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ON THE LAPLACE OPERATOR OF A TUBE SURFACE IN
EUCLIDEAN SPACE
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Abstract. In this paper, we study the Euclidean version of tube surfaces in
3-dimensional Euclidean space E3 and characterize it by its Gauss map. Moreover,

under the condition ∆I−→G = λ
−→
G where ∆I denotes the Laplace operator with re-

spect to the first fundamental form I, λ ∈ R we investigate some special quantities
with respect to the Gaussian and mean curvatures. Furthermore, some important
theorems are obtained for that one and we have shown that the tube surface under
study is developable and not minimal. Finally, examples of tube surfaces are used
to demonstrate our theoretical results and plotted.
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1. Introduction

It is well known that, the theory of Gauss map G is always one of interesting topics
in a Euclidean space and it has been investigated from the various viewpoints by
many differential geometers. Let Y : M → E3 be an isometric immersion of a surface
in Euclidean 3-space. Denotes by G and ∆, respectively, the Gauss map and the
Laplacian operator of the surface M with respect to the induced metric form that
of E3. Takahashi [1] proved that the minimal surfaces and the spheres are the only
surfaces in E3 satisfying the condition

∆Y = AY (1)

where A ∈ R3×3 the set of 3×3 real matrices. Garay [2] extended it to the hypersur-
faces, that is, he studied the hypersurfaces in En+1. On the other hand, Baikoussis
and Blair [3] studied ruled surfaces such that their Gauss maps satisfy

∆G = AG. (2)
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They showed that the only ones are planes and circular cylinders. Also, for the
Lorentz version S. M. Choi [4] showed that the only ruled surfaces with non-null
base curve in a 3-dimensional Minkowski space E3

1 satisfying the condition (2) are
locally the Euclidean plane, the Minkowski space, the Lorentz hyperbolic cylinder,
the Lorentz circular cylinder and the hyperbolic cylinder. L. J. Alias, A. Ferrandez,
P. Lucas and M. A. Merono [5] proved that the only ruled surfaces in E3

1 with null
rulings satisfying the condition (2) are B-scrolls over null curves.

Moreover, on the generalization of equation ∆G = λG, λ ∈ R, surfaces whose
Gauss map is an eigenfunction of a Laplacian, Dillen F., Pas J., and Verstraelen L.
[6] studied surfaces of revolution in a Euclidean 3-space E3 such that its Gauss map
G satisfies the condition 2. Also, D. W. Yoon [7] investigated a non-developable
ruled surface in a Euclidean 3-space whose mean curvature vector is an eigenvector
of the Laplacian operator with respect to non-degenerate second fundamental form
of the surface.

In this paper, motivated by the results given in [7], we investigate a tube surface
in Euclidean 3-space E3 satisfying the following conditions:

∆I−→K = λ
−→
K, λ ∈ R, (3)

∆I−→H = λ
−→
H, (4)

∆I−→Γ = λ
−→
Γ , Γ =

K

H
, (5)

∆I−→Ω = λ
−→
Ω , Ω = KH, (6)

∆I−→Π = λ
−→
Π , Π = aK + bH and a, b ∈ R, (7)

2. Preliminaries

In Euclidean 3-space E3, it is well known that to each unit speed curve with at
least four continuous derivatives, one can associate three mutually orthogonal unit
vector fields e1, e2 and e3 are respectively, the tangent, the principal normal and
the binormal vector fields [8]. We consider the usual metric in Euclidean 3-space
E3, that is,

〈, 〉 = dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3. In particular, the norm
of a vector X ∈ E3 is given by

‖X‖ =
√
〈X,X〉.
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If X = (x1, x2, x3) and Y = (y1, y2, y3) are arbitrary vectors in E3, we define the
vector product of X and Y as the following:

X ∧ Y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1) . (8)

