SOME FAMILIES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS WITH NEGATIVE COEFFICIENTS

M.K. Aouf, A.O. Mostafa, O.M. Algubouri

Abstract. We introduce a subclass of uniformly starlike and convex functions with negative coefficients defined by Sălăgean operator. In this paper, we obtain coefficient estimates, distortion theorems, closure theorems and radii of close-toconvexity, starlikeness, and convexity for functions belonging to this class. Several results for the modified Hadamard products of functions belonging to this class are obtained. Finally, distortion theorems for fractional calculus functions are also considered.

2010 Mathematics Subject Classification: 30C45.
Keywords: Analytic function, Sălăgean operator, uniformly convex, closure theorems, modified Hadamard product, fractional calculus.

1. Introduction

Let A_{j} denote the class of the functions of the from

$$
\begin{equation*}
f(z)=z+\sum_{k=j+1}^{\infty} a_{k} z^{k} \quad(j \in \mathbb{N}=\{1,2,3, \ldots .\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z:|z|<1\}$. We note that $A_{1}=A$. For a function $f(z) \in A_{j}$, let

$$
\begin{align*}
& D^{0} f(z)=f(z) \\
& D^{1} f(z)=D f(z)=z f^{\prime}(z), \\
& D^{n} f(z)=D\left(D^{n-1} f(z)\right) \\
&=z+\sum_{k=j+1}^{\infty} k^{n} a_{k} z^{k} \quad, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} . \tag{1.2}
\end{align*}
$$

M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

The differential operator D^{n} was introduced by Sălăgean [9]. With the help of the differential operator D^{n}, for $0 \leq \alpha<1,0 \leq \lambda \leq 1, \beta \geq 0, n \in \mathbb{N}_{0}$ and $\mathrm{m} \in \mathbb{N}$, let $S_{j}(n, m, \lambda, \alpha, \beta)$ denote the subclass of A_{j} consisting of functions $f(z)$ of the form (1.1) and satisfying condition

$$
\begin{gather*}
\operatorname{Re}\left\{\frac{(1-\lambda) z\left(D^{n} f(z)\right)^{\prime}+\lambda z\left(D^{n+m} f(z)\right)^{\prime}}{(1-\lambda) D^{n} f(z)+\lambda D^{n+m} f(z)}-\alpha\right\}> \\
\beta\left|\frac{(1-\lambda) z\left(D^{n} f(z)\right)^{\prime}+\lambda z\left(D^{n+m} f(z)\right)^{\prime}}{(1-\lambda) D^{n} f(z)+\lambda D^{n+m} f(z)}-1\right|, z \in \mathbb{U} . \tag{1.3}
\end{gather*}
$$

The operator D^{n+m} was studied by Sekine [11], Hossen et al. [6] and Aouf and Sălăgean [4]. We denote by T_{j} the subclass of A_{j} consisting of the functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=j+1}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0, k \geq j+1 ; j \in \mathbb{N}\right) \tag{1.4}
\end{equation*}
$$

Further, we define the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$ by

$$
\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)=S_{j}(m, n, \lambda, \alpha, \beta) \cap T_{j} .
$$

We note that, specializing the parameters $\alpha, \beta, \lambda, n$ and m, we obtain the following subclasses studied by various authors:
(i) $\mathbb{Q}_{1}(1, n, \lambda, \alpha, \beta)=T S_{\lambda}(n, \alpha, \beta) \quad$ (see Aouf et al. [2]);
(ii) $\mathbb{Q}_{1}(m, n, 0, \alpha, \beta)=T(n, \alpha, \beta) \quad$ (see Aouf $[1]$);
(iii) $\mathbb{Q}_{j}(m, n, \lambda, \alpha, 0)=T_{j}(m, n, \lambda, \alpha) \quad$ (see Aouf et al. [3]);
(iv) $\mathbb{Q}_{j}(1, n, \lambda, \alpha, 0)=P(j, n, \lambda, \alpha)$ (see Aouf and Srivastava [5]);
(v) $\mathbb{Q}_{j}(1, n, \lambda, \beta, k)=U_{j}(n, \lambda, \alpha, \beta)$ (see Shanmugam et al. [12]);
(vi) $\mathbb{Q}_{j}(m, 0,0, \alpha, \beta)=T S(m, \alpha, \beta)$ (see Rosy and Murugusudaramoorthy [8]);
(vii) $\mathbb{Q}_{j}(1,0,0, \alpha, 0)=C_{\alpha}(j)$ (see Srivastava et al. [15]);
(viii) $\mathbb{Q}_{1}(0,0,0, \alpha, 0)=T^{*}(\alpha)$ and $\mathbb{Q}_{j}(0,1,0, \alpha, 0)=C(\alpha)$ (see Silverman [13]).

2. Coefficient estimates

Theorem 1. Let the function $f(z)$ be defined by (1.4). Then $f(z) \in \mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} \leq 1-\alpha . \tag{2.1}
\end{equation*}
$$

M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

Proof. Assume that (2.1) holds.Then we must show that

$$
\begin{gathered}
\beta\left|\frac{(1-\lambda) z\left(D^{n} f(z)\right)^{\prime}+\lambda z\left(D^{n+m} f(z)\right)^{\prime}}{(1-\lambda) D^{n} f(z)+\lambda D^{n+m} f(z)}-1\right|- \\
\operatorname{Re}\left\{\frac{(1-\lambda) z\left(D^{n} f(z)\right)^{\prime}+\lambda z\left(D^{n+m} f(z)\right)^{\prime}}{(1-\lambda) D^{n} f(z)+\lambda D^{n+m} f(z)}-\alpha\right\} \leq 1-\alpha .
\end{gathered}
$$

We have

$$
\begin{aligned}
& \beta\left|\frac{(1-\lambda) z\left(D^{n} f(z)\right)^{\prime}+\lambda z\left(D^{n+m} f(z)\right)^{\prime}}{(1-\lambda) D^{n} f(z)+\lambda D^{n+m} f(z)}-1\right|- \\
& \operatorname{Re}\left\{\frac{(1-\lambda) z\left(D^{n} f(z)\right)^{\prime}+\lambda z\left(D^{n+m} f(z)\right)^{\prime}}{(1-\lambda) D^{n} f(z)+\lambda D^{n+m} f(z)}-\alpha\right\} \\
& \leq \frac{(1+\beta) \sum_{k=j+1}^{\infty} k^{n}(k-1)\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} z^{k-1}}{1-\sum_{k=j+1}^{\infty} k^{n}\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} z^{k-1}} \\
& \leq \frac{(1+\beta) \sum_{k=j+1}^{\infty} k^{n}(k-1)\left[1+\left(k^{m}-1\right) \lambda\right] a_{k}}{1-\sum_{k=j+1}^{\infty} k^{n}\left[1+\left(k^{m}-1\right) \lambda\right] a_{k}} \leq 1-\alpha .
\end{aligned}
$$

