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Abstract. Continuing our investigation on wavelet frames associated with the
Walsh polynomials, in this article we give an algorithm for constructing a pair of
orthogonal wavelet frames generated by the Walsh polynomials using polyphase ma-
trices. Moreover, a general form for all orthogonal tight wavelet frames generated
by an appropriate Walsh polynomial is also described and we investigate their prop-
erties by means of the Walsh-Fourier transform.
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1. Introduction

In recent years, the Walsh analysis has been innovated and investigated to vari-
ous fields of science and technology including signal processing, pattern recognition,
transform spectroscopy, sampling theory, differential and integral equations, quan-
tum mechanics and variational problems. Walsh functions were invented by J. L.
Walsh in 1923 and are the only known functions with desirable features comparable
to sine-cosine functions. These functions are defined on the interval 0 < x < 1
and assume only the values +1 and −1. Similar to those of the Haar functions and
trigonometric series, they form a complete orthogonal system in L2[0, 1]. There are
two ways of considering these functions: either they may be defined on the positive
half-line R+ or they may be identified with the characters of the locally compact
Abelian group G2 which is isomorphic to the Cantor dyadic group C. We work in
the former form.

The first construction of wavelets related to the Walsh functions was given by
Lang [7] via scaling filters and these wavelets turn out to be certain lacunary Walsh
series on the real line. Later, Farkov [4] introduced the notion of multiresolution
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analysis on a positive half-line R+ and pointed out a method for constructing com-
pactly supported orthogonal p-wavelets related to the Walsh functions. He also
proved a necessary and sufficient condition for scaling filters with pn many terms
(p, n ≥ 2) to generate a p-MRA in L2(R+). Recently, Shah [13] introduced the
concept of p-frame multiresolution analysis associated with Walsh polynomials on
positive half-line R+ and established a complete characterization of all p-wavelet
frames related with p-FMRA using the shift-invariant space theory. Recent results
in this direction can also be found in [1,3,5,9-15,18] and the references therein.

Along with the study of compactly supported wavelet bases, there had been a
continuing research effort in the study of wavelet frames and their promising features
in applications have attracted a great deal of interest in recent years to extensively
study them. A wavelet frame is a generalization of an orthonormal wavelet basis
by introducing redundancy into a wavelet system. Dyadic wavelet frames on the
positive half-line R+ were constructed by Shah and Debnath [14] using the machin-
ery of Walsh-Fourier transforms. An excellent construction of tight wavelet frames
generated by the Walsh polynomials was first reported by the author in [12] by
adapting the extension principles of Daubechies et al.[2]. To be more precise, we
provide a sufficient condition for finite number of functions {ψ1, ψ2, . . . , ψL} to form
a tight wavelet frame for L2(R+). These studies were continued by Shah and his
colleagues in [16,17], where they have provided some excellent tools for construct-
ing minimum-energy wavelet frames and periodic wavelet frames generated by the
Walsh polynomials on R+.

In this paper, we shall introduce the notion of orthogonal wavelet frames gener-
ated by the Walsh polynomials on positive half-line R+ using extension principles. A
general algorithm for the construction of orthogonal tight wavelet frames related to
Walsh polynomials from a compactly supported scaling function is given. Moreover,
we investigate their properties by means of the Walsh-Fourier transforms.

The rest of the paper is organized as follows. In Section 2, we introduce some
notations and preliminaries related to the operations on positive half-line R+ in-
cluding the definitions of Walsh-Fourier transform and MRA based wavelet frame
generated by the Walsh polynomials. In Section 3, we construct a pair of orthogonal
wavelet frames generated by the Walsh polynomials and establish more conditions
for the existence of orthogonal wavelet frames in L2(R+).

