ON THE VERTEX-EDGE WIENER POLYNOMIALS OF THE DISJUNCTIVE PRODUCT OF GRAPHS

M. Azari and A. Iranmanesh

Abstract. In this paper, we study the behavior of the vertex-edge Wiener polynomials and their related indices under the disjunctive product of graphs. Results are applied to compute the vertex-edge Wiener indices for the disjunctive product of paths and cycles.

2010 Mathematics Subject Classification: 05C12, 05C76, 05C38.
Keywords: disjunctive product of graphs, vertex-edge Wiener index, vertex-edge Wiener polynomial.

1. Introduction

Throughout the paper, we consider connected finite graphs without any loops or multiple edges. A topological index (also known as graph invariant) is any function on a graph irrespective of the labeling of its vertices. Several hundreds of different invariants have been employed to date with various degrees of success in QSAR/QSPR studies. We refer the reader to monographs $[11,19]$ for review.

The oldest topological index is the one put forward in 1947 by Harold Wiener [20] nowadays referred to as the Wiener index. Wiener used his index for the calculation of the boiling points of alkanes. The Wiener index $W(G)$ of a graph G is defined as the sum of distances between all pairs of vertices of G,

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v \mid G),
$$

where $d(u, v \mid G)$ denotes the distance between the vertices u and v of G which is the length of any shortest path in G connecting u and v. Details on the mathematical properties of the Wiener index and its applications can be found in [1, 2, 9, 10].

The Hosoya polynomial or Wiener polynomial [17] of a graph G is defined in terms of a parameter q as

$$
W(G ; q)=\sum_{\{u, v\} \subseteq V(G)} q^{d(u, v \mid G)} .
$$

M. Azari and A. Iranmanesh - On the vertex-edge Wiener polynomials ...

The first derivative of this polynomial at $q=1$ is equal to the Wiener index, i.e., $W^{\prime}(G ; 1)=W(G)$. We refer the reader to $[12,13,14,15]$ for more information on the Wiener polynomial.

In analogy with definition of the Wiener index, the vertex-edge versions of the Wiener index were defined based on distance between vertices and edges of a graph $[8,18]$. Two possible distances between a vertex u and an edge $e=a b$ of a graph G can be considered. The first distance is denoted by $D_{1}(u, e \mid G)$ and defined as [18]

$$
D_{1}(u, e \mid G)=\min \{d(u, a \mid G), d(u, b \mid G)\}
$$

and the second one is denoted by $D_{2}(u, e \mid G)$ and defined as [8]

$$
D_{2}(u, e \mid G)=\max \{d(u, a \mid G), d(u, b \mid G)\}
$$

Based on these two distances, two vertex-edge versions of the Wiener index can be introduced. The first and second vertex-edge Wiener indices of G are denoted by $W_{v e_{1}}(G)$ and $W_{v e_{2}}(G)$, respectively, and defined as

$$
W_{v e_{i}}(G)=\sum_{u \in V(G)} \sum_{e \in E(G)} D_{i}(u, e \mid G), \quad i \in\{1,2\}
$$

The first and second vertex-edge Wiener polynomials of a graph G are denoted by $W_{v e_{1}}(G ; q)$ and $W_{v e_{2}}(G ; q)$, respectively, and defined in terms of a parameter q as [7]

$$
W_{v e_{i}}(G ; q)=\sum_{u \in V(G)} \sum_{e \in E(G)} q^{D_{i}(u, e \mid G)}, \quad i \in\{1,2\} .
$$

The first derivative of these polynomials at $q=1$ are equal to their corresponding vertex-edge Wiener indices, i.e., $W_{v e_{i}}^{\prime}(G ; 1)=W_{v e_{i}}(G), i \in\{1,2\}$.

For a graph G, let $N_{G}(u)$ denote the open neighborhood of a vertex u in G which is the set of all vertices of G adjacent with u. The cardinality of $N_{G}(u)$ is called the degree of u in G and denoted by $d_{G}(u)$. One can easily see that,

$$
\sum_{u v \in E(G)}\left|N_{G}(u) \cap N_{G}(v)\right|=3 \Delta(G),
$$

where $\Delta(G)$ is the number of all triangles (3-cycles) in G. We denote by $N_{G}[u]$ the closed neighborhood of u in G which is defined as the set $N_{G}(u) \cup\{u\}$. If there is no ambiguity on G, we will omit the subscript G in $N_{G}(u), d_{G}(u)$, and $N_{G}[u]$.

The first Zagreb index of a graph G is denoted by $M_{1}(G)$ and defined as [16]

$$
M_{1}(G)=\sum_{u \in V(G)} d_{G}(u)^{2}
$$

M. Azari and A. Iranmanesh - On the vertex-edge Wiener polynomials ...

The first Zagreb index can also be expressed by the following formulas,

$$
\begin{aligned}
& M_{1}(G)=\sum_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right], \\
& M_{1}(G)=\sum_{u, v \in V(G)}|N(u) \cap N(v)|
\end{aligned}
$$

In $[4,8]$, the vertex-edge Wiener indices of some chemical graphs were computed and in $[3,5,6,7]$, the behavior of the vertex-edge Wiener indices and/or polynomials under some graph operations were investigated. In this paper, we compute the first and second vertex-edge Wiener polynomials and their related indices for the disjunctive product of graphs.

