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NINTH ORDER METHOD FOR NONLINEAR EQUATIONS AND
ITS DYNAMIC BEHAVIOUR
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Abstract. The aim of this paper is to construct a new efficient iterative method
to solve nonlinear equations and discuss the dynamic behaviour of it. This method is
based on ”A fifth-order iterative method for solving nonlinear equations, Numerical
Analysis and Applications, 4 (3) (2011), pp. 239–243”. The finite difference and
Hermite interpolation are used to improve the convergence order and efficiency index
of this method. The new method is of the ninth order of convergence and it is
compared with other ninth order methods. Some numerical test problems are given
to show the accuracy and fast convergence of the method proposed. The dynamic
behaviour of the methods for finding the roots of unity are also studied.
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1. Introduction

Solving nonlinear equations f(x) = 0 is one of the most important and challenging
problem in scientific and engineering applications. These equations largely occur
in daily life with useful applications such as, to measure the speed of rocket, to find
the eigen values of a system, to measure compressibility of gasses, to discuss aging
model of a cell’s energy producing organelle (mitochondria), to calculate the simple
harmonic oscillation, to measure the variation of the local heat transfer, to measure
the interior temperature of a material, to the assessment of drug concentration
in plasma, to produce the methanol from CO and H2 by using the equilibrium
equation, to measure the velocity of a falling parachutist, etc. Finding the solution
of nonlinear equations is not an easy task. Mostly, the analytical methods fail to
find their solutions. Ultimately, for this purpose we move towards the numerical
methods. There are numerous and well known methods which help us to deal

73

http://www.uab.ro/auajournal/


M. Rafiullah, D. K. R Babajee and Dur-e-Jabeen – Ninth Order Method . . .

with nonlinear equations such as Bisection, Regula False, Newton-Raphson, Secant,
Steffensen, Halley, Jarratt, Ostrowski, King’s methods, etc.

Now, consider a nonlinear equation

f(x) = 0. (1.1)

The Newton-Raphson method is largely used to solve such nonlinear equations
(1.1) and it is written as

xn+1 = xn −
f(xn)

f ′(xn)
, f ′(xn) 6= 0. (1.2)

This is an important and basic method [8], which converges quadratically.
Recently, a large variety of methods which based on the Newton’s method are

proposed to solve nonlinear equations. All these modified methods are in the direc-
tion of improving the efficiency index and order of convergence by using lower-order
derivatives as possible.

2. Preliminaries

Definition 1. Let x0, x1, x2, ... be a sequence which converges to α. Let en = xn−α.
If there exist a real number p and a positive constant C such that |en+1|

|en|p → C, as n

becomes large, i.e.

lim
n→∞

|en+1|
|en|p

= C

then p is called the order of convergence and C is called asymptotic constant [6].

Definition 2. According to Ostrowski [6, 8] the efficiency index
∗
eff is defined as

∗
eff = p

1
d ,

where d is called the number of function evaluations used in method.

Definition 3. The computational order of convergence (COC)
−
p of a sequence

{xn}n≥0 is defined by

−
pn =

ln
∣∣∣ en+1

en

∣∣∣
ln
∣∣∣ en
en−1

∣∣∣ ,
where xn−1, xn and xn+1are three consecutive iterations near the root α and en =
xn − α [10].
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Definition 4. Suppose that a set of points x0, x1, x2, ....xn and respective function
values on these points are y0, y1, y2, ....yn then the first order divided difference of
first two points can be define as f [x0, x1] = y1−y0

x1−x0 and second order divided difference

can be defined as define as f [x0, x1, x2] = f [x1,x2]−f [x0,x1]
x2−x0 . the general formula is

f [x0, x1, · · · , xk−1, xk] =
f [x1, x2, · · · , xk]− f [x0, x1, · · · , xk−1]

xk − x0

where k = 2, 3, · · · , n [5].

Theorem 1. The order of points does not matter such as f [x0, x1] = f [x1, x0] or
f [x0, x1, x2] = f [x2, x1, x0].