Hence, $f(z) \in \mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$.
Conversely, let $f(z) \in \mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$. Then we have

$$
\begin{aligned}
& \frac{1-\sum_{k=j+1}^{\infty} k^{n+1}\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} z^{k-1}}{1-\sum_{k=j+1}^{\infty} k^{n}\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} z^{k-1}}-\alpha \geq \\
& \beta\left|\frac{\sum_{k=j+1}^{\infty} k^{n}(k-1)\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} z^{k-1}}{1-\sum_{k=j+1}^{\infty} k^{n}\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} z^{k-1}}\right| .
\end{aligned}
$$

Letting $z \rightarrow 1^{-}$along the real axis, we obtain the desired inequality

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} \leq 1-\alpha . \tag{2.3}
\end{equation*}
$$

M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

This completes the proof of Theorem 1.

Corollary 1. Let the function $f(z)$ be define by (1.4) be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$, Then

$$
\begin{equation*}
a_{k} \leq \frac{1-\alpha}{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]} \quad(k \geq j+1) . \tag{2.4}
\end{equation*}
$$

The result is sharp for the function

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]} z^{k} \quad(k \geq j+1) . \tag{2.5}
\end{equation*}
$$

3. Distortion theorems

Theorem 2. Let the function $f(z)$ defined by (1.4) be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$. Then for $|z|=r<1$, we have

$$
\begin{align*}
& \left|D^{i} f(z)\right| \geq r-\frac{1-\alpha}{(j+1)^{n-i}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right]} r^{j+1} \tag{3.1}\\
& \left|D^{i} f(z)\right| \leq r+\frac{1-\alpha}{(j+1)^{n-i}[j(1+\beta)+(1-\alpha)]\left[1+\left((1+j)^{m}-1\right) \lambda\right]} r^{j+1} \tag{3.2}
\end{align*}
$$

for $z \in U$ and $0 \leq i \leq n$. The equalities in (3.1) and (3.2) are attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{(j+1)^{n}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right]} z^{j+1}(z= \pm r) \tag{3.3}
\end{equation*}
$$

Proof. Note that $f(z) \in \mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$ if and only if $D^{i} f(z) \in \mathbb{Q}_{j}(m, n-i, \lambda, \alpha, \beta)$ and that

$$
\begin{equation*}
D^{i} f(z)=z-\sum_{k=j+1}^{\infty} k^{i} a_{k} z^{k} \tag{3.4}
\end{equation*}
$$

By Theorem 1,we have

$$
(j+1)^{n-i}[j(1+\beta)+(1-\alpha)]\left[1+\left((j+1)^{m}-1\right) \lambda\right] \sum_{k=j+1}^{\infty} k^{i} a_{k}
$$

M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

$$
\leq \sum_{k=j+1}^{\infty} k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} \leq 1-\alpha,
$$

that is, that

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} k^{i} a_{k} \leq \frac{1-\alpha}{(j+1)^{n-i}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right]} \tag{3.5}
\end{equation*}
$$

The assertions (3.1) and (3.2) of Theorem 2 would now follow readily form (3.4) and (3.5). Finally, we note that equalities in (3.1) and (3.2) are attained for the function $f(z)$ defined by

$$
\begin{equation*}
D^{i} f(z)=z-\frac{1-\alpha}{(j+1)^{n-i}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right]} z^{j+1} . \tag{3.6}
\end{equation*}
$$

This completes the proof of Theorem 2.
Corollary 2. Let the function $f(z)$ defined by (1.4)be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta$).Then for $|z|=r<1$

$$
\begin{equation*}
|f(z)| \geq r-\frac{1-\alpha}{(j+1)^{n}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right]} r^{j+1} \tag{3.7}
\end{equation*}
$$

and.

$$
\begin{equation*}
|f(z)| \leq r+\frac{1-\alpha}{(j+1)^{n}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right]} r^{j+1} . \tag{3.8}
\end{equation*}
$$

The equalities in (3.7) and(3.8) are attained for the function $f(z)$ given by (3.3).
Proof. Taking $i=0$ in Theorem 2, we immediately obtain (3.7) and (3.8).

Corollary 3. Let the function $f(z)$ defined by (1.4) be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta$). Then, for $|z|=r<1$

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq 1-\frac{1-\alpha}{(j+1)^{n-1}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right]} r^{j} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq 1+\frac{1-\alpha}{(j+1)^{n-1}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right]} r^{j} . \tag{3.10}
\end{equation*}
$$

The equalities in (3.9) and (3.10) are attained for the function $f(z)$ given by (3.3).
Proof. Setting $i=1$ in Theorem 2, and making use of (1.3), we arrive at Corollary 3.
M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

4. Convex linear combination

In this section, we shall prove that the class $\mathbb{Q}_{j}(m ; n, \lambda, \alpha, \beta)$ is closed under convex linear combination.

Theorem 3. . $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$ is a convex set.
Proof. Let the functions

$$
\begin{equation*}
f_{\nu}(z)=z-\sum_{k=j+1}^{\infty} a_{\nu, k} z^{k} \quad\left(a_{\nu, k} \geq 0 ; \nu=1,2\right) \tag{4.1}
\end{equation*}
$$

be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$. It is sufficient to show that the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=\mu f_{1}(z)+(1-\mu) f_{2}(z) \quad(0 \leq \mu \leq 1) \tag{4.2}
\end{equation*}
$$

is also in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$. Since, for $0 \leq \mu \leq 1$,

$$
\begin{equation*}
h(z)=z-\sum_{k=j+1}^{\infty}\left\{\mu a_{k, 1}+(1-\mu) a_{k, 2}\right\} z^{k}, \tag{4.3}
\end{equation*}
$$

with the aid of Theorem 1, we have

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]\left\{\mu a_{k, 1}+(1-\mu) a_{k, 2}\right\} \leq 1-\alpha \tag{4.4}
\end{equation*}
$$

which implies that $h(z) \in \mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$. Hence $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$ is a convex set.

