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STARLIKENESS CONDITIONS FOR NORMALIZED ANALYTIC
FUNCTIONS INCLUDING RUSCHEWEYH OPERATOR

S. Shams, P. Arjomandinia

Abstract. In the present paper, we introduce special subclass of analytic
functions using Ruscheweyh operator. By making use of the notion of differential
subordination, we find conditions on the parameters M,α, δ and µ for which∣∣∣∣∣
(

1− α+ α(λ+ 2)
Rλ+2f(z)

Rλ+1f(z)

)(
Rλ+1f(z)

Rλf(z)

)µ
− α(λ+ 1)

(
Rλ+1f(z)

Rλf(z)

)µ+1

− 1

∣∣∣∣∣ < M,

implies that f ∈ S∗n(δ), where n ∈ N. The results obtained here generalize some
previously results given in the literature.
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1. Introduction

Let An denote the class of all analytic functions f(z) in the open unit disk D = {z ∈
C : |z| < 1} which are in the form

f(z) = z + an+1z
n+1 + . . . , (1)

with A = A1.
Let 0 ≤ δ < 1. The class of (normalized) starlike functions of order δ, S∗n(δ), is

defined by

S∗n(δ) =

{
f ∈ An : <zf

′(z)

f(z)
> δ, z ∈ D

}
,

with S∗(δ) = S∗1(δ). It is well known that S∗(0) = S∗, where S∗ is the class of
(normalized) starlike functions in D, (see [3]). Simillary, we denote by Kn(δ) the
class of (normalized) convex functions of order δ and define by

Kn(δ) =

{
f ∈ An : <

(
1 +

zf ′′(z)

f ′(z)

)
> δ, z ∈ D

}
.
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It is well known that f ∈ Kn(δ), if and only if zf ′(z) ∈ S∗n(δ), (see [3]).
Let f, g be analytic in D. We say that f is subordinate to g (or g is superordinate

to f) and written as f ≺ g if there exists an analytic function w(z) in D such that

w(0) = 0, |w(z)| < 1 and f(z) = g(w(z)).

Let f, g ∈ A be given by Teylor series expansions of the forms

f(z) = z +

∞∑
k=2

akz
k, g(z) = z +

∞∑
k=2

bkz
k, (z ∈ D).

The Hadamard product (or convolution) of f and g, denoted by f ∗ g, is defined by

(f ∗ g)(z) = z +
∞∑
k=2

akbkz
k = (g ∗ f)(z). (2)

Suppose that f ∈ A. The Ruscheweyh derivative operator [4], Rλ : A → A, is
defined as follows

Rλf(z) =
z

(1− z)λ+1
∗ f(z), (λ ≥ −1, z ∈ D). (3)

By an easy calculation we find that

R0f(z) = f(z), R1f(z) = zf ′(z) and R2f(z) =
z

2
(2f ′(z) + zf ′′(z)),

and so on. Using (3) and strightforward calculations we deduce that for each λ ≥ −1
and z ∈ D

z(Rλf)′(z) = (λ+ 1)Rλ+1f(z)− λRλf(z). (4)

In [6] some conditions on M,α, δ and µ were determined so that∣∣∣∣∣(1− α)

(
f(z)

z

)µ
+ αf ′(z)

(
f(z)

z

)µ−1
− 1

∣∣∣∣∣ < M

implies f ∈ S∗n(δ).
Motivated by the recent work of Zhu [6], in the present paper we see that the

results remain true for the functions f ∈ An that satisfy the following condition:∣∣∣∣∣
(

1− α+ α(λ+ 2)
Rλ+2f(z)

Rλ+1f(z)

)(
Rλ+1f(z)

Rλf(z)

)µ

− α(λ+ 1)

(
Rλ+1f(z)

Rλf(z)

)µ+1

− 1

∣∣∣∣∣ < M. (5)

For special choices of α and λ, (5) reduces to the interesting cases that will be given
in the corollaries. For the similar results see [1, 2, 5].