Let δ : I ⊂ R→ E3, δ = δ(s), be an arbitrary curve in E3. The curve δ is said to be
of unit speed (or parameterized by the arc-length parameter s) if 〈δ′(s), δ′(s)〉 = 1
for any s ∈ I. Let {e1(s), e2(s), e3(s)} be the moving frame of δ, where the vectors
e1, e2 and e3 are mutually orthogonal vectors. A frame {e1, e2, e3} satisfies the
following so called the Frenet equations [9]: e′1(s)

e′2(s)
e′3(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 e1(s)
e2(s)
e3(s)

 , (9)

where 
〈e1, e1〉 = 〈e2, e2〉 = 〈e3, e3〉 = 1,
〈e1, e2〉 = 〈e2, e3〉 = 〈e3, e1〉 = 0,
det(e1, e2, e3) = 1.

Let M : Φ = Φ(s, t) ⊂ E3 be a regular surface. Then the unit normal vector field of
a surface M is defined by

U =
Φs ∧ Φt

‖Φs ∧ Φt‖
, (10)

where Φs = ∂Φ(s,t)
∂s . For the components gij (i, j belong to {1, 2}) of the induced

metric 〈., .〉 on M from that of E3 we denote by {gij} (resp. D) the inverse matrix
(resp. the determinant) of the matrix gij . Then, the Laplacian ∆ on M is given
by [10]. If Φ : M → R, (s, t) → Φ(s, t) is a smooth function and ∆I the Laplace
operator with respect to the first I fundamental form of M , then from [10],we have

I = g11ds
2 + 2g12dsdt+ g22dt

2,

g11 = 〈Φs,Φs〉, g12 = 〈Φs,Φt〉, g22 = 〈Φt,Φt〉,

and

∆I =
1√
| D |

∑
i,j

∂

∂ui

(√
| D |gij ∂

∂uj

)
. (11)

Also, the second fundamental form of the surface M is given by

II = −〈dU, dΦ〉 = h11ds
2 + 2h12dsdt+ h22dt

2, (12)

h11 = 〈Φss, U〉, h12 = 〈Φst, U〉, h22 = 〈Φtt, U〉. (13)
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The Gaussian and mean curvature of the surface M in E3, respectively, are [10]

K(s, t) =
h11h22 − h2

12

g11g22 − g2
12

, (14)

H(s, t) =
g11h11 − 2g12h12 + g22h22

2
(
g11g22 − g2

12

) , (15)

where hij are the components of second fundamental form.

3. Tube surfaces in E3

Let (α, F ) = (α(s), F (s)) be a unit speed curve with frame field F = {e1, e2, e3}.
A tube surface is a surface which has a parametrization in the following form:

M : Φ(s, t) = α(s) + r
(

cos[t]e2(s) + sin[t]e3(s)
)
, (16)

Calculating the partial derivative of (16) with respect to s and t respectively, we get

Φs = Q e1 − rτ
[

sin[t]e2 − cos[t]e3

]
,

Φt = −r
[

sin[t]e2 − cos[t]e3

]
,

where Q = 1− rκ cos[t]. From which, the components of the first fundamental form
are

g11 = Q2 + r2τ2, g12 = r2τ, g22 = r2. (17)

The unit normal vector on Φ can be directly obtained from (10) getting

U = − cos[t]e2 − sin[t]e3. (18)

Then, the components of the second fundamental form of Φ are obtained by

h11 = rτ2 − κQ cos[t], h12 = rτ, h22 = r. (19)

The matrix (gij) reads as follows:

(gij) =
1

r2Q2

[
r2 −r2τ
−r2τ Q2 + r2τ2

]
.