2. Results and discussion

Let G_{1} and G_{2} be two connected graphs. We denote by $V\left(G_{i}\right)$ and $E\left(G_{i}\right)$ the vertex set and edge set of G_{i} and by n_{i} and e_{i} its order and size, respectively, where $i \in\{1,2\}$. The disjunctive product $G_{1} \vee G_{2}$ of graphs G_{1} and G_{2} is a graph with the vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent if and only if $u_{1} v_{1} \in E\left(G_{1}\right)$ or $u_{2} v_{2} \in E\left(G_{2}\right)$. The disjunctive product of two graphs is also known as their co-normal product or $O R$ product. The distance between the vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ of $G_{1} \vee G_{2}$ is given by

$$
d\left(u, v \mid G_{1} \vee G_{2}\right)= \begin{cases}0 & \text { if } u_{1}=v_{1}, u_{2}=v_{2} \\ 1 & \text { if } u_{1} v_{1} \in E\left(G_{1}\right) \text { or } u_{2} v_{2} \in E\left(G_{2}\right), \\ 2 & \text { otherwise } .\end{cases}
$$

In this section, we compute the first and second vertex-edge Wiener polynomials and their related indices for the disjunctive product of G_{1} and G_{2}. To do this, we first consider three subsets of $E\left(G_{1} \vee G_{2}\right)$ as follows.

$$
\begin{aligned}
& E_{1}=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right), u_{2}, v_{2} \in V\left(G_{2}\right)\right\}, \\
& E_{2}=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{2} v_{2} \in E\left(G_{2}\right), u_{1}, v_{1} \in V\left(G_{1}\right)\right\}, \\
& E_{3}=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right), u_{2} v_{2} \in E\left(G_{2}\right)\right\} .
\end{aligned}
$$

It is clear that, $E\left(G_{1} \vee G_{2}\right)=\bigcup_{i=1}^{3} E_{i}$ and $\left|E\left(G_{1} \vee G_{2}\right)\right|=e_{1} n_{2}^{2}+e_{2} n_{1}^{2}-2 e_{1} e_{2}$. Throughout the section, let $G=G_{1} \vee G_{2}$.
M. Azari and A. Iranmanesh - On the vertex-edge Wiener polynomials ...

2.1. The first vertex-edge Wiener polynomial and index

In this subsection, we compute the first vertex-edge Wiener polynomial and index for the disjunctive product of G_{1} and G_{2}. At first, we prove some lemmas which will be used in the proof of our main theorem.

Lemma 1.

$$
\begin{align*}
\sum_{u \in V(G)} & \sum_{e \in E_{1}} q^{D_{1}(u, e \mid G)}=2 e_{1} n_{2}^{2}+\left[n_{2}^{3}\left(M_{1}\left(G_{1}\right)-3 \Delta\left(G_{1}\right)\right)-2 e_{1} n_{2}^{2}\right. \\
& \left.+\left(n_{1} e_{1}-M_{1}\left(G_{1}\right)+3 \Delta\left(G_{1}\right)\right)\left(4 n_{2} e_{2}-M_{1}\left(G_{2}\right)\right)\right] q \tag{1}\\
& +\left(n_{1} e_{1}-M_{1}\left(G_{1}\right)+3 \Delta\left(G_{1}\right)\right)\left(n_{2}^{3}-4 n_{2} e_{2}+M_{1}\left(G_{2}\right)\right) q^{2} .
\end{align*}
$$

Proof. Let $A=\sum_{u \in V(G)} \sum_{e \in E_{1}} q^{D_{1}(u, e \mid G)}$. By definition of the set E_{1}, we have

$$
\begin{aligned}
A= & \sum_{\left(u_{1}, u_{2}\right) \in V(G)} \sum_{\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in E_{1}} q^{\min \left\{d\left(\left(u_{1}, u_{2}\right),\left(a_{1}, a_{2}\right) \mid G\right), d\left(\left(u_{1}, u_{2}\right),\left(b_{1}, b_{2}\right) \mid G\right)\right\}} \\
= & \sum_{a_{1} b_{1} \in E\left(G_{1}\right)} \sum_{a_{2} \in V\left(G_{2}\right)} \sum_{b_{2} \in V\left(G_{2}\right)}\left[\sum_{u_{1}=a_{1}} \sum_{u_{2}=a_{2}} q^{0}+\sum_{u_{1}=b_{1}} \sum_{u_{2}=b_{2}} q^{0}\right. \\
& +\sum_{u_{1}=a_{1}} \sum_{u_{2} \in V\left(G_{2}\right)-\left\{a_{2}\right\}} q^{1}+\sum_{u_{1}=b_{1}} \sum_{u_{2} \in V\left(G_{2}\right)-\left\{b_{2}\right\}} q^{1} \\
& +\sum_{u_{1} \in\left(N\left(a_{1}\right) \cup N\left(b_{1}\right)\right)-\left\{a_{1}, b_{1}\right\}} \sum_{u_{2} \in V\left(G_{2}\right)} q^{1}+\sum_{\left.u_{1} \in V\left(G_{1}\right)-\left(N\left(a_{1}\right) \cup N\left(b_{1}\right)\right)\right)} u_{2} \in N\left(a_{2}\right) \cup N\left(b_{2}\right) \\
& q^{1} \\
= & \sum_{u_{1} \in V\left(G_{1}\right)-\left(N\left(a_{1}\right) \cup N\left(b_{1}\right)\right)} e_{u_{2} \in V\left(G_{2}\right)-\left(N\left(a_{2}\right) \cup N\left(b_{2}\right)\right)}+\left[2 e_{1} n_{2}^{2}\left(n_{2}-1\right)+n_{2}^{3} \sum_{a_{1} b_{1} \in E\left(G_{1}\right)}\left(d\left(a_{1}\right)+d\left(b_{1}\right)-\left|N\left(a_{1}\right) \cap N\left(b_{1}\right)\right|-2\right)\right. \\
& +\sum_{a_{1} b_{1} \in E\left(G_{1}\right)}\left(n_{1}-d\left(a_{1}\right)-d\left(b_{1}\right)+\left|N\left(a_{1}\right) \cap N\left(b_{1}\right)\right|\right) \\
& \left.\sum_{a_{2} \in V\left(G_{2}\right)} \sum_{b_{2} \in V\left(G_{2}\right)}\left(d\left(a_{2}\right)+d\left(b_{2}\right)-\left|N\left(a_{2}\right) \cap N\left(b_{2}\right)\right|\right)\right] q \\
& +\sum_{a_{1} b_{1} \in E\left(G_{1}\right)}\left(n_{1}-d\left(a_{1}\right)-d\left(b_{1}\right)+\left|N\left(a_{1}\right) \cap N\left(b_{1}\right)\right|\right) \\
& \sum_{a_{2} \in V\left(G_{2}\right)} \sum_{b_{2} \in V\left(G_{2}\right)}\left(n_{2}-d\left(a_{2}\right)-d\left(b_{2}\right)+\left|N\left(a_{2}\right) \cap N\left(b_{2}\right)\right|\right) q^{2} .
\end{aligned}
$$