Theorem 2. For any two points of x0, x1, x2, . · · · , xn happen to be equal, then the
divided difference can be define as follows [10]:

f [x0, x0] = lim
x1→x0

f(x1)− f(x0)

x1 − x0
= f ′(x0).

Definition 5. The Newton’s polynomial for the data points (x0, y0), (x1, y1),· · · ,
(xn, yn) using the divided differences definition can be written as

Pn(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) +

· · ·+ f [x0, x1, · · · , xn](x− x0)(x− x1) · · · (x− xn−1)

Pn(x) = f [x0] +
n∑
i=1
f [x0, · · · , xi]

i−1∏
j=0

(x− xj).

Definition 6. Hermite interpolation is a method to find out a polynomial of degree
2n+ 1 which satisfy the function values at n known data points and first m deriva-
tives. Hermite Interpolation is likely Newton’s divided difference formula but these
both differs by the polynomial degree. Lets consider n data points with m derivatives

(x0, f(x0)) (x1, f(x1)) · · · (xn−1, f(xn−1))
(x0, f

′(x0)) (x1, f
′(x1)) · · · (xn−1, f

′(xn−1))
...

...
. . .

...

(x0, f
(m)(x0)) (x1, f

(m)(x1)) · · · (xn−1, f
(m)(xn−1))

The Hermite interpolation polynomial can be determine by using a modification of
Newton’s divided difference method.
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Modification of Newton’s divided differences for Hermite Interpola-
tion

Suppose that the distinct numbers x0, · · · , xn are given together with the val-
ues of f and f ′ at these numbers. Define a new sequence z0, z1, · · · , z2n+1 by
z2i = z2i+1 = xi for each i = 0, 1, · · · , n, and contract divided difference table.
We can not define f [z2i, z2i+1] by the divided difference formula, so the reasonable
substitution in this situation is f [z2i, z2i+1] = f ′(x2i) = f ′(xi), we can use the en-
tries f ′(x0), f

′(x1), · · · , f ′(xn) in the place of the undefined first divided differences
f [z0, z1], f [z2, z3], · · · , f [z2n, z2n+1]. The remaining divided differences are pro-
duced as usual, and the appropriate divided differences are employed in Newton’s
interpolatory divided-difference formula [2, p. 137]. The Hermite polynomial is
given by

H2n+1(x) = f [z0] +
2n+1∑
k=0

f [z0, z1, · · · , zk](x− z0)(x− z1) · · · (x− zk−1).

The divided difference table constructed as for Hermite polynomial

z f(z) 1st DD 2nd DD
z0 = x0 f [z0] = f(x0)

f [z0, z1] = f ′(x0)

z1 = x0 f [z1] = f(x0) f [z0, z1, z2] = f [z1,z2]−f [z0,z1]
z2−z0

f [z1, z2] = f [z2]−f [z1]
z2−z1

z2 = x1 f [z2] = f(x1) f [z1, z2, z3] = f [z2,z3]−f [z1,z2]
z3−z1

f [z2, z3] = f ′(x1)

z3 = x1 f [z3] = f(x1) [z2, z3, z4] = f [z3,z4]−f [z2,z3]
z4−z2

f [z3, z4] = f [z4]−f [z3]
z4−z3

z4 = x2 f [z4] = f(x2) [z3, z4, z5] = f [z4,z5]−f [z3,z4]
z5−z3

f [z4, z5] = f ′(x2)
z5 = x2 f [z5] = f(x2)

This Table shows the entries that are used for the first three divided-difference
columns when determining the Hermite polynomial H5(x) for x0, x1 and x2”. The
Hermite polynomial H2n+1(x) can also be written as

H2n+1(x) = f [z0] + f [z0, z1](x− x0) + f [z0, z1, z2](x− x0)2

+f [z0, z1, z2, z3](x− x0)2(x− x1) +

...+ f [z0, z1, ..., z2n+1](x− x0)2(x− x1)2...(x− xn−1).
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3. Derivation of new methods

Consider the following iterative method [7]

yn = xn −
f(xn)

f ′(xn)
,

xn+1 = yn −
f(yn)

f ′(yn)
− 1

2

[
f(yn)

f ′(xn)

]2 f ′′(yn)

f ′(yn)
. (3.1)

This method is fifth-order and it involves five functions f(xn), f ′(xn), f(yn), f ′(yn),

f ′′(yn) at each step, so the efficiency index of this method is p
1
d = 5

1
5 = 1. 379 7.