Based on the above calculations, the Gaussian curvature K and the mean curvature
H of (16) are given by

K = −κ cos[t]

rQ
, (20)
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H =
1− 2rκ cos[t]

2rQ
. (21)

Thus, using (11) we show that the Laplacian ∆I of M can be expressed as:

∆I = r
Q3

(
κτ sin[t] + κ′ cos[t]

)
∂
∂s + 1

4rQ3

(
− 4rτ ′ + 4r2(κτ ′ − κ′τ) cos[t]+

κ[4 + r2(κ2 − 4τ2)] sin[t]− 4rκ2 sin[2t] + r2κ3 sin[3t]
)
∂
∂t −

(
2τ
Q2

)
∂2

∂s∂t+(
1
Q2

)
∂2

∂s2
+
(

1
r2 + τ2

Q2

)
∂2

∂t2
.

(22)

4. Main results

Now, we shall give a detailed discussion on a tube surface in E3

4.1. Laplacian of the Gaussian curvature

From the equations (3), (18), (20) and (22), the Laplacian of
−→
K on the surface (16)

is given by:

1
16r3Q5

(
0, A0 +

6∑
i=1

Ai cos[it] +
4∑
j=1

Bj sin[jt], C0 +
4∑
i=1

Ci cos[it] +
6∑
j=1

Dj sin[jt]
)

= λκ cos[t]
rQ

(
0, cos[t], sin[t]

)
,

(23)
which implies

A0 +
6∑
i=1

Ai cos[it] +
4∑
j=1

Bj sin[jt] = 16λr2Q4κ cos2[t], (24)

and

C0 +

4∑
i=1

Ci cos[it] +

6∑
j=1

Dj sin[jt] = 16λr2Q4κ cos[t] sin[t], (25)

where
A0 = −4r2

[
κ3
[
10 + r2(κ2 + 2τ2)

]
− 2κ′′

]
,

A1 = 12r3(3κ′2 − κκ′′) + 2rκ2
[
21r2κ2 + 2(15 + 11r2τ2)

]
,

A2 = 8(r2κ′′ − 4κ)− r2κ
[
κ2(72 + 7r2κ2) + 8τ2(4 + r2κ2)

]
,
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A3 = 4r3(3κ′2 − κκ′′) + rκ2
[
29r2κ2 + 4(13 + r2τ2)

]
,

A4 = −4r2κ3
[
8 + r2κ2

]
, A5 = 9r3κ4, A6 = −r4κ5,

B1 = −12r3κ
[
κτ ′ − κ′τ

]
, B2 = 4r2

[
κτ ′(4 + r2κ2) + κ′τ(8− r2κ2)

]
,

B3 = −12r3κ
[
κτ ′ − κ′τ

]
, B4 = 2r4κ2

[
κτ ′ − κ′τ

]
,

C0 = −6r4κ2
[
κτ ′ − κ′τ

]
, C1 = 4r3κ

[
5κτ ′ + 7κ′τ

]
,

C2 = −8r2
[
κτ ′(2 + r2κ2) + κ′τ(4− r2κ2)

]
, C3 = 12r3κ

[
κτ ′ − κ′τ

]
,

C4 = −2r4κ2
[
κτ ′ − κ′τ

]
and
D1 = 4r3(3κ′2 − κκ′′) + 2rκ2

[
11r2κ2 + 4(17 + 13r2τ2)

]
,

D2 = 8r2κ′′ − κ
[
5r2κ2(16 + r2κ2) + 32(1 + r2τ2)

]
,

D3 = 4r3(3κ′2 − κκ′′) + rκ2
[
31r2κ2 + 4(13 + r2τ2)

]
,

D4 = −4r2κ3
[
8 + r2κ2

]
, D5 = 9r3κ4, D6 = −r4κ5.

Now, according to the angle t we have two cases to be discussed as follows:
Case 1.

If we take the angle t = π
2

(
2n + 1

)
, n = 0, ±2, ±4, ......, then from (24) and (25)

we have, respectively

32κ
[
1 + r2τ2

]
= 0, (26)

16r
[
κ2(1 + 3r2τ2) + r(κτ ′ + 2κ′τ)

]
= 0. (27)

It refers to the Gaussian curvature K vanishes identically. On the other hand, if
κ = 0. Thus M is an open part of a circular cylinder.