Eq. (1) is obtained after simplifying the above expression.
M. Azari and A. Iranmanesh - On the vertex-edge Wiener polynomials ...

Lemma 2.

$$
\begin{align*}
\sum_{u \in V(G)} & \sum_{e \in E_{2}} q^{D_{1}(u, e \mid G)}=2 e_{2} n_{1}^{2}+\left[n_{1}^{3}\left(M_{1}\left(G_{2}\right)-3 \Delta\left(G_{2}\right)\right)-2 e_{2} n_{1}^{2}\right. \\
& \left.+\left(n_{2} e_{2}-M_{1}\left(G_{2}\right)+3 \Delta\left(G_{2}\right)\right)\left(4 n_{1} e_{1}-M_{1}\left(G_{1}\right)\right)\right] q \tag{2}\\
& +\left(n_{2} e_{2}-M_{1}\left(G_{2}\right)+3 \Delta\left(G_{2}\right)\right)\left(n_{1}^{3}-4 n_{1} e_{1}+M_{1}\left(G_{1}\right)\right) q^{2} .
\end{align*}
$$

Proof. The proof is similar to the proof of Lemma 1.

Lemma 3.

$$
\begin{align*}
\sum_{u \in V(G)} & \sum_{e \in E_{3}} q^{D_{1}(u, e \mid G)}=2 e_{1} e_{2}+\left[n_{2} e_{2}\left(M_{1}\left(G_{1}\right)-3 \Delta\left(G_{1}\right)\right)-2 e_{1} e_{2}\right. \\
& \left.+\left(n_{1} e_{1}-M_{1}\left(G_{1}\right)+3 \Delta\left(G_{1}\right)\right)\left(M_{1}\left(G_{2}\right)-3 \Delta\left(G_{2}\right)\right)\right] q \tag{3}\\
& +\left(n_{1} e_{1}-M_{1}\left(G_{1}\right)+3 \Delta\left(G_{1}\right)\right)\left(n_{2} e_{2}-M_{1}\left(G_{2}\right)+3 \Delta\left(G_{2}\right)\right) q^{2} .
\end{align*}
$$

Proof. Let $C=\sum_{u \in V(G)} \sum_{e \in E_{3}} q^{D_{1}(u, e \mid G)}$. By definition of the set E_{3}, we have