First of all we eliminate the term f ′′(yn)
f ′(yn)

from (3.1) to improve the efficiency index of

the method (3.1) by approximating f ′′(yn) and f ′(yn) using divided differences with

known functions and their derivatives as f ′(yn)−f ′(xn)
yn−xn and f(yn)−f(xn)

yn−xn respectively,
so we have

yn = xn −
f(xn)

f ′(xn)

xn+1 = yn −
f(yn)

f ′(yn)
− f(yn)2 (f ′(xn)− f ′(yn))

2(f(xn)− f(yn))f ′(xn)2
. (3.2)

This method involves only four functions evaluation such as f(xn), f ′(xn), f(yn),
f ′(yn). The order of this method remains same as fifth with error term 1

2(10c42 −
3c22c3)e

5
n. But efficiency index of this method is improved as p

1
d = 5

1
4 = 1. 495 3.

Now at the third step, introducing Newton-Raphson method gives

yn = xn −
f(xn)

f ′(xn)

zn = yn −
f(yn)

f ′(yn)
− f(yn)2 (f ′(xn)− f ′(yn))

2(f(xn)− f(yn))f ′(xn)2

xn+1 = zn −
f(zn)

f ′(zn)
. (3.3)

By suggesting this new step the function evaluations also increases as six. We reduce
the number of functions by approximating the f ′(zn) using the Hermite interpolation
polynomial with known data points (xn, f(xn)), (yn, f(yn)), (zn, f(zn)), (xn, f

′(xn)),
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(yn, f
′(yn)). So we have,

H4(x) = f [z0] + f [z0, z1](x− xn) + f [z0, z1, z2](x− xn)2

+f [z0, z1, z2, z3](x− xn)2(x− yn) + f [z0, z1, z2, z3, z4](x− xn)2(x− yn)2

H ′4(x) = f [z0, z1] + 2f [z0, z1, z2](x− xn)

+f [z0, z1, z2, z3]
(
(x− xn)2 + (x− xn)(x− yn)

)
+f [z0, z1, z2, z3, z4]

(
(x− xn)2(x− yn) + (x− xn)(x− yn)2

)
.

we approximate dfz = f ′(zn) = H ′4(zn) as

1

(xn − yn)3




f(zn)(xn − yn)3 + f ′(yn)(xn − yn)(xn − zn)(
xn + 2yn + xnyn − (3 + xn + yn)zn + z2n

)
−f(yn)(xn − zn)

(−6yn + 6zn + (xn − zn)(xn − 3yn + 2zn))

+ (yn − zn)

 f(xn)

(
y2n − 3xn(2 + yn − zn) + ynzn

−2(−3 + zn)zn

)
+f ′(xn)(xn − yn)

(
2xn + yn + xnyn

−(3 + xn + yn)zn + z2n

)



.

So the new method is

yn = xn −
f(xn)

f ′(xn)

zn = yn −
f(yn)

f ′(yn)
− f(yn)2 (f ′(xn)− f ′(yn))

2(f(xn)− f(yn))f ′(xn)2

xn+1 = zn −
f(zn)

dfz
. (3.4)

This method involves five function evaluations and the order of convergence is im-
proved up to the ninth. The error term is (10c52c4 − 3c32c3c4)e

9
n. The efficiency

index is p
1
d = 9

1
5 = 1. 551 8 which is better than (3.1) and (3.2).