2. Walsh-Fourier Analysis and MRA Based Wavelet Frames

We start this section with certain results on Walsh-Fourier analysis. We present a
brief review of generalized Walsh functions, Walsh-Fourier transforms and its various
properties.
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As usual, let R+ = [0,+∞), Z+ = {0, 1, 2, . . . } and N = Z+−{0}. Denote by [x]
the integer part of x. Let p be a fixed natural number greater than 1. For x ∈ R+

and any positive integer j, we set

xj = [pjx](mod p), x−j = [p1−jx](mod p), (1)

where xj , x−j ∈ {0, 1, . . . , p− 1}. It is clear that for each x ∈ R+, there exist
k = k(x) in N such that x−j = 0, ∀ j > k.

Consider on R+ the addition defined as follows:

x⊕ y =
∑
j<0

ζjp
−j−1 +

∑
j>0

ζjp
−j ,

with ζj = xj + yj(mod p), j ∈ Z \ {0} , where ζj ∈ {0, 1, . . . , p− 1} and xj , yj
are calculated by (1). As usual, we write z = x 	 y if z ⊕ y = x, where 	 denotes
subtraction modulo p in R+

.
For x ∈ [0, 1), let r0(x) is given by

r0(x) =


1, if x ∈ [0, 1/p)

ε`p, if x ∈
[
`p−1, (`+ 1)p−1

)
, ` = 1, 2, . . . , p− 1,

where εp = exp(2πi/p). The extension of the function r0 to R+ is given by
the equality r0(x + 1) = r0(x), x ∈ R+. Then, the generalized Walsh functions
{wm(x) : m ∈ Z+} are defined by

w0(x) ≡ 1 and wm(x) =
k∏
j=0

(
r0(p

jx)
)µj

where m =
∑k

j=0 µjp
j , µj ∈ {0, 1, . . . , p− 1} , µk 6= 0. They have many prop-

erties similar to those of the Haar functions and trigonometric series, and form a
complete orthogonal system. Further, by a Walsh polynomial we shall mean a finite
linear combination of Walsh functions.

For x, y ∈ R+
, let

χ(x, y) = exp

2πi

p

∞∑
j=1

(xjy−j + x−jyj)

 , (2)

where xj , yj are given by (1).
We observe that

χ

(
x,
m

pn

)
= χ

(
x

pn
,m

)
= wm

(
x

pn

)
, ∀ x ∈ [0, pn), m, n ∈ Z+,
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and
χ(x⊕ y, z) = χ(x, z)χ(y, z), χ(x	 y, z) = χ(x, z)χ(y, z),

where x, y, z ∈ R+ and x ⊕ y is p-adic irrational. It is well known that systems
{χ(α, .)}∞α=0 and {χ(·, α)}∞α=0 are orthonormal bases in L2[0,1] (See Golubov et
al.[6]).

The Walsh-Fourier transform of a function f ∈ L1(R+) ∩ L2(R+) is defined by

f̂(ξ) =

∫
R+

f(x)χ(x, ξ) dx, (3)

where χ(x, ξ) is given by (2). The Walsh-Fourier operator F : L1(R+)∩L2(R+)→
L2(R+), Ff = f̂ , extends uniquely to the whole space L2(R+). The properties of the
Walsh-Fourier transform are quite similar to those of the classic Fourier transform
(See [6]). In particular, if f ∈ L2(R+), then f̂ ∈ L2(R+) and

∥∥∥f̂∥∥∥
L
2
(R+)

=
∥∥f∥∥

L2(R+)
. (4)

For given Ψ := {ψ1, . . . , ψL} ⊂ L2(R+), define the wavelet system

F(Ψ) =
{
ψ`j,k(x) = pj/2ψ`(p

jx	 k), j ∈ Z, k ∈ Z+, 1 ≤ ` ≤ L
}
, (5)

The wavelet system F(Ψ) is called a wavelet frame, if there exist positive con-
stants A and B such that

A
∥∥f∥∥2

2
≤

L∑
`=1

∑
j∈Z

∑
k∈Z+

∣∣〈f, ψ`,j,k〉∣∣2 ≤ B∥∥f∥∥22. (6)

holds for every f ∈ L2(R+), and we call the optimal constants A and B the
lower frame bound and the upper frame bound, respectively. A tight wavelet frame
refers to the case when A = B, and a Parseval wavelet frame refers to the case when
A = B = 1. On the other hand if only the right hand side of the above double
inequality holds, then we say F(Ψ) a Bessel system.