$$
\begin{aligned}
C= & \sum_{\left(u_{1}, u_{2}\right) \in V(G)} \sum_{\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in E_{3}} q^{\min \left\{d\left(\left(u_{1}, u_{2}\right),\left(a_{1}, a_{2}\right) \mid G\right), d\left(\left(u_{1}, u_{2}\right),\left(b_{1}, b_{2}\right) \mid G\right)\right\}} \\
= & \sum_{a_{1} b_{1} \in E\left(G_{1}\right)} \sum_{a_{2} b_{2} \in E\left(G_{2}\right)}\left[\sum_{u_{1}=a_{1}} \sum_{u_{2}=a_{2}} q^{0}+\sum_{u_{1}=b_{1}} \sum_{u_{2}=b_{2}} q^{0}+\sum_{u_{1}=a_{1}} \sum_{u_{2} \in V\left(G_{2}\right)-\left\{a_{2}\right\}} q^{1}\right. \\
& +\sum_{u_{1}=b_{1}} \sum_{u_{2} \in V\left(G_{2}\right)-\left\{b_{2}\right\}} q^{1}+\sum_{\left.u_{1} \in\left(N\left(a_{1}\right) \cup N\left(b_{1}\right)\right)-\left\{a_{1}, b_{1}\right\}\right\}} q_{u_{2} \in V\left(G_{2}\right)} q^{1} \\
& +\sum_{u_{1} \in V\left(G_{1}\right)-\left(N\left(a_{1}\right) \cup N\left(b_{1}\right)\right)} \sum_{u_{2} \in N\left(a_{2}\right) \cup N\left(b_{2}\right)} q^{1} \sum_{\left.q^{2}\right]} \\
& +\sum_{\left.u_{1} \in V\left(G_{1}\right)-\left(N\left(a_{1}\right) \cup N\left(b_{1}\right)\right)\right)} u_{2} \in V\left(G_{2}\right)-\left(N\left(a_{2}\right) \cup N\left(b_{2}\right)\right) \\
= & 2 e_{1} e_{2}+\left[2 e_{1} e_{2}\left(n_{2}-1\right)+n_{2} e_{2} \sum_{a_{1} b_{1} \in E\left(G_{1}\right)}\left(d\left(a_{1}\right)+d\left(b_{1}\right)-\left|N\left(a_{1}\right) \cap N\left(b_{1}\right)\right|-2\right)\right. \\
& +\sum_{a_{1} b_{1} \in E\left(G_{1}\right)}\left(n_{1}-d\left(a_{1}\right)-d\left(b_{1}\right)+\left|N\left(a_{1}\right) \cap N\left(b_{1}\right)\right|\right) \\
& \left.\sum_{a_{2} b_{2} \in E\left(G_{2}\right)}\left(d\left(a_{2}\right)+d\left(b_{2}\right)-\left|N\left(a_{2}\right) \cap N\left(b_{2}\right)\right|\right)\right] q \\
& +\sum_{a_{1} b_{1} \in E\left(G_{1}\right)}\left(n_{1}-d\left(a_{1}\right)-d\left(b_{1}\right)+\left|N\left(a_{1}\right) \cap N\left(b_{1}\right)\right|\right)
\end{aligned}
$$

M. Azari and A. Iranmanesh - On the vertex-edge Wiener polynomials ...

$$
\sum_{a_{2} b_{2} \in E\left(G_{2}\right)}\left(n_{2}-d\left(a_{2}\right)-d\left(b_{2}\right)+\left|N\left(a_{2}\right) \cap N\left(b_{2}\right)\right|\right) q^{2} .
$$

Eq. (3) is obtained after simplifying the above expression.
Let $e=\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)$ be an edge of G which belongs to E_{3}. Then, obviously, $\left(a_{1}, b_{2}\right)\left(b_{1}, a_{2}\right)$ is also an edge in E_{3}. We denote the edge $\left(a_{1}, b_{2}\right)\left(b_{1}, a_{2}\right)$ by \bar{e}.

Lemma 4.

$$
\begin{equation*}
\sum_{u \in V(G)} \sum_{e \in E_{3}} q^{D_{1}(u, e \mid G)}=\sum_{u \in V(G)} \sum_{e \in E_{3}} q^{D_{1}(u, \bar{e} \mid G)} . \tag{4}
\end{equation*}
$$

Proof. The formula of $\sum_{u \in V(G)} \sum_{e \in E_{3}} q^{D_{1}(u, \bar{e} \mid G)}$ can easily be obtained by changing the role of the vertices a_{2} and b_{2} in the proof of Lemma 3. On the other hand, one can easily check that, changing the role of a_{2} and b_{2} in the proof of Lemma 3 does not influence the obtained result. So, Eq. (4) holds.

Now, we are ready to compute the first vertex-edge Wiener polynomial of the disjunctive product of G_{1} and G_{2}.

Theorem 5. The first vertex-edge Wiener polynomial of the disjunctive product of G_{1} and G_{2} is given by

$$
\begin{align*}
W_{v e_{1}}(G ; q)= & 2 e_{1}\left(n_{2}^{2}-e_{2}\right)+2 e_{2}\left(n_{1}^{2}-e_{1}\right)+\left[4 e_{1} e_{2}\left(2 n_{1} n_{2}+1\right)-2\left(e_{1} n_{2}^{2}+e_{2} n_{1}^{2}\right)\right. \\
& +\left(n_{2}^{3}-7 n_{2} e_{2}\right) M_{1}\left(G_{1}\right)+\left(n_{1}^{3}-7 n_{1} e_{1}\right) M_{1}\left(G_{2}\right)-3\left(n_{2}^{3}-6 n_{2} e_{2}\right) \Delta\left(G_{1}\right) \\
& -3\left(n_{1}^{3}-6 n_{1} e_{1}\right) \Delta\left(G_{2}\right)-9 \Delta\left(G_{1}\right) M_{1}\left(G_{2}\right)-9 \Delta\left(G_{2}\right) M_{1}\left(G_{1}\right) \\
& \left.+4 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+18 \Delta\left(G_{1}\right) \Delta\left(G_{2}\right)\right] q+\left[n_{1} n_{2} e_{2}\left(n_{2}^{2}-5 e_{2}\right)\right. \\
& +n_{1} n_{2} e_{2}\left(n_{1}^{2}-5 e_{1}\right)-\left(n_{2}^{3}-7 n_{2} e_{2}\right) M_{1}\left(G_{1}\right)-\left(n_{1}^{3}-7 n_{1} e_{1}\right) M_{1}\left(G_{2}\right) \\
& +3\left(n_{2}^{3}-6 n_{2} e_{2}\right) \Delta\left(G_{1}\right)+3\left(n_{1}^{3}-6 n_{1} e_{1}\right) \Delta\left(G_{2}\right)+9 \Delta\left(G_{1}\right) M_{1}\left(G_{2}\right) \\
& \left.+9 \Delta\left(G_{2}\right) M_{1}\left(G_{1}\right)-4 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)-18 \Delta\left(G_{1}\right) \Delta\left(G_{2}\right)\right] q^{2} . \tag{5}
\end{align*}
$$