4. Convergence Analysis

Theorem 3. Let α be a simple zero of sufficiently differentiable function f: I ⊆
R → R for an open interval I. If x0 closed to α, then the method defined by (3.2)
is of fifth order and moreover satisfies the following error equation

en+1 =
1

2
(10c42 − 3c22c3)e

5
n.

where en = xn − α, en+1 = xn+1 − α and ck = f (k)(α)
k!f ′(α) .
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Proof. Using Taylor series we have

f(xn) = f ′(α)

[
en + c2en

2 + c3en
3 + c4en

4

+ c5en
5 + c6en

6 + c7en
7 + c5en

8 + · · ·

]
(4.1)

f ′(xn) = f ′(α)

[
1 + 2c2en + 3c3e

2
n + 4c4e

3
n

+5c5e
4
n + 6c6en

5 + 7c7en
6 + 8c8en

7 + · · ·

]
(4.2)

yn = xn −
f(xn)

f ′(xn)
= α+ c2e

2
n +

(
−2c22 + 2c3

)
e3n +

(
4c32 − 7c2c3 + 3c4

)
e4n

− 2
(
4c42 − 10c22c3 + 3c23 + 5c2c4 − 2c5

)
e5n + · · · (4.3)

Expanding f(yn) around root and using (4.3), we have

f(yn) = f ′(α)[c2e
2
n +

(
−2c22 + 2c3

)
e3n +

(
5c32 − 7c2c3 + 3c4

)
e4n

− 2
(
6c42 − 12c22c3 + 3c23 + 5c2c4 − 2c5

)
e5n + ...] (4.4)

f ′(yn) = f ′(α)[1 + 2c22e
2
n +

(
−4c32 + 4c2c3

)
e3n + c2

(
8c32 − 11c2c3 + 6c4

)
e4n

− 4
(
c2
(
4c42 − 7c22c3 + 5c2c4 − 2c5

))
e5n + · · · ] (4.5)

Using (4.1) to (4.5) in (3.2), we have

xn+1 = α+
1

2

(
10c42 − 3c22c3

)
e5n +

(
−40c52 + 41c32c3 − 6c2c

2
3 − 2c22c4

)
e6n + · · · (4.6)

so

en+1 =
1

2

(
10c42 − 3c22c3

)
e5n +O(e6n).

Theorem 4. Let α be a simple zero of sufficiently differentiable function f: I ⊆
R → R for an open interval I. If x0 closed to α, then the method defined by (3.4)
is of ninth order and moreover satisfies the following error equation

en+1 = (10c52c4 − 3c32c3c4)e
9
n.

where en = xn − α, en+1 = xn+1 − α and ck = f (k)(α)
k!f ′(α) .

Proof. from (3.4) and (4.6)

zn = α+
1

2

(
10c42 − 3c22c3

)
e5n +

(
−40c52 + 41c32c3 − 6c2c

2
3 − 2c22c4

)
e6n + · · · (4.7)
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Expanding f(zn) around root and using (4.7), we have

f(zn) = f ′(α)



(
5c42 − 3

2c
2
2c3
)
e5n

−c2
(
40c42 − 41c22c3 + 6c23 + 2c2c4

)
e6n

+1
2

(
398c62 − 683c42c3 − 12c33 + 110c32c4
−34c2c3c4 + c22

(
249c23 − 5c5

) )
e7n

+1
2


−1584c72 + 3777c52c3 − 926c42c4 − 52c23c4

+c32
(
−2319c23 + 142c5

)
+4c2

(
83c33 − 6c24 − 11c3c5

)
+c22 (670c3c4 − 6c6)

 e8n

+1
2



5530c82 − 16789c62c3 + 5184c52c4
+c42

(
14759c23 − 1202c5

)
+c3

(
164c33 − 75c24 − 68c3c5

)
+c32 (−6242c3c4 + 174c6)

+2c2
(
671c23c4 − 31c4c5 − 27c3c6

)
+c22

(
−3919c33 + 446c24 + 866c3c5 − 7c7

)

 e9n + · · ·



(4.8)

Using (4.1) to (4.5) and (4.7) to (4.8) in (3.4), we have

xn+1 = α+
(
10c52c4 − 3c32c3c4

)
e9n +

(
8382c92 −

61125

2
c72c3 + ...