Theorem 4. Let $f_{j}(z)=z$ and
$f_{k}(z)=z-\frac{1-\alpha}{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]} z^{k} \quad\left(k \geq j+1 ; n \in \mathbb{N}_{0} ; m \in \mathbb{N}\right)$
for $0 \leq \alpha<1, \beta \geq 0$ and $0 \leq \lambda \leq 1$, then $f(z)$ is in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$, if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{k=j}^{\infty} v_{k} f_{k}(z) \tag{4.6}
\end{equation*}
$$

where $\quad v_{k} \geq 0(k \geq j)$ and $\sum_{k=j}^{\infty} v_{k}=1$.
M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

Proof. Assume that

$$
\begin{gather*}
f(z)=\sum_{k=j}^{\infty} v_{k} f_{k}(z) \\
=z-\sum_{k=j+1}^{\infty} \frac{1-\alpha}{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]} v_{k} z^{k} . \tag{4.7}
\end{gather*}
$$

Then it follows that

$$
\begin{gather*}
\sum_{k=j+1}^{\infty}\left\{\frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} .\right. \\
\left.\cdot \frac{1-\alpha}{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]} v_{k}\right\} \\
=\sum_{k=j+1}^{\infty} v_{k}=1-v_{j} \leq 1 . \tag{4.8}
\end{gather*}
$$

So, by Theorem 1, $f(z) \in \mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$.
Conversely, assume that the function $f(z)$ defined by (1.4) belongs to the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$. Then

$$
a_{k} \leq \frac{1-\alpha}{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]} \quad\left(k \geq j+1 ; n \in \mathbb{N}_{0} ; m \in \mathbb{N}\right)
$$

Setting

$$
\begin{equation*}
v_{k}=\frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} a_{k} \quad\left(k \geq j+1 ; n \in \mathbb{N}_{0} ; m \in \mathbb{N}\right) \tag{4.9}
\end{equation*}
$$

and

$$
v_{j}=1-\sum_{k=j+1}^{\infty} v_{k}
$$

we can see that $f(z)$ can be expressed in the form (4.4).This completes the proof of Theorem 4.
M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

5. Radii of close-to-convexity, starlikeness and convexity

Theorem 5. Let the function $f(z)$ defined by (1.4) be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$. Then $f(z)$ is close-to-convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{1}$, where

$$
\begin{gather*}
r_{1}=r_{1}(m, n, \lambda, \alpha, \beta, \rho) \\
\inf _{k}\left\{\frac{(1-\rho) k^{n-1}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha}\right\}^{\frac{1}{k-1}}(k \geq j+1) . \tag{5.1}
\end{gather*}
$$

The result is sharp, the extremal function $f(z)$ being given by (2.5).
Proof. We must show that

$$
\left|f^{\prime}(z)-1\right| \leq 1-\rho \quad \text { for }|z|<r_{1}(m, n, \lambda, \alpha, \beta, \rho),
$$

where $r_{1}(m, n, \lambda, \alpha, \beta, p)$ is given by (5.1). Indeed we find from (1.4), that

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=j+1}^{\infty} k a_{k}|z|^{k-1}
$$

Thus

$$
\left|f^{\prime}(z)-1\right| \leq 1-\rho
$$

if

$$
\begin{equation*}
\sum_{k=j+1}^{\infty}\left(\frac{k}{1-\rho}\right) a_{k}|z|^{k-1} \leq 1 \tag{5.2}
\end{equation*}
$$

But, by Theorem 1, (5.2) will be true if

$$
\left(\frac{k}{1-\rho}\right)|z|^{k-1} \leq \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha},
$$

that is, if

$$
\begin{equation*}
|z| \leq\left[\frac{(1-\rho) k^{n-1}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha}\right]^{\frac{1}{k-1}} . \tag{5.3}
\end{equation*}
$$

Theorem 5 follows easily from (5.3).
Theorem 6. Let the function $f(z)$ defined by (1.4) be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$.Then $f(z)$ is starlike of order $\rho(0 \leq \rho<1)$ in $|z|<r_{2}$, where

$$
\begin{gather*}
r_{2}=r_{2}(m, n, \lambda, \alpha, \beta, \rho)= \\
\inf _{k}\left\{\frac{(1-\rho) k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{(k-\rho)(1-\alpha)}\right\}^{\frac{1}{(k-1)}}(k \geq j+1) . \tag{5.4}
\end{gather*}
$$

The result is sharp, with the extremal function $f(z)$ given by (2.5).
M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

Proof. It is sufficient to show that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho \quad \text { for }|z|<r_{2}(m, n, \lambda, \alpha, \beta, \rho)
$$

where $r_{2}(m, n, \lambda, \alpha, \beta, \rho)$ is given by (5.4). Indeed we find, again from (1.4), that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{k=j+1}^{\infty}(k-1) a_{k}|z|^{k-1}}{1-\sum_{k=j+1}^{\infty} a_{k}|z|^{k-1}}
$$

Thus

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho
$$

if

$$
\begin{equation*}
\sum_{k=j+1}^{\infty}\left(\frac{k-\rho}{1-\rho}\right) a_{k}|z|^{k-1} \leq 1 \tag{5.5}
\end{equation*}
$$

But, by Theorem 1, (5.5) will be true if

$$
\left(\frac{k-\rho}{1-\rho}\right)|z|^{k-1} \leq \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha},
$$

that is ,if

$$
\begin{equation*}
|z| \leq\left[\frac{(1-\rho) k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{(k-\rho)(1-\alpha)}\right]^{\frac{1}{(k-1)}}(k \geq j+1) . \tag{5.6}
\end{equation*}
$$

Theorem 6 follows easily from (5.6).

Corollary 4. Let the function $f(z)$ defined by (1.4) be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$. Then $f(z)$ is convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{3}$, where

$$
\begin{gather*}
r_{3}=r_{3}(m, n, \lambda, \alpha, \beta, \rho)= \tag{5.7}\\
\inf _{k}\left\{\frac{(1-\rho) k^{n-1}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{(k-\rho)(1-\alpha)}\right\}^{\frac{1}{k-1}}(k \geq j+1) .
\end{gather*}
$$

The result is sharp, with the extremal function $f(z)$ given by (2.5).
M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

6. A family of integral operators

Theorem 7. Let the function $f(z)$ defined by (1.4) be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta$), let c be a real number such that $c>-1$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \quad(c>-1) \tag{6.1}
\end{equation*}
$$

also belongs to the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$.
Proof. From the representation (6.1) of $F(z)$, it follows that

$$
F(z)=z-\sum_{k=j+1}^{\infty} b_{k} z^{k}
$$

where

$$
b_{k}=\left(\frac{c+1}{c+k}\right) a_{k}
$$

Therefore, we have

$$
\begin{aligned}
& \sum_{k=j+1}^{\infty} k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right] b_{k} \\
= & \sum_{k=j+1}^{\infty} k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]\left(\frac{c+1}{c+k}\right) a_{k} \\
\leq & \sum_{k=j+1}^{\infty} k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} \leq 1-\alpha,
\end{aligned}
$$

since $f(z) \in \mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$. Hence, by Theorem $1, F(z) \in \mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$.
Theorem 8. Let the function

$$
F(z)=z-\sum_{k=j+1}^{\infty} a_{k} z^{k} \quad\left(\quad a_{k} \geq 0\right)
$$

be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$. And let c be a real number such that $c>-1$. Then the function $f(z)$ given by (6.1), is univalent in $|z|<R^{*}$, where

$$
\begin{equation*}
R^{*}=\inf _{k}\left[\frac{k^{n-1}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right](c+1)}{(c+k)(1-\alpha)}\right]^{\frac{1}{(k-1)}}(k \geq j+1) . \tag{6.2}
\end{equation*}
$$