Proof. By definitions of the first vertex-edge Wiener polynomial and disjunctive product, we have

$$
\begin{aligned}
W_{v e_{1}}(G ; q)= & \sum_{u \in V(G)} \sum_{e \in E_{1}} q^{D_{1}(u, e \mid G)}+\sum_{u \in V(G)} \sum_{e \in E_{2}} q^{D_{1}(u, e \mid G)} \\
& -\sum_{u \in V(G)} \sum_{e \in E_{3}}\left(q^{D_{1}(u, e \mid G)}+q^{D_{1}(u, \bar{e} \mid G)}\right) .
\end{aligned}
$$

M. Azari and A. Iranmanesh - On the vertex-edge Wiener polynomials ...

By Eq. (4),

$$
W_{v e_{1}}(G ; q)=\sum_{u \in V(G)} \sum_{e \in E_{1}} q^{D_{1}(u, e \mid G)}+\sum_{u \in V(G)} \sum_{e \in E_{2}} q^{D_{1}(u, e \mid G)}-2 \sum_{u \in V(G)} \sum_{e \in E_{3}} q^{D_{1}(u, e \mid G)} .
$$

Now, using Eqs. (1), (2), and (3), we can get Eq. (5).
By taking the first derivative from Eq. (5) with respect to q, and then by substituting $q=1$, we can easily obtain a formula for the first vertex-edge Wiener index of the disjunctive product of G_{1} and G_{2}.

Corollary 6. The first vertex-edge Wiener index of the disjunctive product of G_{1} and G_{2} is given by

$$
\begin{align*}
W_{v e_{1}}(G) & =2\left(e_{1} n_{2}^{2}+e_{2} n_{1}^{2}\right)\left(n_{1} n_{2}-1\right)-4 e_{1} e_{2}\left(3 n_{1} n_{2}-1\right)-\left(n_{2}^{3}-7 n_{2} e_{2}\right) M_{1}\left(G_{1}\right) \\
& -\left(n_{1}^{3}-7 n_{1} e_{1}\right) M_{1}\left(G_{2}\right)+3\left(n_{2}^{3}-6 n_{2} e_{2}\right) \Delta\left(G_{1}\right)+3\left(n_{1}^{3}-6 n_{1} e_{1}\right) \Delta\left(G_{2}\right) \\
& +9 \Delta\left(G_{1}\right) M_{1}\left(G_{2}\right)+9 \Delta\left(G_{2}\right) M_{1}\left(G_{1}\right)-4 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)-18 \Delta\left(G_{1}\right) \Delta\left(G_{2}\right) . \tag{6}
\end{align*}
$$

Let P_{n} and C_{n} denote the n-vertex path and cycle, respectively. It is easy to see that, for $n \geq 2, M_{1}\left(P_{n}\right)=4 n-6$ and for $n \geq 3, M_{1}\left(C_{n}\right)=4 n$. Also $\Delta\left(P_{n}\right)=0$, $\Delta\left(C_{3}\right)=1$, and for $n \geq 4, \Delta\left(C_{n}\right)=0$. Now, using Eq. (6), we easily arrive at:

Corollary 7. For every positive integers $n \geq 2$ and $m \geq 3$,

$$
W_{v e_{1}}\left(P_{n} \vee C_{m}\right)=\left\{\begin{array}{lr}
9 n^{3}+6 n^{2}-30 n+24 & \text { if } m=3 \\
2 m^{3}\left(n^{2}-3 n+3\right)+2 m^{2}\left(n^{3}-6 n^{2}+19 n-20\right) & \text { if } m \geq 4 \\
-2 m\left(2 n^{3}-13 n^{2}+44 n-46\right) . &
\end{array}\right.
$$

2.2. The second vertex-edge Wiener polynomial and index

In this subsection, we compute the second vertex-edge Wiener polynomial and index for the disjunctive product of G_{1} and G_{2}. At first, we prove some lemmas which will be used in the proof of our main theorem.

Lemma 8.

$$
\begin{align*}
\sum_{u \in V(G)} & \sum_{e \in E_{1}} q^{D_{2}(u, e \mid G)}=\left[2 e_{1} n_{2}^{2}+2 n_{2} e_{2} M_{1}\left(G_{1}\right)+3\left(n_{2}^{3}-4 n_{2} e_{2}\right) \Delta\left(G_{1}\right)+\left(n_{1} e_{1}\right.\right. \\
& \left.\left.-M_{1}\left(G_{1}\right)+3 \Delta\left(G_{1}\right)\right) M_{1}\left(G_{2}\right)\right] q+\left[n_{1} e_{1} n_{2}^{3}-2 e_{1} n_{2}^{2}-2 n_{2} e_{2} M_{1}\left(G_{1}\right)\right. \tag{7}\\
& \left.+3\left(4 n_{2} e_{2}-n_{2}^{3}\right) \Delta\left(G_{1}\right)-\left(n_{1} e_{1}-M_{1}\left(G_{1}\right)+3 \Delta\left(G_{1}\right)\right) M_{1}\left(G_{2}\right)\right] q^{2} .
\end{align*}
$$