Corresponding to the system (5), we have the dual system as

F(Φ) =
{
φ`j,k := pj/2φ`(p

jx	 k), j ∈ Z, k ∈ Z+, 1 ≤ ` ≤ L
}
. (7)

If both F(Ψ) and F(Φ) are wavelet frames and for any f ∈ L2(R+), we have the
reconstruction formula

f =
L∑
`=1

∑
j∈Z

∑
k∈Z+

〈
f, ψ`,j,k

〉
φ`,j,k (8)
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in the L2-sense, then we say that F(Φ) is a dual wavelet frame of F(Ψ) (and
vice versa) or we simply say that (F(Ψ),F(Φ)) is a pair of dual wavelet frames.

The most common method for constructing wavelet frames relies on unitary ex-
tension principles (UEP) introduced by Ron and Shen [8] and subsequently extended
by Daubechies et al.[2] in the form of the oblique extension principle (OEP). Com-
pared to other wavelet frame characterizations, the conditions indicated in the two
extension principles are practically easy to check, which makes the construction of
wavelet frames painless. Following the unitary extension principle, one often starts
with a refinable function φ or even with a refinement mask to construct desired
wavelet frames.

A compactly supported function ϕ ∈ L2(R+) is said to be p-refinable if it satisfies
the following refinement equation

ϕ(x) = p

pn−1∑
k=0

ckϕ(px	 k), x ∈ R+ (9)

where ck are complex coefficients. In the Fourier domain, the above refinement
equation can be written as

ϕ̂ (ξ) = h0

(
ξ

p

)
ϕ̂

(
ξ

p

)
, (10)

where

h0(ξ) =

pn−1∑
k=0

ck wk(ξ), (11)

is a generalized Walsh polynomial, which is called the mask or symbol of the p-
refinable function ϕ and is of course a p-adic step function. Observe that wk(0) =
ϕ̂(0) = 1. By letting ξ = 0 in (10) and (11), we obtain

∑pn−1
k=0 ck = 1. Since

ϕ is compactly supported and in fact suppϕ ⊂ [0, pn−1), hence ϕ̂(ξ) = 1 for all
ξ ∈ [0, p1−n) as ϕ̂(0) = 1. Further, it is proved in [4] that a function ϕ ∈ L2(R+)
generates a p-MRA in L2(R+) if and only if∑

k∈Z+

∣∣ϕ̂(ξ 	 k)∣∣2 = 1, for a.e. ξ ∈ [0, 1], lim
j→∞

∣∣ϕ̂(p−jξ)
∣∣ = 1, for a.e. ξ ∈ R+.

(12)

Suppose Ψ = {ψ1, . . . , ψL} is a set of p-MRA functions derived from

ψ̂` (ξ) = h`

(
ξ

p

)
ϕ̂

(
ξ

p

)
, (13)
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where

h`(ξ) =

pn−1∑
k=0

d`k wk(ξ), ` = 1, . . . , L (14)

are the generalized Walsh polynomials, called the wavelet masks or high pass
filters of wavelet frame. With h`(ξ), ` = 0, 1, . . . , L, L ≥ p − 1 as the Walsh poly-
nomials (wavelet masks), we formulate the matrix M(ξ) as:

H(ξ) =


h0(ξ) h0(ξ ⊕ 1/p) . . . h0(ξ ⊕ (p− 1)/p)
h1(ξ) h1(ξ ⊕ 1/p) . . . h1(ξ ⊕ (p− 1)/p)

...
...