The result is sharp.
M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

Proof. From (6.1), we have

$$
f(z)=\frac{z^{1-c}\left\{z^{c} F(z)\right\}^{\prime}}{c+1}=z-\sum_{k=j+1}^{\infty}\left(\frac{c+k}{c+1}\right) a_{k} z^{k} .
$$

In order to obtain the required result, it suffices to show that

$$
\left|f^{\prime}(z)-1\right| \leq 1 \quad \text { whenever } \quad|z|<R^{*}
$$

where R^{*} is given by (6.2). Now

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=j+1}^{\infty} \frac{k(c+k)}{c+1} a_{k}|z|^{k-1}
$$

Thus $\left|f^{\prime}(z)-1\right| \leq 1$ if

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{k(c+k)}{c+1} a_{k}|z|^{k-1} \leq 1 \tag{6.3}
\end{equation*}
$$

But Theorem 1 confirms that

$$
\begin{equation*}
\frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} a_{k} \leq 1 . \tag{6.4}
\end{equation*}
$$

Hence (6.3) will be satisfied if

$$
\frac{k(c+k)}{c+1}|z|^{k-1}<\frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha},
$$

that is, if

$$
\begin{equation*}
|z|<\left[\frac{k^{n-1}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right](c+1)}{(c+k)(1-\alpha)}\right]^{\frac{1}{(k-1)}}(k \geq j+1) \tag{6.5}
\end{equation*}
$$

Therefore, the function $f(z)$ given by (6.1) is univalent in $|z|<R^{*}$. Sharpness of the result follows if we take

$$
f(z)=z-\frac{(c+k)(1-\alpha)}{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right](c+1)} z^{k}(k \geq j+1) .
$$

M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

7. Modified Hadamard products

Let the functions $f_{\nu}(z)(\nu=1,2)$ be defined by (4.1). The modified Hadamard product (or convolution) of the functions $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z-\sum_{k=j+1}^{\infty} a_{k, 1} a_{k, 2} z^{k} \tag{7.1}
\end{equation*}
$$

Theorem 9. Let the functions $f_{\nu}(z)(\nu=1,2)$ defined by (4.1) be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$.Then $\left(f_{1} * f_{2}\right)(z) \in \mathbb{Q}_{j}(m, n, \lambda, \delta(m, n, \lambda, \alpha, \beta), \beta)$, where

$$
\begin{gather*}
\delta(m, n, \lambda, \alpha, \beta)= \\
1-\frac{j(1+\beta)(1-\alpha)^{2}}{(j+1)^{n}[(j+1)(1+\beta)-(\alpha+\beta)]^{2}\left[1+\left((j+1)^{m}-1\right) \lambda\right]-(1-\alpha)^{2}} . \tag{7.2}
\end{gather*}
$$

The result is sharp.
Proof. Employing the technique used earlier by Schild and Silverman [10], we need to find the largest $\delta=\delta(m, n, \lambda, \alpha, \beta)$ such that

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{k^{n}[k(1+\beta)-(\delta+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\delta} a_{k, 1} a_{k, 2} \leq 1 \tag{7.3}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} a_{k, 1} \leq 1 \tag{7.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} a_{k, 2} \leq 1 \tag{7.5}
\end{equation*}
$$

then by the Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} \sqrt{a_{k, 1} a_{k, 2}} \leq 1 . \tag{7.6}
\end{equation*}
$$

Thus it is sufficient to show that

$$
\frac{k^{n}[k(1+\beta)-(\delta+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\delta} a_{k, 1} a_{k, 2}
$$

M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

$$
\begin{gather*}
\leq \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} \sqrt{a_{k, 1} a_{k, 2}} \\
(k \geq j+1), \tag{7.7}
\end{gather*}
$$

that is, that

$$
\frac{k^{n}[k(1+\beta)-(\delta+\beta)]}{1-\delta} a_{k, 1} a_{k, 2} \leq \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]}{1-\alpha} \sqrt{a_{k, 1} a_{k, 2}}
$$

or

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{[k(1+\beta)-(\alpha+\beta)](1-\delta)}{[k(1+\beta)-(\delta+\beta)](1-\alpha)}(k \geq j+1) . \tag{7.8}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{1-\alpha}{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}(k \geq j+1) . \tag{7.9}
\end{equation*}
$$

Consequently, we need only to prove that

$$
\begin{align*}
& \frac{1-\alpha}{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]} \tag{7.10}\\
& \leq \frac{[k(1+\beta)-(\alpha+\beta)](1-\delta)}{[k(1+\beta)-(\delta+\beta)](1-\alpha)}(k \geq j+1)
\end{align*}
$$

or, equivalently, that

$$
\begin{equation*}
\delta \leq 1-\frac{(k-1)(1+\beta)(1-\alpha)^{2}}{k^{n}[k(1+\beta)-(\alpha+\beta)]^{2}\left[1+\left(k^{m}-1\right) \lambda\right]-(1-\alpha)^{2}} \quad(k \geq j+1) \tag{7.11}
\end{equation*}
$$

Since
$\phi(k)=1-\frac{(k-1)(1+\beta)(1-\alpha)^{2}}{k^{n}[k(1+\beta)-(\alpha+\beta)]^{2}\left[1+\left(k^{m}-1\right) \lambda\right]-(1-\alpha)^{2}} \quad(k \geq j+1)$
is an increasing function of $\mathrm{k}(k \geq j+1)$ then letting $k=j+1$ we obtain

$$
\begin{equation*}
\delta \leq \phi(j+1)=1-\frac{j(1+\beta)(1-\alpha)^{2}}{(j+1)^{n}[j(1+\beta)+(1-\alpha)]^{2}\left[1+\left((j+1)^{m}-1\right) \lambda\right]-(1-\alpha)^{2}} \tag{7.13}
\end{equation*}
$$

which proves the main assertion of Theorem 9. Finally, by taking the functions

$$
\begin{equation*}
f_{\nu}(z)=z-\frac{1-\alpha}{(j+1)^{n}[j(1+\beta)+(1-\alpha)]\left[1+\left((j+1)^{m}-1\right) \lambda\right]} z^{j+1} \quad(\nu=1,2), \tag{7.14}
\end{equation*}
$$

we can see that the result is sharp.
M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

Remark 1. Putting $m=1$ in Theorem 9, we obtain the following corollary which corrects the result obtained by Shanmugam et al.[12, Theorem 5.1].