Case 2.
The same is hold when t = π

2

(
2n+ 1

)
, n = ±1, ±3, ±5, ......

From this, our major result states as follows.

Theorem 1. Let M be a tube surface given by (16) in E3. Then, the following are
equivalent:

(1): M is a developable surface or an open part of a circular cylinder.
(2): M satisfies the equation ∆I ~K = λ ~K, λ ∈ R.
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4.2. Laplacian of the mean curvature

From the equations (4), (18) and (21), the Laplacian ∆I of
−→
H on M is expressed as

−1
16r3Q5

(
0, A0 +

6∑
i=1

Ai cos[it] +
4∑
j=1

Bj sin[jt], C0 +
4∑
i=1

Ci cos[it] +
6∑
j=1

Dj sin[jt]
)

= −λ
(

1−2rκ cos[t]
)

2rQ

(
0, cos[t], sin[t]

)
,

(28)
which leads to

A0 +

6∑
i=1

Ai cos[it] +

4∑
j=1

Bj sin[jt] = 8λr2Q4 cos[t]
(
1− 2rκ cos[t]

)
, (29)

C0 +
4∑
i=1

Ci cos[it] +
6∑
j=1

Dj sin[jt] = 8λr2Q4 sin[t]
(
1− 2rκ cos[t]

)
, (30)

with the notion
A0 = 4r

[
κ[4 + r2(4τ2 + κ2(11 + r2(κ2 + 2τ2)))]− r2κ′′

]
,

A1 = −2
[
4 + r2[4τ2 + κ2[41 + r2(21κ2 + 22τ2)] + 3r2(3κ′2 − κκ′′)]

]
,

A2 = r
[
κ
[
40 + r2[24τ2 + κ2(76 + r2(7κ2 + 8τ2))]

]
− 4r2κ′′

]
,

A3 = −r2
[
κ2[54 + r2(29κ2 + 4τ2)] + 2r2(3κ′2 − κκ′′)

]
,

A4 = 4r3κ3
[
8 + r2κ2

]
, A5 = −9r4κ4, A6 = r5κ5,

B1 = 2r2
[
4τ ′ + r2κ(6κτ ′ − 5κ′τ)

]
,

B2 = −4r3
[
κτ ′(5 + r2κ2) + κ′τ(3− r2κ2)

]
,

B3 = 2r4κ
[
6κτ ′ − 5κ′τ

]
, B4 = −2r5κ2

[
κτ ′ − κ′τ

]
,

C0 = 2r3
[
2(3κτ ′ − κ′τ) + 3r2κ2(κτ ′ − κ′τ)

]
,

C1 = −2r2
[
4τ ′ + r2κ(14κτ ′ + κ′τ)

]
,

C2 = 4r3
[
(5κτ ′ + 3κ′τ) + 2r2κ2(κτ ′ − κ′τ)

]
,

C3 = −2r4κ
[
6κτ ′ − 5κ′τ

]
, C4 = 2r5κ2

[
κτ ′ − κ′τ

]
,

and
D1 = −2

[
4 + r2[4τ2 + κ2(31 + 2r2(5κ2 + 7τ2)) + r2(3κ′2 − κκ′′)]

]
,

D2 = r
[
8κ(5 + 3r2τ2) + r2[κ3(72 + 5r2κ2)− 4κ′′]

]
,
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D3 = −r2
[
κ2[54 + r2(29κ2 + 4τ2)] + 2r2(3κ′2 − κκ′′)

]
,

D4 = 4r3κ3
[
8 + r2κ2

]
, D5 = −9r4κ4, D6 = r5κ5.

Consider now the following two cases:
Case 1.