)
e10n (4.9)

so
en+1 =

(
10c52c4 − 3c32c3c4

)
e9n +O(e10n ).

5. Applications

We have compared our new method (3.4) with the following methods having order
nine respectively.

Gradimir et al. in 2007 [12] suggested a ninth order method (GM) which is
given below,

yn = xn −
f(xn)

f ′(xn)

zn = yn −
(xn − yn)f(yn)

f(xn)− 2f(yn)

xn+1 = zn −
f(zn)f ′(zn)

[f ′(zn)]2 − 1
2f(zn)f

′(zn)−f ′(xn)
zn−xn
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Hu et al. in 2011 [4] proposed a ninth-order method (HU)

yn = xn −
f(xn)

f ′(xn)

zn = yn −

[
1 +

(
f(yn)

f(xn)

)2
]
f(yn)

f ′(yn)

xn+1 = zn −

[
1 + 2

(
f(yn)

f(xn)

)2

+ 2
f(zn)

f(yn)

]
f(zn)

f ′(yn)

In 2012, Hafiz and Salwa [11] proposed ninth order method (HS) using Halley it-
erative method and the weight combination of mid-point with Simpson’s quadrature
formulas and using predictor–corrector technique, as

yn = xn −
f(xn)

f ′(xn)

wn =
xn + yn

2

zn = xn −
12f(xn)

f ′(xn) + 10f ′(wn) + f ′(yn)

xn+1 = zn −
2f(zn)f ′(zn)

2 [f ′(zn)]2 − f(zn)f ′′(zn)
.

Now, consider some test problems to illustrate the efficiency of the proposed
method, namely R-1 (3.4) which is of ninth order. First we show first three iterations
of given examples using method R-1 (3.4), accuracy |x3 − x2| and computational
order of convergence (COC) of R-1 in table-1. Secondly in table-2, we have compared
the results (|x3 − x2|) of new method R-1 (3.4) with the results of existing methods
namely GM, HU and HS which are also ninth order.

Examples:

Function x0 α (exact root)
f1(x) = 4x5 − 3x4 + 2x3 − 3 2 1
f2(x) = ex sinx+ log(1 + x2) 1.5 0
f3(x) = 3 tanx− x 1 0

Table-1:

f x1 x2 x3 |x3 − x2| COC

f1(x) 1.1717e+ 000 1.0000e+ 000 1.0000e+ 000 2.1236e− 005 8.92375
f2(x) 5.0159e− 003 −1.8309e− 019 3.6059e− 167 1.8309e− 019 8.98578
f3(x) 3.9926e+ 000 4.0781e+ 000 4.0781e+ 000 3.0268e− 008 8.95792
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Table-2:

f GM HU HS R− 1
f1(x) 1.8235e− 003 4.1047e− 005 6.0517e− 009 2.1236e− 005
f2(x) 1.5768e− 013 6.8481e− 009 2.4763e− 012 1.8309e− 019
f3(x) 1.6744e− 006 4.5605e− 004 1.6837e− 004 3.0268e− 008

Bahman Kalantari [14] coined the term ”polynomiography” to be the art and sci-
ence of visualization in the approximation of roots of polynomial using Iteration
Functions. We describe the method to produce the polynomiographs for finding the
roots of unity using MATLAB in the following section.

6. Polynomiographs of the ninth order methods for finding the roots
of unity

Let x0 ∈ C be the initial point. A square grid of 65536 points, composed of 256
columns and 256 rows corresponding to the pixels of a computer display would
represent a region of the complex plane [15]. We consider the square R × R =
[−2, 2] × [−2, 2]. Each grid point is used as a starting value x0 of the sequence
generated by the ninth order methods and the number of iterations until convergence
is counted for each gridpoint. We consider the polynomial f(x) = xr − 1, x ∈ C for
finding the rth roots of unity. The rth roots of unity are given by

αj = cos

(
2π(j − 1)

r

)
+ i sin

(
2π(j − 1)

r

)
, j = 1, 2...r.