Corollary 5. Let the functions $f_{\nu}(z)(\nu=1,2)$ defined by (4.1) be in the class $U_{j}(n, \lambda, \alpha, \beta)$. Then $\left(f_{1} * f_{2}\right)(z) \in U_{j}(n, \lambda, \gamma, \beta)$, where

$$
\begin{equation*}
\gamma=1-\frac{j(1+\beta)(1-\alpha)^{2}}{(j+1)^{n}[(j+1)(1+\beta)-(\alpha+\beta)]^{2}(1+j \lambda)-(1-\alpha)^{2}} . \tag{7.15}
\end{equation*}
$$

The result is sharp.
Theorem 10. Let $f_{1}(z) \in \mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$ and $f_{2}(z) \in \mathbb{Q}_{j}(m, n, \lambda, \gamma, \beta)$. Then $\left(f_{1} * f_{2}\right)(z) \in \mathbb{Q}_{j}(m, n, \lambda, \xi(j, m, n, \lambda, \gamma, \beta), \beta)$, where

$$
\begin{gather*}
\xi(j, m, n, \lambda, \gamma, \beta)=1- \\
{[j(1+\beta)(1-\alpha)(1-\gamma)] .} \\
\cdot\left\{(j+1)^{n}[j(1+\beta)+(1-\alpha)][j(1+\beta)+(1-\gamma)] .\right. \\
\left.\cdot\left[1+\left((j+1)^{m}-1\right) \lambda\right]-(1-\alpha)(1-\gamma)\right\}^{-1} \tag{7.16}
\end{gather*}
$$

The result is the best possible for the functions

$$
\begin{equation*}
f_{1}(z)=z-\frac{1-\alpha}{(j+1)^{n}[j(1+\beta)+(1-\alpha)]\left[1+\left((j+1)^{m}-1\right) \lambda\right]} z^{j+1} \tag{7.17}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}(z)=z-\frac{1-\gamma}{(j+1)^{n}[j(1+\beta)+(1-\gamma)]\left[1+\left((j+1)^{m}-1\right) \lambda\right]} z^{j+1} . \tag{7.18}
\end{equation*}
$$

Proof. Proceeding as in the proof of Theorem 9, we get

$$
\begin{gather*}
\xi \leq 1-[j(1+\beta)(1-\alpha)(1-\gamma)] . \\
.\left\{(j+1)^{n}[j(1+\beta)+(1-\alpha)][j(1+\beta)+(1-\gamma)]\right. \\
\left.\left[1+\left((j+1)^{m}-1\right) \lambda\right]-(1-\alpha)(1-\gamma)\right\}^{-1} \\
(k \geq j+1) . \tag{7.19}
\end{gather*}
$$

Since the right-hand side of (7.19) is an increasing function of k , setting $k=j+1$ in (7.19), we obtain (7.16). This completes the proof of Theorem 10.
M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

Corollary 6. Let the functions $f_{\nu}(z)(\nu=1,2,3)$ defined by (4.1), be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$. Then $\left(f_{1} * f_{2} * f_{3}\right)(z) \in Q_{j}(m, n, \lambda, \zeta(m, n, \lambda, \alpha, \beta), \beta)$, where

$$
\begin{gather*}
\zeta(m, n, \lambda, \alpha, \beta)=1-\left\{j(1+\beta)(1-\alpha)^{3}\right\} . \\
.\left\{(j+1)^{2 n}[j(1+\beta)+(1-\alpha)]^{3}\left[1+\left((j+1)^{m}-1\right) \lambda\right]-(1-\alpha)^{3}\right\}^{-1} . \tag{7.20}
\end{gather*}
$$

The result is the best possible for the functions $f_{\nu}(z)(\nu=1,2,3)$ given by (7.14). Proof. From Theorem 9, we have

$$
\left(f_{1} * f_{2}\right)(z) \in \mathbb{Q}_{j}(m, n, \lambda, \delta(m, n, \lambda, \alpha, \beta), \beta)
$$

where δ is given by (7.2). Now, using Theorem 10, we get $\left(f_{1} * f_{2} * f_{3}\right)(z) \in$ $\mathbb{Q}_{j}(m, n, \lambda, \zeta(m, n, \lambda, \alpha, \beta), \beta)$, where

$$
\begin{gather*}
\zeta(m, n, \lambda, \alpha, \beta)=1-\left\{j(1+\beta)(1-\alpha)^{3}\right\} \\
.\left\{(j+1)^{2 n}[j(1+\beta)(1-\alpha)]^{3}\left[1+\left((j+1)^{m}-1\right) \lambda\right]-(1-\alpha)^{3}\right\}^{-1} \tag{7.21}
\end{gather*}
$$

This completes the proof of corollary 6 .
Remark 2. Putting $m=1$ in Corollary 6, we obtain similar result for the class $U_{j}(n, \lambda, \alpha, \beta)$.

Theorem 11. Let the functions $f_{\nu}(z)(\nu=1,2)$ be defined by (4.1) be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$. Then the function

$$
\begin{equation*}
h(z)=z-\sum_{k=j+1}^{\infty}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) z^{k} \tag{7.22}
\end{equation*}
$$

belongs to the class $\mathbb{Q}_{j}(m, n, \lambda, \eta(m, n, \lambda, \alpha, \beta), \beta)$, where

$$
\begin{gather*}
\eta(m, n, \lambda, \alpha, \beta)=1-\left\{2 j(1+\beta)(1-\alpha)^{2}\right\} . \\
.\left\{(j+1)^{n}[j(1+\beta)+(1-\alpha)]^{2}\left[1+\left((j+1)^{m}-1\right) \lambda\right]-2(1-\alpha)^{2}\right\}^{-1} . \tag{7.23}
\end{gather*}
$$

The result is sharp for the functions $f_{\nu}(z)(\nu=1,2)$ defined by (7.14).
Proof. By virtue of Theorem 1, we obtain

$$
\sum_{k=j+1}^{\infty}\left[\frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha}\right]^{2} a_{k, 1}^{2}
$$