If t = π
2

(
2n+ 1

)
, n = 0, ±2, ±4, ....., we have from the equations (29) and (30)

r
[
κ(3 + r2τ2)− rτ ′

]
= 0, (31)

16r
[
1 + r2[κ2 + τ2(1 + 3r2κ2)] + r3(κτ ′ + 2κ′τ)

]
= λ. (32)

Case 2.
When t = π

2

(
2n+ 1

)
, n = ±1, ±3, ±5, ....., similar result can be obtained.

Thus the tube surface (16) has constant mean curvature H = 1
2r and we sum-

marize the following theorem:

Theorem 2. Let M be a tube surface given by (16) in E3. Then, the following
conditions are equivalent:

(1): M has non-zero mean curvature (it is not a minimal surface).
(2): M satisfies the equation ∆I ~H = λ ~H, λ ∈ R.

4.3. Laplacian of the form Γ =K
H

Now, by using (18), (20) and (21), eq. (5) can be expressed as

1

4r2Q3

(
1−2rκ cos[t]

)3

(
0, A0 +

7∑
i=1

Ai cos[it] +
5∑
j=1

Bj sin[jt], C0 +
5∑
i=1

Ci cos[it] +
7∑
j=1

Dj sin[jt]
)

= λκ
1−2rκ cos[t]

(
0, 2 cos2[t], sin[2t]

)
,

(33)

where the coefficients A0, A1, ..., B1, ..., C1, ..., D1, .., D5 are as follows:

A0 = −2r2
[
κ3
[
19r2κ2 + 2(17 + 9r2τ2)

]
+ 3r2κ(3κ′2 − κκ′′)− 2κ′′

]
,

A1 = r
[
κ2
[
8(7 + 6r2τ2) + r2κ2[15r2κ2 + 4(35 + 6r2τ2)]

]
+ 6r2(5κ′2 − 3κκ′′)

]
,

A2 = 4r2κ′′(1 + 2r2κ2)− 8κ
[
2 + r2

[
2τ2 + κ2[14 + r2(8κ2 + 5τ2)] + 3r2κ′2

]]
,

A3 = r
[
κ2
[
8(5 + 2r2τ2) + r2κ2[11r2κ2 + 2(45 + 4r2τ2)]

]
+ 2r2(5κ′2 − 3κκ′′)

]
,

A4 = −2r2κ
[
κ2
[
2(11 + r2τ2) + 17r2κ2

]
+ r2(3κ′2 − κκ′′)

]
,

A5 = r3κ4
[
26 + 5r2κ2

]
, A6 = −8r4κ5, A7 = r5κ6,

B1 = −2r3κ
[
2κτ ′(4 + r2κ2) + κ′τ(1− 2r2κ2)

]
,
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B2 = 4r2
[
κτ ′(2 + 5r2κ2) + 4κ′τ(1− r2κ2)

]
,

B3 = −2r3κ
[
κτ ′(8 + 3r2κ2) + κ′τ(1− 3r2κ2)

]
, B4 = 2r4κ2

[
5κτ ′ − 4κ′τ

]
,

B5 = −2r5κ3
[
κτ ′ − κ′τ

]
, C0 = −2r4κ2

[
11κτ ′ + 4κ′τ

]
,

C1 = 2r3κ
[
2κτ ′(6 + 5r2κ2) + κ′τ(19− 10r2κ2)

]
, C2 = −8r2

[
κτ ′(1 + 4r2κ2) +

2κ′τ
]
,

C3 = 2r3κ
[
κτ ′(8 + 5r2κ2) + κ′τ(1− 5r2κ2)

]
, C4 = −2r4κ2

[
5κτ ′ − 4κ′τ

]
,

C5 = 2r5κ3
[
κτ ′ − κ′τ

]
,

and
D1 = r

[
κ2
[
8(8 + 7r2τ2) + r2κ2(66 + 5r2τ2)

]
+ 2r2(5κ′2 − 3κκ′′)

]
,

D2 = −4
[
κ
[
4 + r2[4τ2 + 3κ′2 + κ2[30 + r2(11κ2 + 8τ2)]

]
− r2κ′′(1 + r2κ2)

]
,

D3 = r
[
κ2
[
8(5 + 2r2τ2) + r2κ2(92 + 9r2κ2)

]
+ 2r2(5κ′2 − 3κκ′′)

]
,

D4 = −2r2κ
[
κ2
[
2(11 + r2τ2) + 17r2κ2

]
+ r2(3κ′2 − κκ′′)

]
,

D5 = r3κ4
[
26 + 5r2κ2

]
, D6 = −8r4κ5, D7 = r5κ6.