. . .
...

hL(ξ) hL(ξ ⊕ 1/p) . . . hL(ξ ⊕ (p− 1)/p)

 . (15)

The matrixH(ξ) is called the modulation matrix. The so-called unitary extension
principle (UEP) provides a sufficient condition on Ψ = {ψ1, . . . , ψL} such that the
wavelet system F(Ψ) given by (5) constitutes a tight frame for L2(R+). It is well
known that in order to apply the UEP to derive wavelet tight frame from a given
refinable function, the corresponding refinement mask must satisfy

p−1∑
k=0

∣∣h0(ξ ⊕ k/p)∣∣2 ≤ 1, ξ ∈ R+. (16)

In [12], the author has given a general procedure for the construction of tight
wavelet frames generated by the Walsh polynomials using unitary extension prin-
ciples and established a complete characterization of such frames by virtue of the
modulation matrix H(ξ). More precisely, we prove that the wavelet system F(Ψ)
given by (5) forms a tight wavelet frame for L2(R+) if the modulation matrix H(ξ)
given by (15) satisfy the UEP condition

H(ξ)H∗(ξ) = Ip, for a.e. ξ ∈ σ(V0), (17)

where σ(V0) :=
{
ξ ∈ [0, 1] :

∑
k∈Z+ |ϕ̂

(
ξ ⊕ k

)
|2 6= 0

}
.

3. Orthogonal Wavelet Frames Related to Walsh Polynomials

In this section, we present an algorithm for constructing orthogonal wavelet frames
generated by the Walsh polynomials based on polyphase representation of wavelet
masks.
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Polyphase matrix plays an important role in the design and efficient implementa-
tions of filter banks with the desired properties. The polyphase representation of the
refinement mask h0(ξ) can be derived by using the properties of Walsh polynomials
as

h0(ξ) =

pn−1∑
k=0

ckwk(ξ)

=

pn−1∑
k=0

p−1∑
m=0

cpk+mwpk+m(ξ)

=

p−1∑
m=0

wm(ξ)

pn−1∑
k=0

cpk+mwk(pξ)

=
1
√
p

p−1∑
m=0

µ0,m(pξ)wm(ξ),

where

µ0,m(ξ) =
√
p

pn−1∑
k=0

cpk+mwk(ξ), m = 0, 1, . . . , p− 1. (18)

Similarly, the wavelet masks h`(ξ), 1 ≤ ` ≤ L, as defined in (14) can be splitted
into polyphase components as

h`(ξ) =
1
√
p

p−1∑
m=0

µ`,m(pξ)wm(ξ), (19)

where

µ`,m(ξ) =
√
p

pn−1−1∑
k=0

d`pk+mwk(ξ), m = 0, 1, . . . , p− 1. (20)

With the polyphase components given by (18) and (20), we formulate the polyphase
matrix Γ(ξ) as:

Γ(ξ) =


µ0,0(ξ) µ1,0(ξ) . . . µL,0(ξ)
µ0,1(ξ) µ1,1(ξ) . . . µL,1(ξ)

...
...

. . .
...

µ0,p−1(ξ) µ1,p−1(ξ) . . . µL,p−1(ξ)

 . (21)
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The polyphase matrix Γ(ξ) is called a unitary matrix if

Γ(pξ)Γ∗(pξ) = Ip, a.e. ξ ∈ [0, 1] (22)

which is equivalent to

L∑
`=0

µ`,r(pξ)µ`,r′ (pξ) = δr,r′ ⇔
L∑

`=1

µ`,r′ (pξ)µ`,r(pξ) = δr,r′ − µ0,r(pξ)µ0,r′ (pξ), 0 ≤ r, r′ ≤ p− 1. (23)

The following theorem is proved in [18] which shows that a unitary polyphase
matrix leads to a tight wavelet frame generated by Walsh polynomial on R+.

Theorem 1. Let ϕ ∈ L2(R+) be a compactly supported refinable function and every
element of the framelet symbols, h0(ξ), h`(ξ), ` = 1, 2, . . . , L, in (11) and (14) is a
Walsh polynomial. Moreover, if the polyphase matrix Γ(ξ) given by (21) satisfy UEP
condition (22), then the wavelet system F(Ψ) given by (5) constitutes a tight frame
for L2(R+).

