1(G2)− 9∆(G2)M1(G1)

+4M1(G1)M1(G2) + 18∆(G1)∆(G2)] q + [n1 n2e2(n2
2 − 5e2)

+ n1n2e2(n2
1 − 5e1)− (n3

2 − 7n2e2)M1(G1)− (n3
1 − 7n1e1)M1(G2)

+ 3(n3
2 − 6n2e2)∆(G1) + 3(n3

1 − 6n1e1)∆(G2) + 9∆(G1)M1(G2)

+ 9∆(G2)M1(G1)− 4M1(G1)M1(G2)− 18∆(G1)∆(G2 )] q2.

(5)

Proof. By definitions of the first vertex-edge Wiener polynomial and disjunctive
product, we have

Wve1(G; q) =
∑

u∈V (G)

∑
e∈E1

qD1(u,e|G) +
∑

u∈V (G)

∑
e∈E2

qD1(u,e|G)

−
∑

u∈V (G)

∑
e∈E3

(qD1(u,e|G) + qD1(u,ē|G)).
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By Eq. (4),

Wve1(G; q) =
∑

u∈V (G)

∑
e∈E1

qD1(u,e|G) +
∑

u∈V (G)

∑
e∈E2

qD1(u,e|G) − 2
∑

u∈V (G)

∑
e∈E3

qD1(u,e|G).

Now, using Eqs. (1), (2), and (3), we can get Eq. (5).

By taking the first derivative from Eq. (5) with respect to q, and then by
substituting q = 1, we can easily obtain a formula for the first vertex-edge Wiener
index of the disjunctive product of G1 and G2.

Corollary 6. The first vertex-edge Wiener index of the disjunctive product of G1

and G2 is given by

Wve1(G) =2(e1n
2
2 + e2n

2
1)(n1n2 − 1)− 4e1e2(3n1n2 − 1)− (n3

2 − 7n2e2)M1(G1)

−(n3
1 − 7n1e1)M1(G2) + 3(n3

2 − 6n2e2)∆(G1) + 3(n3
1 − 6n1e1)∆(G2)

+9∆(G1)M1(G2) + 9∆(G2)M1(G1)− 4M1(G1)M1(G2)− 18∆(G1)∆(G2).

(6)

Let Pn and Cn denote the n-vertex path and cycle, respectively. It is easy to see
that, for n ≥ 2, M1(Pn) = 4n − 6 and for n ≥ 3, M1(Cn) = 4n. Also ∆(Pn) = 0,
∆(C3) = 1, and for n ≥ 4, ∆(Cn) = 0. Now, using Eq. (6), we easily arrive at:

Corollary 7. For every positive integers n ≥ 2 and m ≥ 3,

Wve1(Pn ∨ Cm) =


9n3 + 6n2 − 30n+ 24 if m = 3,
2m3(n2 − 3n+ 3) + 2m2(n3 − 6n2 + 19n− 20) if m ≥ 4
−2m(2n3 − 13n2 + 44n− 46).

2.2. The second vertex-edge Wiener polynomial and index

In this subsection, we compute the second vertex-edge Wiener polynomial and index
for the disjunctive product of G1 and G2. At first, we prove some lemmas which
will be used in the proof of our main theorem.

Lemma 8.∑
u∈V (G)

∑
e∈E1

qD2(u,e|G) =
[
2e1n

2
2 + 2n2e2M1(G1) + 3(n3

2 − 4n2e2)∆(G1) +
(
n1e1

−M1(G1) + 3∆(G1)
)
M1(G2)

]
q +

[
n1e1n

3
2 − 2e1n

2
2 − 2n2e2M1(G1)

+ 3(4n2e2 − n3
2)∆(G1)−

(
n1e1 −M1(G1) + 3∆(G1)

)
M1(G2) ] q2.

(7)
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Proof. Let A′ =
∑

u∈V (G)

∑
e∈E1

qD2(u,e|G). By definition of the set E1, we have

A′ =
∑

(u1,u2)∈V (G)

∑
(a1,a2)(b1,b2)∈E1

qmax{d((u1,u2),(a1,a2)|G ),d((u1,u2),(b1,b2)|G )}

=
∑

a1b1∈E(G1)

∑
a2∈V (G2)

∑
b2∈V (G2)

[ ∑
u1=a1

∑
u2∈N [a2]

q1 +
∑
u1=b1

∑
u2∈N [b2]

q1

+
∑

u1∈N(a1)−N [b1]

∑
u2∈N(b2)

q1 +
∑

u1∈N(b1)−N [a1]

∑
u2∈N(a2)

q1

+
∑

u1∈N(a1)∩N(b1)

∑
u2∈V (G2)

q1 +
∑

u1∈V (G1)−(N(a1)∪N(b1))

∑
u2∈N(a2)∩N(b2)

q1

+
∑

u1=a1

∑
u2∈V (G2)−N [a2]

q2 +
∑
u1=b1

∑
u2∈V (G2)−N [b2]

q2

+
∑

u1∈N(a1)−N [b1]

∑
u2∈V (G2)−N(b2)

q2 +
∑

u1∈N(b1)−N [a1]

∑
u2∈V (G2)−N(a2)

q2

+
∑

u1∈V (G1)−(N(a1)∪N(b1))

∑
u2∈V (G2)−(N(a2)∩N(b2))

q2
]
.

Eq. (7) is obtained after simplifying the above expression.