M. Azari and A. Iranmanesh - On the vertex-edge Wiener polynomials ...

Proof. Let $A^{\prime}=\sum_{u \in V(G)} \sum_{e \in E_{1}} q^{D_{2}(u, e \mid G)}$. By definition of the set E_{1}, we have

$$
\begin{aligned}
A^{\prime}= & \sum_{\left(u_{1}, u_{2}\right) \in V(G)} \sum_{\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in E_{1}} q^{\max \left\{d\left(\left(u_{1}, u_{2}\right),\left(a_{1}, a_{2}\right) \mid G\right), d\left(\left(u_{1}, u_{2}\right),\left(b_{1}, b_{2}\right) \mid G\right)\right\}} \\
= & \sum_{a_{1} b_{1} \in E\left(G_{1}\right)} \sum_{a_{2} \in V\left(G_{2}\right)} \sum_{b_{2} \in V\left(G_{2}\right)}\left[\sum_{u_{1}=a_{1}} \sum_{u_{2} \in N\left[a_{2}\right]} q^{1}+\sum_{u_{1}=b_{1}} \sum_{u_{2} \in N\left[b_{2}\right]} q^{1}\right. \\
& +\sum_{u_{1} \in N\left(a_{1}\right)-N\left[b_{1}\right]} \sum_{u_{2} \in N\left(b_{2}\right)} q^{1}+\sum_{u_{1} \in N\left(b_{1}\right)-N\left[a_{1}\right]} \sum_{u_{2} \in N\left(a_{2}\right)} q^{1} \sum \sum_{1} q^{1} \\
& +\sum_{u_{1} \in N\left(a_{1}\right) \cap N\left(b_{1}\right)} q_{u_{2} \in V\left(G_{2}\right)}+\sum_{u_{1} \in V\left(G_{1}\right)-\left(N\left(a_{1}\right) \cup N\left(b_{1}\right)\right)} \sum_{u_{2} \in N\left(a_{2}\right) \cap N\left(b_{2}\right)} \\
& +\sum_{u_{1}=a_{1}} \sum_{u_{2} \in V\left(G_{2}\right)-N\left[a_{2}\right]} q^{2}+\sum_{u_{1}=b_{1}} \sum_{u_{2} \in V\left(G_{2}\right)-N\left[b_{2}\right]} q^{2} \sum_{u_{1} \in N\left(a_{1}\right)-N\left[b_{1}\right]} \sum_{u_{2} \in V\left(G_{2}\right)-N\left(b_{2}\right)} q_{u_{1} \in N\left(b_{1}\right)-N\left[a_{1}\right]} q_{u_{2} \in V\left(G_{2}\right)-N\left(a_{2}\right)} \\
& +\sum_{\left.u_{1} \in V\left(G_{1}\right)-\left(N\left(a_{1}\right) \cup N\left(b_{1}\right)\right)\right)} q_{u_{2} \in V\left(G_{2}\right)-\left(N\left(a_{2}\right) \cap N\left(b_{2}\right)\right)} q^{2} .
\end{aligned}
$$

Eq. (7) is obtained after simplifying the above expression.

Lemma 9.

$$
\begin{align*}
\sum_{u \in V(G)} & \sum_{e \in E_{2}} q^{D_{2}(u, e \mid G)}=\left[2 e_{2} n_{1}^{2}+2 n_{1} e_{1} M_{1}\left(G_{2}\right)+3\left(n_{1}^{3}-4 n_{1} e_{1}\right) \Delta\left(G_{2}\right)+\left(n_{2} e_{2}\right.\right. \\
& \left.\left.-M_{1}\left(G_{2}\right)+3 \Delta\left(G_{2}\right)\right) M_{1}\left(G_{1}\right)\right] q+\left[n_{2} e_{2} n_{1}^{3}-2 e_{2} n_{1}^{2}-2 n_{1} e_{1} M_{1}\left(G_{2}\right)\right. \tag{8}\\
& \left.+3\left(4 n_{1} e_{1}-n_{1}^{3}\right) \Delta\left(G_{2}\right)-\left(n_{2} e_{2}-M_{1}\left(G_{2}\right)+3 \Delta\left(G_{2}\right)\right) M_{1}\left(G_{1}\right)\right] q^{2}
\end{align*}
$$

Proof. The proof is similar to the proof of Lemma 8.

Lemma 10.

$$
\begin{align*}
\sum_{u \in V(G)} & \sum_{e \in E_{3}}\left(q^{D_{2}(u, e \mid G)}+q^{D_{2}(u, \bar{e} \mid G)}\right)=\left[4 e_{1} e_{2}+6 n_{2} e_{2} \Delta\left(G_{1}\right)+6 n_{1} e_{1} \Delta\left(G_{2}\right)\right. \\
& \left.-6 \Delta\left(G_{1}\right) M_{1}\left(G_{2}\right)-6 \Delta\left(G_{2}\right) M_{1}\left(G_{1}\right)+M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+18 \Delta\left(G_{1}\right) \Delta\left(G_{2}\right)\right] q \\
& +\left[2 e_{1} e_{2}\left(n_{1} n_{2}-2\right)+6 M_{1}\left(G_{1}\right) \Delta\left(G_{2}\right)+6 M_{1}\left(G_{2}\right) \Delta\left(G_{1}\right)-6 n_{1} e_{1} \Delta\left(G_{2}\right)\right. \\
& \left.-6 n_{2} e_{2} \Delta\left(G_{1}\right)-18 \Delta\left(G_{1}\right) \Delta\left(G_{2}\right)-M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)\right] q^{2} . \tag{9}
\end{align*}
$$