From (33), when t = π
2

(
2n+ 1

)
, n ∈ Z, we get

κ(1 + r2τ2) = 0, (34)

± κ2(3 + 5r2τ2) + r(κτ ′ + 2κ′τ) = 0. (35)

From (20), (21), (34) and (35), we have K = 0 and H = 1
2r .

4.4. Laplacian of the form Ω = KH

As in the above case, by adopting (18), (20) and (21), eq. (6) can be written as

1
32r4Q6

(
0, A0 +

7∑
i=1

Ai cos[it] +
5∑
j=1

Bj sin[jt], C0 +
5∑
i=1

Ci cos[it] +
7∑
j=1

Dj sin[jt]
)

=
λκ
(

1−2rκ cos[t]
)

4r2Q2

(
0, 2 cos2[t], sin[2t]

)
.

(36)

Similarly, straightforward computations at t = π
2

(
2n + 1

)
, n = 0, ±2, ±4, ..and

t = π
2

(
2n+ 1

)
, n = ±1, ±3, ±5, .., lead to

K = 0 and H =
1

2r
.
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4.5. Laplacian of the form Π= aK + bH

Parallel to the study that considered in the previous cases, eq.(7) can be given as

−1
16r3Q5

(
0, A0 +

6∑
i=1

Ai cos[it] +
4∑
j=1

Bj sin[jt], C0 +
4∑
i=1

Ci cos[it] +
6∑
j=1

Dj sin[jt]
)

=
−λ
(
b−2(a+br)κ cos[t]

)
2rQ

(
0, cos[t], sin[t]

)
.

(37)
which leads to

A0 +
6∑
i=1

Ai cos[it] +
4∑
j=1

Bj sin[jt] = 8λr2Q4 cos[t]
(
b− 2(a+ br)κ cos[t]

)
,

C0 +
4∑
i=1

Ci cos[it] +
6∑
j=1

Dj sin[jt] = 8λr2Q4 sin[t]
(
b− 2(a+ br)κ cos[t]

)
,

Here, when t = π
2

(
2n+ 1

)
, n ∈ Z, Eq. (37) gives two equations

∓br2τ ′ + κ
[
4a+ 3br + r2τ2(4a+ br)

]
= 0,

and

16r
[
b+ r

[
κ2(2a+ br)(1 + 3r2τ2) + rτ [bτ ± 2κ′(2a+ br)]± rκτ ′(2a+ br)

]]
= λb.

From which

K = 0 and H =
1

2r
.

Based on the above discussions, we state the following theorem

Theorem 3. Let M be a tube surface as given in (16), then Eqs. (5), (6) and (7)
are satisfied if and only if the surface (16) is developable and not minimal.

We now present some of very typical examples.

5. Examples

Example 1. Let α(s) be a circular helix in E3 with Frenet frame F = {e1, e2, e3}
as follows:

α(s) =
(
a cos[s], a sin[s], bs

)
, a, b ∈ R and a > 0, (38)
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e1(s) = 1√
a2+b2

(
− a sin[s], a cos[s], b

)
,

e2(s) = −
(

cos[s], sin[s], 0
)
,

e3(s) = 1√
a2+b2

(
b sin[s], −b cos[s], a

)
.

(39)

In the light of the above, the curvature and the torsion of the curve are respectively,
given by

κ =
a

a2 + b2
, τ =

b

a2 + b2
.