M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

$$
\begin{equation*}
\leq\left[\sum_{k=j+1}^{\infty} \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} a_{k, 1}\right]^{2} \leq 1 \tag{7.24}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{k=j+1}^{\infty}\left[\frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha}\right]^{2} a_{k, 2}^{2} \\
\leq & {\left[\sum_{k=j+1}^{\infty} \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} a_{k, 2}\right]^{2} \leq 1 . } \tag{7.25}
\end{align*}
$$

It follows from (7.24) and (7.25) that

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{1}{2}\left[\frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha}\right]^{2}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) \leq 1 \tag{7.26}
\end{equation*}
$$

Therefore, we need to fined the largest $\eta=\eta(m, n, \lambda, \alpha, \beta)$ such that

$$
\begin{gathered}
\frac{k^{n}[k(1+\beta)-(\eta+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\eta} \leq \\
\frac{1}{2}\left[\frac{k^{n}[k(1+\beta)-(\alpha+\beta)]\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha}\right]^{2} \quad(k \geq j+1)
\end{gathered}
$$

that is,

$$
\begin{gather*}
\eta \leq 1-\left\{2(k-1)(1+\beta)(1-\alpha)^{2}\right\} \\
\left.\left\{k^{n}[k(1+\beta)-(\alpha+\beta)]^{2}\left[1+\left(k^{m}-1\right) \lambda\right]\right\}-2(1-\alpha)^{2}\right\}^{-1} \\
(k \geq j+1) . \tag{7.27}
\end{gather*}
$$

Since

$$
\begin{gather*}
D(k)=1-\left\{2(k-1)(1+\beta)(1-\alpha)^{2}\right\} . \\
\left.\cdot\left\{k^{n}[k(1+\beta)-(\alpha+\beta)]^{2}\left[1+\left(k^{m}-1\right) \lambda\right]\right\}-2(1-\alpha)^{2}\right\}^{-1} \tag{7.28}
\end{gather*}
$$

is an increasing function of $\mathrm{k}(k \geq j+1)$, we readily have

$$
\begin{gathered}
\eta \leq D(j+1)=1-\left\{2 j(1+\beta)(1-\alpha)^{2}\right\} . \\
.\left\{(j+1)^{n}[j(1+\beta)+(1-\alpha)]^{2}\left[1+\left((j+1)^{m}-1\right) \lambda\right]-2(1-\alpha)^{2}\right\}^{-1}
\end{gathered}
$$

and Theorem 11 follows at once.
Remark 3. Putting $m=1$ in Theorem 11, we obtain similar result for the class $U_{j}(n, \lambda, \alpha, \beta)$.
M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

8. Applications of fractional calculus

We begin with the statements of the following definitions of fractional calculus (that is , fractional derivative and fractional integral) which were defined by Owa [7](and, subsequently, by Srivastava and Owa [14]).

Definition 1. The fractional integral of order μ is defined, for a function $f(z)$ by

$$
\begin{equation*}
D_{z}^{-\mu} f(z)=\frac{1}{\Gamma(\mu)} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{1-\mu}} d \zeta(\mu>0) \tag{8.1}
\end{equation*}
$$

where $f(z)$ is an analytic function in a simply-connected region of the z-plane containing the origin, and the multiplicity of $(z-\zeta)^{\mu-1}$ is removed by requiring \log $(z-\zeta)$ to be real when $z-\zeta>0$.

Definition 2. The fractional derivative of order μ is defined, for a function $f(z)$, by

$$
\begin{equation*}
D_{z}^{\mu} f(z)=\frac{1}{\Gamma(1-\mu)} \frac{d}{d(z)} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{\mu}} d \zeta \quad(0 \leq \mu<1) \tag{8.2}
\end{equation*}
$$

where $f(z)$ is constrained, and the multiplicity of $(z-\zeta)^{-\mu}$ is removed, as in Definition 1.

Definition 3. Under the hypotheses of Definition 2, the fractional derivative of order $\eta+\mu$ is defined

$$
\begin{equation*}
D_{z}^{n+\mu} f(z)=\frac{d^{n}}{d z^{n}} D_{z}^{\mu} f(z) \quad\left(0 \leq \mu<1 ; n \in \mathbb{N}_{0}\right) \tag{8.3}
\end{equation*}
$$

Theorem 12. Suppose that the function $f(z)$ defined by (1.4) be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$. Then

$$
\begin{gather*}
\left|D_{z}^{-\mu}\left(D^{i} f(z)\right)\right| \geq \frac{|z|^{1+\mu}}{\Gamma(2+\mu)} \\
\left\{1-\frac{(1-\alpha) \Gamma(j+2) \Gamma(2+\mu)}{(j+1)^{n-i} \quad[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right] \Gamma(j+2+\mu)}|z|^{j}\right\} \tag{8.4}
\end{gather*}
$$

and

$$
\begin{gather*}
\left|D_{z}^{-\mu}\left(D^{i} f(z)\right)\right| \leq \frac{|z|^{1+\mu}}{\Gamma(2+\mu)} \\
\left\{1+\frac{(1-\alpha) \Gamma(j+2) \Gamma(2+\mu)}{(j+1)^{n-i}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right] \Gamma(j+2+\mu)}|z|^{j}\right\} \tag{8.5}
\end{gather*}
$$

M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

$$
(\mu>0 ; 0 \leq i \leq n ; z \in \mathbb{U})
$$

The result is sharp.
Proof. Let

$$
\begin{gather*}
F(z)=\Gamma(2+\mu) z^{-\mu} D_{z}^{-\mu}\left(D^{i} f(z)\right) \tag{8.6}\\
=z-\sum_{k=j+1}^{\infty} \frac{\Gamma(k+1) \Gamma(2+\mu)}{\Gamma(k+1+\mu)} k^{i} a_{k} z^{k}=z-\sum_{k=j+1}^{\infty} \Psi(k) k^{i} a_{k} z^{k},
\end{gather*}
$$

where

$$
\begin{equation*}
\Psi(k)=\frac{\Gamma(k+1) \Gamma(2+\mu)}{\Gamma(k+1+\mu)} \quad(k \geq j+1) . \tag{8.7}
\end{equation*}
$$