Proof. Let $C^{\prime}=\sum_{u \in V(G)} \sum_{e \in E_{3}} q^{D_{2}(u, e \mid G)}$, and $\bar{C}^{\prime}=\sum_{u \in V(G)} \sum_{e \in E_{3}} q^{D_{2}(u, e \mid G)}$. By definition of the set E_{3}, we have

$$
\begin{aligned}
C^{\prime}= & \sum_{\left(u_{1}, u_{2}\right) \in V(G)} \sum_{\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in E_{3}} q^{\max \left\{d\left(\left(u_{1}, u_{2}\right),\left(a_{1}, a_{2}\right) \mid G\right), d\left(\left(u_{1}, u_{2}\right),\left(b_{1}, b_{2}\right) \mid G\right)\right\}} \\
= & \sum_{a_{1} b_{1} \in E\left(G_{1}\right)} \sum_{a_{2} b_{2} \in E\left(G_{2}\right)}\left[\sum_{u_{1}=a_{1}} \sum_{u_{2} \in N\left[a_{2}\right]} q^{1}+\sum_{u_{1}=b_{1}} \sum_{u_{2} \in N\left[b_{2}\right]} q^{1} q^{1} \sum_{q^{1}+\sum_{u_{1} \in N\left(b_{1}\right)-N\left[a_{1}\right]} \sum_{u_{2} \in N\left(a_{2}\right)} q^{1} \sum_{u_{1} \in N\left(a_{1}\right)-N\left[b_{1}\right]} \sum_{u_{2} \in N\left(b_{2}\right)} q^{1}} q^{1} q^{1}+\sum_{u_{1} \in V\left(G_{1}\right)-\left(N\left(a_{1}\right) \cup N\left(b_{1}\right)\right)} \sum_{u_{2} \in N\left(a_{2}\right) \cap N\left(b_{2}\right)} q^{2} \sum_{u_{1} \in N\left(a_{1}\right) \cap N\left(b_{1}\right)} \sum_{u_{2} \in V\left(G_{2}\right)} q^{2}+\sum_{u_{1}=b_{1}} \sum_{u_{2} \in V\left(G_{2}\right)-N\left[b_{2}\right]} \sum_{u^{2}} \sum_{u_{1} \in V\left(G_{1}\right)-\left(N\left(a_{1}\right) \cup N\left(b_{1}\right)\right)} q_{u_{2} \in V\left(G_{2}\right)-\left(N\left(a_{2}\right) \cap N\left(b_{2}\right)\right)} q^{2}\right] .
\end{aligned}
$$

The formula of \bar{C}^{\prime} can easily be obtained by changing the role of the vertices a_{2} and b_{2} in the formula of C^{\prime}. Now, Eq. (9) is obtained by adding the formulas of C^{\prime} and \bar{C}^{\prime} and simplifying the resulting expression.

Now, we are ready to compute the second vertex-edge Wiener polynomial of the disjunctive product of G_{1} and G_{2}.

Theorem 11. The second vertex-edge Wiener polynomial of the disjunctive product of G_{1} and G_{2} is given by

$$
\begin{align*}
W_{v e_{2}}(G ; q)= & {\left[2 e_{1}\left(n_{2}^{2}-e_{2}\right)+2 e_{2}\left(n_{1}^{2}-e_{1}\right)+3 n_{2} e_{2} M_{1}\left(G_{1}\right)+3 n_{1} e_{1} M_{1}\left(G_{2}\right)\right.} \\
& +3\left(n_{2}^{3}-6 n_{2} e_{2}\right) \Delta\left(G_{1}\right)+3\left(n_{1}^{3}-6 n_{1} e_{1}\right) \Delta\left(G_{2}\right)+9 \Delta\left(G_{2}\right) M_{1}\left(G_{1}\right) \\
& \left.+9 \Delta\left(G_{1}\right) M_{1}\left(G_{2}\right)-3 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)-18 \Delta\left(G_{1}\right) \Delta\left(G_{2}\right)\right] q \\
& +\left[\left(n_{1} n_{2}-2\right)\left(e_{1} n_{2}^{2}+e_{2} n_{1}^{2}-2 e_{1} e_{2}\right)-3 n_{2} e_{2} M_{1}\left(G_{1}\right)-3 n_{1} e_{1} M_{1}\left(G_{2}\right)\right. \\
& -3\left(n_{2}^{3}-6 n_{2} e_{2}\right) \Delta\left(G_{1}\right)-3\left(n_{1}^{3}-6 n_{1} e_{1}\right) \Delta\left(G_{2}\right)-9 M_{1}\left(G_{1}\right) \Delta\left(G_{2}\right) \\
& \left.-9 M_{1}\left(G_{2}\right) \Delta\left(G_{1}\right)+3 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+18 \Delta\left(G_{1}\right) \Delta\left(G_{2}\right)\right] q^{2} . \tag{10}
\end{align*}
$$

Proof. By definitions of the second vertex-edge Wiener polynomial and disjunctive product, we have

$$
\begin{aligned}
W_{v e_{2}}(G ; q)= & \sum_{u \in V(G)} \sum_{e \in E_{1}} q^{D_{2}(u, e \mid G)}+\sum_{u \in V(G)} \sum_{e \in E_{2}} q^{D_{2}(u, e \mid G)} \\
& -\sum_{u \in V(G)} \sum_{e \in E_{3}}\left(q^{D_{2}(u, e \mid G)}+q^{D_{2}(u, \bar{e} \mid G)}\right) .
\end{aligned}
$$

Now, by Eqs. (7), (8), and (9), we can get Eq. (10).
By taking the first derivative from Eq. (10) with respect to q, and then by substituting $q=1$, we can easily obtain a formula for the second vertex-edge Wiener index of the disjunctive product of G_{1} and G_{2}.