The basin of attraction corresponding to a zero αj of the polynomial f(x) is the set of
all starting points x0 which are attracted to αj . If the sequence generated by iterative
method attempt a zero αj of the polynomial with a tolerance |xk − αj | < 1e − 4
and a maximum of 100 iterations, we decide that x0 is in the basin of attraction
of these zero and assign a color to that zero. In this way, the basin of attraction
for each root would be assigned a characteristic colour. The common boundaries of
these basins of attraction constitute the Julia set of the Iteration Function. If the
iterates do not satisfy the above criterion for convergence we assign the dark blue
colour (The iterates either diverge or converge to additional fixed points ). Let us
denote Nd as the number of diverging points and µ as the mean number of iterations
for the starting points. We choose r = 2, 3, 4, 5 for our numerical experiments.
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Table-3:

Method r = 2 r = 3 r = 4 r = 5
Nd µ Nd µ Nd µ Nd µ

GM 10893 2.68 2976 3.15 2954 4.21 18806 9.39
HU 28360 3.70 8778 10.1 25702 17.5 12360 16.5
HS 0 2.86 0 3.22 430 4.32 0 3.77
R− 1 0 3.78 0 6.14 358 11.5 4000 13.0

Table 3 show that the new method R-1 performs better than the HU and GM methods
because it is globally convergent for the cases r = 2 and r = 3 and our method is
the most efficient method for the case r = 4 with the smallest number of diverging
points. Our method has many diverging points for the case r = 5 compared to the
HS with no diverging points. However, the HS method requires the calculation of
second derivative.

Figure 1: Polynomiographs for f(x) = x2 − 1

(a) GM (b) HU (c) HS (d) R-1

Fig. 1 shows the polynomiographs of the 4 ninth order methods for the quadratic
polynomial with roots 1 (green) and −1 (blue). The Julia set for the HS is the
imaginary axis. The behaviour of the R-1 method is less dynamic than the HU and
GM methods.

Figure 2: Polynomiographs for f(x) = x3 − 1

(a) GM (b) HU (c) HS (d) R-1

Fig. 2 shows the polynomiographs of the 4 ninth order methods for the cubic
polynomial with roots 1 (orange), −0.5000 − 0.8660i (blue) and −0.5000 + 0.8660i
(green). The behaviour of the R-1 method is less dynamic than the HU and GM
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methods.

Figure 3: Polynomiographs for f(x) = x4 − 1

(a) GM (b) HU (c) HS (d) R-1

Fig. 3 shows the polynomiographs of the 4 ninth order methods for the quartic
polynomial with roots 1 (reddish-brown), −1 (green), i (orange) and −i (blue). The
behaviour of the R-1 method is less dynamic than the HU and GM methods.

Figure 4: Polynomiographs for f(x) = x5 − 1

(a) GM (b) HU (c) HS (d) R-1

Fig. 4 shows the polynomiographs of the 4 ninth order methods for the quintic
polynomial with roots 0.3090 + 0.9511i (reddish-brown), 0.3090 − 0.9511i (blue) ,
−0.8090 + 0.5878i (orange), −0.8090 − 0.5878i (green) and 1 (dark brown). The
behaviour of the R-1 method is less dynamic than the HU and GM methods.

7. Conclusions

In this paper we have proposed a new ninth order iterative method. The conver-
gence order of the suggested method is proved, the efficiency is measured and the
computational order of convergence (COC) is also calculate. With the help of
some numerical test problems, comparison of the obtained results with the existing
methods such as the GM, HU and HS is also given and it is observed that the new
method is efficient in many cases as compared to the existing methods. The dynamic
of the methods for finding the roots of unity are also studied.
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