Since

$$
\begin{equation*}
0<\Psi(k) \leq \Psi(j+1)=\frac{\Gamma(j+2) \Gamma(2+\mu)}{\Gamma(j+2+\mu)}, \tag{8.8}
\end{equation*}
$$

therefore, by using (3.5) and (8.8), we see that

$$
\begin{gather*}
|F(z)| \geq|z|-\Psi(j+1)|z|^{j+1} \sum_{k=j+1}^{\infty} k^{i} a_{k} \\
\geq|z|-\frac{(1-\alpha) \Gamma(j+2) \Gamma(2+\mu)}{(j+1)^{n-i}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right] \Gamma(j+2+\mu)}|z|^{j+1} \tag{8.9}
\end{gather*}
$$

and

$$
\begin{gather*}
|F(z)| \leq|z|+\Psi(j+1)|z|^{j+1} \sum_{k=j+1}^{\infty} k^{i} a_{k} \\
\leq|z|+\frac{(1-\alpha) \Gamma(j+2) \Gamma(2+\mu)}{(j+1)^{n-i}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right] \Gamma(j+2+\mu)}|z|^{j+1}, \tag{8.10}
\end{gather*}
$$

which proves the inequalities (8.4) and (8.5) of Theorem 12. The equalities in (8.4) and (8.5) are attained for the function $f(z)$ given by

$$
\begin{gather*}
D_{Z}^{-\mu}\left(D^{i} f(z)\right)=\frac{z^{1+\mu}}{\Gamma(2+\mu)} \\
\left\{1-\frac{(1-\alpha) \Gamma(j+2) \Gamma(2+\mu)}{(j+1)^{n-i}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right] \Gamma(j+2+\mu)} z^{j}\right\} \tag{8.11}
\end{gather*}
$$

M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...
or, equivalently, by

$$
\begin{equation*}
D^{i} f(z)=z-\frac{(1-\alpha)}{(j+1)^{n-i}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right]} z^{j} . \tag{8.12}
\end{equation*}
$$

Thus we complete the proof of Theorem 12.
Taking $i=0$ in Theorem 12, we have
Corollary 7. Let the function $f(z)$ defined by (1.4) be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$. Then

$$
\begin{gather*}
\left|D_{z}^{-\mu} f(z)\right| \geq \frac{|z|^{1+\mu}}{\Gamma(2+\mu)} \\
\left\{1-\frac{(1-\alpha) \Gamma(j+2) \Gamma(2+\mu)}{(j+1)^{n}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right] \Gamma(j+2+\mu)}|z|^{j}\right\} \tag{8.13}
\end{gather*}
$$

and

$$
\begin{gather*}
\left|D_{Z}^{-\mu} f(z)\right| \leq \frac{|z|^{1+\mu}}{\Gamma(2+\mu)} \\
\left\{1-\frac{(1-\alpha) \Gamma(j+2) \Gamma(2+\mu)}{(j+1)^{n}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right] \Gamma(j+2+\mu)}|z|^{j}\right\} \tag{8.14}\\
(\mu>0 ; z \in U)
\end{gather*}
$$

The equalities in (8.13) and (8.14) are attained for the function $f(z)$ given by (3.3).
Remark 4. Putting $m=1$ in Corollary 7, we obtain the following corollary which corrects the result obtained by Shanmugam et al. [12, Theorem 6.6].

Corollary 8. Let the function $f(z)$ defined by (1.4) be in the class $U_{j}(n, \lambda, \alpha, \beta)$. Then

$$
\begin{gather*}
\left|D_{z}^{-\mu} f(z)\right| \geq \frac{|z|^{1+\mu}}{\Gamma(2+\mu)} \\
\left\{1-\frac{(1-\alpha) \Gamma(j+2) \Gamma(2+\mu)}{(j+1)^{n}[j(1+\beta)+(1-\alpha)](1+j \lambda) \Gamma(j+2+\mu)}|z|^{j}\right\} \tag{8.15}
\end{gather*}
$$

and

$$
\begin{gather*}
\left|D_{Z}^{-\mu} f(z)\right| \leq \frac{|z|^{1+\mu}}{\Gamma(2+\mu)} \\
\left\{1-\frac{(1-\alpha) \Gamma(j+2) \Gamma(2+\mu)}{(j+1)^{n}[j(1+\beta)+(1-\alpha)](1+j \lambda) \Gamma(j+2+\mu)}|z|^{j}\right\} . \tag{8.16}
\end{gather*}
$$

The result is sharp.
M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

Theorem 13. Let the function $f(z)$ defined by (1.4) be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$. Then

$$
\begin{gather*}
\left|D_{z}^{\mu}\left(D^{i} f(z)\right)\right| \geq \frac{|z|^{1-\mu}}{\Gamma(2-\mu)} \\
\left\{1-\frac{(1-\alpha) \Gamma(j+2) \Gamma(2-\mu)}{(j+1)^{n-i}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right] \Gamma(j+2-\mu)}|z|^{j}\right\} \tag{8.17}
\end{gather*}
$$

and

$$
\begin{gather*}
\left|D_{z}^{\mu}\left(D^{i} f(z)\right)\right| \leq \frac{|z|^{1-\mu}}{\Gamma(2-\mu)} \\
\left\{1+\frac{(1-\alpha) \Gamma(j+2) \Gamma(2-\mu)}{(j+1)^{n-i} \quad[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right] \Gamma(j+2-\mu)}|z|^{j}\right\} \tag{8.18}\\
(0 \leq \mu<1 ; 0 \leq i \leq n-1 ; z \in \mathbb{U}) .
\end{gather*}
$$

The result is sharp.
Proof. Let

$$
\begin{aligned}
G(z) & =\Gamma(2-\mu) z^{\mu} D_{z}^{\mu}\left(D^{i} f(z)\right) \\
& =z-\sum_{k=j+1}^{\infty} \frac{\Gamma(k+1) \Gamma(2-\mu)}{\Gamma(k+1-\mu)} k^{i} a_{k} z^{k} \\
& =z-\sum_{k=j+1}^{\infty} \Theta(k) k^{i+1} a_{k} z^{k},
\end{aligned}
$$

where

$$
\begin{equation*}
\Theta(k)=\frac{\Gamma(k+1) \Gamma(2-\mu)}{\Gamma(k+1-\mu)} \quad(k \geq j+1) . \tag{8.20}
\end{equation*}
$$

It is easily seen from (8.20) that

$$
\begin{equation*}
0<\Theta(k) \leq \Theta(j+1)=\frac{\Gamma(j+2) \Gamma(2-\mu)}{\Gamma(j+2-\mu)} . \tag{8.21}
\end{equation*}
$$

Consequently, with the aid of (3.5) and (8.21), we have

$$
|G(z)| \geq|z|-\Theta(j+1)|z|^{j+1} \sum_{k=j+1}^{\infty} k^{i+1} a_{k}
$$

M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

$$
\begin{equation*}
\geq|z|-\frac{(1-\alpha) \Gamma(j+2) \Gamma(2-\mu)}{(j+1)^{n-i}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right] \Gamma(j+2-\mu)}|z|^{j+1} \tag{8.22}
\end{equation*}
$$

and

$$
\begin{gather*}
|G(z)| \geq|z|+\Theta(j+1)|z|^{j+1} \sum_{k=j+1}^{\infty} k^{i+1} a_{k} \\
\leq|z|+\frac{(1-\alpha) \Gamma(j+2) \Gamma(2-\mu)}{(j+1)^{n-i}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right] \Gamma(j+2-\mu)}|z|^{j+1} \tag{8.23}
\end{gather*}
$$