To prove our main results we shall use the following lemmas.
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Lemma 1. ([6]) Let B(z), C(z) and D(z) be complex functions in D and let n be a

positive integer. Suppose that D(0) = 0, B(z) 6= 0 and <C(z)
B(z) ≥ −n for all z ∈ D. If

p(z) = pnz
n + . . . is analytic in D and satisfies

|B(z)zp′(z) + C(z)p(z) +D(z)| < M,

for all z ∈ D, then |p(z)| < N in D, where

N = sup

{
M + |D(z)|
|nB(z) + C(z)|

: z ∈ D
}
.

Lemma 2. ([6]) Let α > 0, µ > 0 and

Mn(α, δ, µ) =



(µ+nα)(1−δ)
n+µ(1−δ) ; α ≥ α2

(µ+nα)
√

2α(1−δ)−1√
n2α2+2(nµ+(1−δ)µ2)α

; α1 ≤ α ≤ α2

α(µ+nα)(1−δ)
2µ+(n−µ+µδ)α ; 0 < α < α1

where α2 = n+µ(1−δ)
n(1−δ) and

α1 =

√
9µ2 + 2nµ+ n2 − (18µ2 + 2nµ)δ + 9µ2δ2 − 3µ+ n+ 3µδ

2n(1− δ)
.

If p(z) and q(z) are analytic in D with p(z) = 1+pnz
n+. . . , and q(z) = 1+qnz

n+. . . ,
and satisfy q(z) ≺ 1 + µMz

nα+µ also q(z)(1 − α + αp(z)) ≺ 1 + Mz with 0 < M ≤
Mn(α, δ, µ), then <(p(z)) > δ for all z ∈ D.

2. Main Results

Using Lemmas 1 and 2, we state and prove the following results.

Theorem 3. Suppose that α, µ, δ,M and Mn(α, δ, µ) be defined as in Lemma 2. If
f ∈ An satisfies(

1− α+ α(λ+ 2)
Rλ+2f(z)

Rλ+1f(z)

)(
Rλ+1f(z)

Rλf(z)

)µ
−α(λ+1)

(
Rλ+1f(z)

Rλf(z)

)µ+1

≺ 1+Mz,

then

<
(

(λ+ 2)
Rλ+2f(z)

Rλ+1f(z)
− (λ+ 1)

Rλ+1f(z)

Rλf(z)

)
> δ.
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Proof. Let q(z) =
(
Rλ+1f(z)
Rλf(z)

)µ
. Using (4), after an easy computation, we obtain

1

µ

zq′(z)

q(z)
= (λ+ 2)

Rλ+2f(z)

Rλ+1f(z)
− (λ+ 1)

Rλ+1f(z)

Rλf(z)
− 1.

This gives that

q(z) +
α

µ
zq′(z)

=

(
1− α+ α(λ+ 2)

Rλ+2f(z)

Rλ+1f(z)

)(
Rλ+1f(z)

Rλf(z)

)µ
− α(λ+ 1)

(
Rλ+1f(z)

Rλf(z)

)µ+1

.

By the assumption of the theorem we have q(z) + α
µzq

′(z) ≺ 1 +Mz, or equivalently∣∣∣αµzq′(z) + q(z)− 1
∣∣∣ < M. From this we see that all conditions of Lemma 1 are

satisfied. So, we obtain |q(z) − 1| < N = µM
µ+nα , which is equivalent to q(z) ≺

1 + µM
µ+nαz. Let,

p(z) = (λ+ 2)
Rλ+2f(z)

Rλ+1f(z)
− (λ+ 1)

Rλ+1f(z)

Rλf(z)
.

The assumption of the theorem shows that

q(z)(1− α+ αp(z)) ≺ 1 +Mz.

Applying Lemma 2, we see that <p(z) > δ. This completes the proof.

Taking λ = −1 in Theorem 3 we obtain [[6], Theorem 2]:

Corollary 4. Let α, µ, δ,M and Mn(α, δ, µ) be defined as in Lemma 2. If f ∈ An
satisfies

(1− α)

(
f(z)

z

)µ
+ αf ′(z)

(
f(z)

z

)µ−1
≺ 1 +Mz

then f ∈ S∗n(δ).