Lemma 9.∑
u∈V (G)

∑
e∈E2

qD2(u,e|G) =
[
2e2n

2
1 + 2n1e1M1(G2) + 3

(
n3

1 − 4n1e1

)
∆(G2) +

(
n2e2

−M1(G2) + 3∆(G2)
)
M1(G1) ] q +

[
n2e2n

3
1 − 2e2n

2
1 − 2n1e1M1(G2)

+ 3
(
4n1e1 − n3

1

)
∆(G2)−

(
n2e2 −M1(G2) + 3∆(G2)

)
M1(G1)

]
q2.

(8)

Proof. The proof is similar to the proof of Lemma 8.

Lemma 10.∑
u∈V (G)

∑
e∈E3

(qD2(u,e|G ) + qD2(u,ē|G )) = [4e1e2 + 6n2e2∆(G1) + 6n1e1∆(G2)

− 6∆(G1)M1(G2)− 6∆(G2)M1(G1) +M1(G1)M1(G2) + 18∆(G1)∆(G2 )] q

+ [2e1e2(n1n2 − 2) + 6M1(G1)∆(G2) + 6M1(G2)∆(G1)− 6n1e1∆(G2)

− 6n2e2∆(G1)− 18∆(G1)∆(G2)−M1(G1)M1(G2 )] q2.

(9)
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Proof. Let C ′ =
∑

u∈V (G)

∑
e∈E3

qD2(u,e|G ), and C̄ ′ =
∑

u∈V (G)

∑
e∈E3

qD2(u,e|G ). By
definition of the set E3, we have

C ′ =
∑

(u1,u2)∈V (G)

∑
(a1,a2)(b1,b2)∈E3

qmax{d((u1,u2),(a1,a2)|G ),d((u1,u2),(b1,b2)|G )}

=
∑

a1b1∈E(G1)

∑
a2b2∈E(G2)

[ ∑
u1=a1

∑
u2∈N [a2]

q1 +
∑
u1=b1

∑
u2∈N [b2]

q1

+
∑

u1∈N(a1)−N [b1]

∑
u2∈N(b2)

q1 +
∑

u1∈N(b1)−N [a1]

∑
u2∈N(a2)

q1

+
∑

u1∈N(a1)∩N(b1)

∑
u2∈V (G2)

q1 +
∑

u1∈V (G1)−(N(a1)∪N(b1))

∑
u2∈N(a2)∩N(b2)

q1

+
∑

u1=a1

∑
u2∈V (G2)−N [a2]

q2 +
∑
u1=b1

∑
u2∈V (G2)−N [b2]

q2

+
∑

u1∈N(a1)−N [b1]

∑
u2∈V (G2)−N(b2)

q2 +
∑

u1∈N(b1)−N [a1]

∑
u2∈V (G2)−N(a2)

q2

+
∑

u1∈V (G1)−(N(a1)∪N(b1))

∑
u2∈V (G2)−(N(a2)∩N(b2))

q2
]
.

The formula of C̄ ′ can easily be obtained by changing the role of the vertices a2 and
b2 in the formula of C ′. Now, Eq. (9) is obtained by adding the formulas of C ′ and
C̄ ′ and simplifying the resulting expression.

Now, we are ready to compute the second vertex-edge Wiener polynomial of the
disjunctive product of G1 and G2.

Theorem 11. The second vertex-edge Wiener polynomial of the disjunctive product
of G1 and G2 is given by

Wve2(G; q) = [2 e1(n2
2 − e2) + 2e2(n2

1 − e1) + 3n2e2M1(G1) + 3n1e1M1(G2)

+ 3(n3
2 − 6n2e2)∆(G1) + 3(n3

1 − 6n1e1)∆(G2) + 9∆(G2)M1(G1)

+ 9∆(G1)M1(G2)− 3M1(G1)M1(G2)− 18∆(G1)∆(G2 )] q

+ [( n1n2 − 2)(e1n
2
2 + e2n

2
1 − 2e1e2)− 3n2e2M1(G1)− 3n1e1M1(G2)

− 3(n3
2 − 6n2e2)∆(G1)− 3(n3

1 − 6n1e1)∆(G2)− 9M1(G1)∆(G2)

− 9M1(G2)∆(G1) + 3M1(G1)M1(G2) + 18∆(G1)∆(G2 )] q2.

(10)

Proof. By definitions of the second vertex-edge Wiener polynomial and disjunctive
product, we have
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Wve2(G; q) =
∑

u∈V (G)

∑
e∈E1

qD2(u,e|G) +
∑

u∈V (G)

∑
e∈E2

qD2(u,e|G)

−
∑

u∈V (G)

∑
e∈E3

(qD2(u,e|G) + qD2(u,ē|G)).

Now, by Eqs. (7), (8), and (9), we can get Eq. (10).

By taking the first derivative from Eq. (10) with respect to q, and then by
substituting q = 1, we can easily obtain a formula for the second vertex-edge Wiener
index of the disjunctive product of G1 and G2.

Corollary 12. The second vertex-edge Wiener index of the disjunctive product of
G1 and G2 is given by

Wve2(G) =2(n1n2 − 1)(e1n
2
2 + e2n

2
1 − 2e1e2)− 3n2e2M1(G1)− 3n1e1M1(G2)

− 3(n3
2 − 6n2e2)∆(G1)− 3(n3

1 − 6n1e1)∆(G2)− 9M1(G1)∆(G2)

− 9M1(G2)∆(G1) + 3M1(G1)M1(G2) + 18∆(G1)∆(G2).

(11)

As a direct consequence of Eq. (11), we easily arrive at:

Corollary 13. For every positive integers n ≥ 2 and m ≥ 3,

Wve2(Pn ∨ Cm) =


15n3 − 6n2 − 6n+ 6 if m = 3,
2m3n(n− 1) + 2m2(n3 − 2n2 − 5n+ 10) if m ≥ 4
−2m(7n2 − 32n+ 38).
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