Now (8.17) and (8.18) follow from (8.22) and (8.23), respectively. Since the equalities in (8.17) and (8.18) are attained for the function $f(z)$ given by

$$
\begin{gather*}
D_{z}^{\mu}\left(D^{i} f(z)\right)=\frac{z^{1-\mu}}{\Gamma(2-\mu)} . \\
\cdot\left\{1-\frac{(1-\alpha) \Gamma(j+2) \Gamma(2-\mu)}{(j+1)^{n-i}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right] \Gamma(j+2-\mu)} z^{j}\right\} \tag{8.24}
\end{gather*}
$$

or for the function $D^{i} f(z)$ given by (8.12), the proof of Theorem 13 is thus completed.

Taking $i=0$ in Theorem 13, we have
Corollary 9. Let the function $f(z)$ defined by (1.4) be in the class $\mathbb{Q}_{j}(m, n, \lambda, \alpha, \beta)$.

$$
\begin{align*}
& \text { Then } \\
& \qquad \begin{array}{l}
\left|D_{z}^{\mu} f(z)\right| \geq \frac{z^{1-\mu}}{\Gamma(2-\mu)} \\
\cdot\left\{1-\frac{(1-\alpha) \Gamma(j+2) \Gamma(2-\mu)}{(j+1)^{n}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right] \Gamma(j+2-\mu)} z^{j}\right\}
\end{array}
\end{align*}
$$

$$
\begin{align*}
& \text { and } \\
& \qquad \qquad D_{z}^{\mu} f(z) \left\lvert\, \leq \frac{z^{1-\mu}}{\Gamma(2-\mu)}\right. \\
& \qquad\left\{1+\frac{(1-\alpha) \Gamma(j+2) \Gamma(2-\mu)}{(j+1)^{n}[j(1+\beta)+(1-\alpha)]\left[1+\left[(1+j)^{m}-1\right] \lambda\right] \Gamma(j+2-\mu)} z^{j}\right\} \tag{8.26}
\end{align*}
$$

The equalities in (8.25) and (8.26) are attained for the function $f(z)$ given by (3.3).
Remark 5. Putting $m=1$ in Corollary 9 , we obtain the following corollary which corrects the result obtained by Shanmugam et al.[12, Theorem 6.7].
M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...

Corollary 10. Let the function $f(z)$ defined by (1.4) be in the class $U_{j}(n, \lambda, \alpha, \beta)$.Then

$$
\begin{gather*}
\left|D_{z}^{\mu} f(z)\right| \geq \frac{z^{1-\mu}}{\Gamma(2-\mu)} \\
\cdot\left\{1-\frac{(1-\alpha) \Gamma(j+2) \Gamma(2-\mu)}{(j+1)^{n} \quad[j(1+\beta)+(1-\alpha)](1+j \lambda) \Gamma(j+2-\mu)} z^{j}\right\} \tag{8.27}
\end{gather*}
$$

and

$$
\begin{gather*}
\left|D_{z}^{\mu} f(z)\right| \geq \frac{z^{1-\mu}}{\Gamma(2-\mu)} \\
\left\{1-\frac{(1-\alpha) \Gamma(j+2) \Gamma(2-\mu)}{(j+1)^{n} \quad[j(1+\beta)+(1-\alpha)](1+j \lambda) \Gamma(j+2-\mu)} z^{j}\right\} \tag{8.28}
\end{gather*}
$$

The result is sharp.

References

[1] M. K. Aouf, A subclasses of uniformly convex functions with negative coefficients, Math. (Cluj), 52 (75) (2) (2010), 99-111.
[2] M. K. Aouf, R. M. EL-Ashwah, S. M.EL-Deeb, Certain subclasses of uniformly starlike and convex functions defined by convolution, Acta Math Paedagogicae Nyr. 26 (2010), 55-70.
[3] M. K. Aouf, H. M. Hossen, A. Y. Lashin, On certain families of analytic functions with negative coefficients, Indian J. Pure Appl. Math. 31 (8) (2000), 999-1015.
[4] M. K. Aouf and G. S. Sãlãgean, Generalization of certain subclasses of convex functions and a corresponding subclasses of starlike functions with negative coefficients, Math. (Cluj) 50 (73) (2) (2008), 119-138.
[5] M. K. Aouf and H. M. Srivastava, Some families of starlike functions with negative coefficients, J. Math. Anal. Appl. 203(1996), 762-790.
[6] H. M. Hossen, G. S. Sãlãgean and M. K. Aouf, Notes on certain classes of analytic functions with negative coefficients, Math.(Cluj) 39 (62) (2) (1997), 165-179.
[7] S. Owa, On the distortion theorems.I, Kyungpook Math. J. 18 (1978), 53-59.
[8] T. Rosy and G. Murugusudaramoorthy, Fractional calculus and their applications to certain subclass of uniformly convex functions, Far East J. Math. Sci., 15 (2004), no. 2, 231-242.
[9] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., SpringerVerlag, 1013 (1983), 362-372.
M.K. Aouf, A.O. Mostafa, O.M. Algubouri - Uniformly starlike and convex ...
[10] A. Schild, H.Silverman, Convolutions of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 29 (1975), 99-106.
[11] T.Sekine, Generalization of certain subclasses of analytic functions, Intenat. J. Math. Math. Sci., 10 (1987), no. 4, 725-732.
[12] T.N. Shanmugam, S. Sivasubramanian and M.Kamali, On a subclass of k uniformly convex functions defined by generalized derivative with missing coefficients, J. Approx. Appl. 1 (2) (2005), 107-121 .
[13] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
[14] H. M. Srivastava and S. Owa, An application of the fractional derivative, Math. Japon. 29(1984), 383-389.
[15] H. M. Srivastava, S. Owa, S. K. Chatterjea, A note on certain classes of starlike functions, Rend. Sem. Mat. Univ. Padova. 77(1987), 115-124.

M. K. Aouf
Department of Mathematics, Faculty of Science, University of Mansoura,
Mansoura, Egypt
email: mkaouf127@yahoo.com

A. O. Mostafa

Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura, Egypt email: adelaeg254@yahoo.com
O. M. Aljubori

Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura, Egypt
email: omaralgubouri@yahoo.com