Taking λ = δ = 0 and µ = 1 in Theorem 3 we obtain the following result:

Corollary 5. Let α > 0 and

Mn(α) =



(1+nα)
n+1 ; α ≥ n+1

n

(1+nα)
√
2α−1√

n2α2+2(n+1)α
;

√
9+2n+n2−3+n

2n ≤ α < n+1
n

α(1+nα)
2+(n−1)α ; 0 < α <

√
9+2n+n2−3+n

2n .
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If f ∈ An satisfies(
1 + α+ α

zf ′′(z)

f ′(z)

)(
zf ′(z)

f(z)

)
− α

(
zf ′(z)

f(z)

)2

≺ 1 +Mz,

then

<
(

1 +
zf ′′(z)

f ′(z)

)
> <

(
zf ′(z)

f(z)

)
− 1.

Theorem 6. Let µ > 0 and 0 < β ≤ µ+n√
µ2+(µ+n)2

. If f ∈ An satisfies

∣∣∣∣(Rλ+1f(z)

Rλf(z)

)µ [
(λ+ 2)

Rλ+2f(z)

Rλ+1f(z)
− (λ+ 1)

Rλ+1f(z)

Rλf(z)

]
− 1

∣∣∣∣ < β,

then

<
(

(λ+ 2)
Rλ+2f(z)

Rλ+1f(z)
− (λ+ 1)

Rλ+1f(z)

Rλf(z)

)
> δ

where,

δ =


(µ+n)(1−β)
µ+n+µβ ; 0 < β < µ+n

2µ+n

(µ+n)2(1−β2)−µ2β2

2(µ+n)2−2µ2β2 ; µ+n
2µ+n ≤ β ≤

µ+n√
µ2+(µ+n)2

.

(6)

Proof. From (6) we have

β =


(µ+n)

√
1−2δ√

n2+2(µn+(1−δ)µ2)
; 0 ≤ δ ≤ µ

3µ+n

(µ+n)(1−δ)
n+µ+µδ ; µ

3µ+n < δ < 1.

It is easy to show that the inequality√
9µ2 + 2nµ+ n2 − (18µ2 + 2nµ)δ + 9µ2δ2 − 3µ+ n+ 3µδ

2n(1− δ)
≤ 1

is equivalent to δ ≤ µ
3µ+n . Hence, it is seen that all conditions of Theorem 3 are

satisfied with β = Mn(1, δ, µ) and we obtain <(p(z)) > δ, where δ is given by (6)
and

p(z) = (λ+ 2)
Rλ+2f(z)

Rλ+1f(z)
− (λ+ 1)

Rλ+1f(z)

Rλf(z)
.

Taking λ = −1 in Theorem 6 we obtain [[6], Theorem 3]:

101



S. Shams, P. Arjomandinia – Starlikeness conditions for . . .

Corollary 7. Let µ > 0 and 0 < β ≤ µ+n√
µ2+(µ+n)2

. If f ∈ An satisfies

∣∣∣∣∣f ′(z)
(
f(z)

z

)µ−1
− 1

∣∣∣∣∣ < β; (z ∈ D),

then f ∈ S∗n(δ), where δ is given by (6).

Finally, taking λ = −1, µ = 1 and zf ′(z) instead of f(z) in Theorem 3 we obtain
[[6], Theorem 4]:

Corollary 8. Let 0 ≤ δ < 1, α > 0 and

Mn(α, δ) =



(1+nα)(1−δ)
n+1−δ ; α ≥ α2

(1+nα)
√

2α(1−δ)−1√
n2α2+2(n+1−δ)α

; α1 ≤ α ≤ α2

α(1+nα)(1−δ)
2+(n−1+δ)α ; 0 < α < α1

where α2 = n+1−δ
n(1−δ) and

α1 =

√
9 + 2n+ n2 − (18 + 2n)δ + 9δ2 − 3 + n+ 3δ

2n(1− δ)
.

If f ∈ An satisfies
|f ′(z) + αzf ′′(z)− 1| < M ; (z ∈ D),

with 0 < M ≤ Mn(α, δ), then zf ′ ∈ S∗n(δ), i.e., f is convex-univalent function of
order δ.
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