Corollary 12. The second vertex-edge Wiener index of the disjunctive product of G_{1} and G_{2} is given by

$$
\begin{align*}
W_{v e_{2}}(G)= & 2\left(n_{1} n_{2}-1\right)\left(e_{1} n_{2}^{2}+e_{2} n_{1}^{2}-2 e_{1} e_{2}\right)-3 n_{2} e_{2} M_{1}\left(G_{1}\right)-3 n_{1} e_{1} M_{1}\left(G_{2}\right) \\
& -3\left(n_{2}^{3}-6 n_{2} e_{2}\right) \Delta\left(G_{1}\right)-3\left(n_{1}^{3}-6 n_{1} e_{1}\right) \Delta\left(G_{2}\right)-9 M_{1}\left(G_{1}\right) \Delta\left(G_{2}\right) \tag{11}\\
& -9 M_{1}\left(G_{2}\right) \Delta\left(G_{1}\right)+3 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+18 \Delta\left(G_{1}\right) \Delta\left(G_{2}\right) .
\end{align*}
$$

As a direct consequence of Eq. (11), we easily arrive at:
Corollary 13. For every positive integers $n \geq 2$ and $m \geq 3$,

$$
W_{v e_{2}}\left(P_{n} \vee C_{m}\right)=\left\{\begin{array}{lr}
15 n^{3}-6 n^{2}-6 n+6 & \text { if } m=3 \\
2 m^{3} n(n-1)+2 m^{2}\left(n^{3}-2 n^{2}-5 n+10\right) \\
-2 m\left(7 n^{2}-32 n+38\right) & \text { if } m \geq 4
\end{array}\right.
$$

Acknowledgements. Partial support by the Center of Excellence of Algebraic Hyper-structures and its Applications of Tarbiat Modares University (CEAHA) is gratefully acknowledged by the second author (AI).

References

[1] A. R. Ashrafi, Z. Mohammad-Abadi, On Wiener index of one-heptagonal nanocone, Curr. Nanosci. 8, 1 (2012), 180-185.
[2] A. R. Ashrafi, A. Karbasioun, M. V. Diudea, Computing Wiener and detour indices of a new type of nanostar dendrimers, MATCH Commun. Math. Comput. Chem. 65 (2011), 193-200.
[3] M. Azari, A note on vertex-edge Wiener indices, Iranian J. Math. Chem. 7, 1 (2016), 11-17.
[4] M. Azari, A. Iranmanesh, Computation of the edge Wiener indices of the sum of graphs, Ars Combin. 100 (2011), 113-128.
[5] M. Azari, A. Iranmanesh, Clusters and various versions of Wiener-type invariants, Kragujevac J. Math. 39, 2 (2015), 155-171.
[6] M. Azari, A. Iranmanesh, Joins, coronas and their vertex-edge Wiener polynomials, Tamkang J. Math. (to appear)
[7] M. Azari, A. Iranmanesh, A. Tehranian, Maximum and minimum polynomials of a composite graph, Austral. J. Basic Appl. Sci. 5, 9 (2011), 825-830.
[8] M. Azari, A. Iranmanesh, A. Tehranian, Two topological indices of three chemical structures, MATCH Commun. Math. Comput. Chem. 69 (2013), 69-86.
[9] M. R. Darafsheh, M. H. Khalifeh, Calculation of the Wiener, Szeged, and PI indices of a certain nanostar dendrimer, Ars Combin. 100 (2011), 289-298.
[10] M. V. Diudea, Wiener index of dendrimers, MATCH Commun. Math. Comput. Chem. 32 (1995), 71-83.
[11] M. V. Diudea, QSPR/QSAR Studies by Molecular Descriptors, NOVA, New York (2001).
[12] M. V. Diudea, Hosoya polynomial in tori, MATCH Commun. Math. Comput. Chem. 45 (2002), 109-122.
[13] T. Došlić, Splices, links and their degree-weighted Wiener polynomials, Graph Theory Notes N. Y. 48 (2005), 47-55.
[14] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Contemp. 1, 1 (2008), 66-80.
[15] M. Eliasi, A. Iranmanesh, Hosoya polynomial of hierarchical product of graphs, MATCH Commun. Math. Comput. Chem. 69 (2013), 111-119.
[16] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.
[17] H. Hosoya, On some counting polynomials in chemistry, Discrete Appl. Math. 19 (1988), 239-257.
[18] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, S. G. Wagner, Some new results on distance-based graph invariants, European J. Combin. 30 (2009), 1149-1163.
[19] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton (1992).
[20] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947), 17-20.

Mahdieh Azari
Department of Mathematics,
Kazerun Branch, Islamic Azad University
P. O. Box: 73135-168, Kazerun, Iran
email: azari@kau.ac.ir, mahdie.azari@gmail.com

Ali Iranmanesh
Department of Mathematics, Faculty of Mathematical Sciences,
Tarbiat Modares University
P. O. Box: 14115-137, Tehran, Iran
email: iranmanesh@modares.ac.ir