The map Φ =
(
Φ1,Φ2,Φ3

)
: R2 → E3 defines a tube surface M in E3 where:

Φ1 =
(
a− r cos[t]

)
cos[s] + b r√

a2+b2
sin[s] sin[t],

Φ2 =
(
a− r cos[t]

)
sin[s]− b r√

a2+b2
cos[s] sin[t],

Φ3 = b s+ a r√
a2+b2

sin[t].

(40)

For this surface, the Gaussian curvature K and the mean curvature H are defined
by

K = − a cos[t]

r
(
a2 + b2 − a r cos[t]

) , (41)

H =
a2 + b2 − 2a r cos[t]

2r
(
a2 + b2 − a r cos[t]

) . (42)

When t = π
2

(
2n+ 1

)
, n ∈ Z, Eqs. (41) and (42) lead to

K = 0, H =
1

2r
,

i.e., the surface (40) is a developable and not minimal.
It seems natural to see that the tube surface (40) satisfies the Eqs. (3)-(7) as shown
in Figure 1.

Example 2. Let β : I ⊂ R → E3 be a circular helix in E3 and consider the
tube surface parameterized by

Ψ(s, t) = β(s) + rχ, (43)

where

β(s) =
(

cos[
s

3
]− 1, sin[

s

3
],

2
√

2

3
s
)
, (44)

χ = −
(
− cos[

s

3
] cos[t] +

2
√

2

3
sin[

s

3
] sin[t],− sin[

s

3
] cos[t]− 2

√
2

3
cos[

s

3
] sin[t],

1

3
sin[t]

)
.

(45)
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It is easy to calculate the Frenet frame as follows

e1(s) = 1
3

(
− sin[ s3 ], cos[ s3 ], 2

√
2
)
,

e2(s) = −
(

cos[ s3 ], sin[ s3 ], 0
)
,

e3(s) = 1
3

(
2
√

2 sin[ s3 ],−2
√

2 cos[ s3 ], 1
)
.

The curvature κ and the torsion τ of β are given by κ = 1
9 and τ = 2

√
2

9
Let us write down, as usually,

Ψs = ∂Ψ
∂s

= 1
3

(
− (1− r cos[t]) sin[ s

3
] + 2

√
2

3
r cos[ s

3
] sin[t], (1− r cos[t]) cos[ s

3
] + 2

√
2

3
sin[ s

3
] sin[t], 2

√
2
)
,

Ψt = ∂Ψ
∂t

= r
3

(
2
√

2 sin[ s
3

] cos[t] + 3 cos[ s
3

] sin[t],−2
√

2 cos[ s
3

] cos[t] + 3 sin[ s
3

] sin[t], cos[t]
)
.

(46)

A straight forward computation leads to the Gaussian curvature K and the mean
curvature H in the following forms

K =
cos[t]

r(−9 + r cos[t])
(47)

H =
9− 2r cos[t]

−18r + 2r2 cos[t]
(48)

From aforementioned data, one can deduce that the Laplace operator on Ψ corre-
sponding to the induced metric form satisfies the Eqs. (3)-(7). One can see the
graph of Ψ in Figure 2.
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Figure 1: From the left to the right, some tube surfaces generated by the circular
helix α are shown as follows: r = 0.5, a = 2, b = 0.4, s ∈ [−4, 4], t ∈ [π, 2π];
r = 0.5, a = 2, b = 0.4, s ∈ [−4, 4], t ∈ [−π, π]; r = 0.5, a = 2, b = 0.4, s ∈
[0, 6π], t ∈ [0, 6π].
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Figure 2: From the left to the right, some tube surfaces generated by the circular
helix β can be seen as: r = 0.5, s ∈ [−4, 4], t ∈ [π, 2π]; r = 0.5, s ∈ [−4, 4], t ∈
[−π, π]; r = 0.5, s ∈ [0, 6π], t ∈ [0, 6π].
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