Given a collection of Walsh polynomials H = [h0, h1, . . . , hL]. Consider the
following matrices

M(ξ) =


h0(ξ) h0(ξ ⊕ δk)
h1(ξ) h1(ξ ⊕ δk)

...
...

hL(ξ) hL(ξ ⊕ δk)

 , M0(ξ) =


h1(ξ) h1(ξ ⊕ δk)
h2(ξ) h2(ξ ⊕ δk)

...
...

hL(ξ) hL(ξ ⊕ δk)

 (24)

where δk = k/p, for k = 1, 2, . . . , p−1. Let there be another wavelet frame whose
Walsh polynomials are given by h̃0, h̃1, . . . , h̃L. Denoting the matrices as in (24) for
these wavelet masks by M̃(ξ) and M̃0(ξ), respectively. With the above definitions,
we present an algorithm for constructing arbitrarily many orthogonal wavelet frames
generated by the Walsh polynomials on R+.

Theorem 2. Suppose that ϕ, ϕ̃ ∈ L2(R+) are compactly supported refinable func-
tions which satisfy the conditions of the unitary extension principle, and let h0(ξ), h̃0(ξ)
be the associated low-pass filter. Let the corresponding high-pass filters be h`, h̃`, ` =
1, 2, . . . , L. Let the matrices M(ξ),M0(ξ),M̃(ξ) and M̃0(ξ) be as defined in (24).
For all δk, k = 1, 2, . . . , p − 1, suppose that the following matrix equations hold for
a.e. ξ ∈ R+,

M∗(ξ)M(ξ) = I2, M̃∗(ξ)M̃(ξ) = I2, and M0(ξ)M̃0(ξ) = 0. (25)

Let ψ̂` (ξ) = h`(p
−1ξ)ϕ̂(p−1ξ) and φ̂` (ξ) = h`(p

−1ξ) ˆ̃ϕ(p−1ξ), 1 ≤ ` ≤ L. Then
{ψ1, ψ2, . . . , ψL} and {φ1, φ2, . . . , φL} generate orthogonal wavelet tight frame.
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Proof. From the unitary extension principle, it follows that both {ψ1, ψ2, . . . , ψL}
and {φ1, φ2, . . . , φL} generate normalized tight wavelet frames for L2(R+). Thus,
it only remains to prove the orthogonality of these wavelet frames. For each ` =
1, 2, . . . , L, by Hölder’s inequality and virtue of the fact that ψ` and φ` generate
Bessel sequences, we have

∑
j∈Z

∣∣∣ψ̂`(pjξ)φ̂`(pjξ)∣∣∣ ≤
∑
j∈Z

∣∣∣ψ̂`(pjξ)∣∣∣2
∑

j∈Z

∣∣∣φ̂`(pjξ)∣∣∣2
 <∞. (26)

Thus, the order of summation can be changed. With this, by equation (25), we
have

L∑
`=1

∑
j∈Z

ψ̂`(p
jξ)φ̂`(pjξ) =

L∑
`=1

∑
j∈Z

h`(p
j−1ξ)ϕ̂(pj−1ξ)

ˆ̃
h`(pj−1ξ) ˆ̃ϕ(pj−1ξ)

=
∑
j∈Z

ϕ̂(pj−1ξ) ˆ̃ϕ(pj−1ξ)
L∑
`=1

h`(p
j−1ξ)

ˆ̃
h`(pj−1ξ)

= 0,

holds for almost every ξ ∈ R+. Likewise, for k ∈ Z+ \ pZ+, again by (25), we
obtain

L∑
`=1

∞∑
j=0

ψ̂`(p
jξ)φ̂`

(
pj(ξ ⊕ k)

)
=

L∑
`=1

∞∑
j=0

h`(p
j−1ξ)ϕ̂(pj−1ξ)

ˆ̃
h`
(
pj−1(ξ ⊕ k)

)
ˆ̃ϕ
(
pj−1(ξ ⊕ k)

)
=

∞∑
j=0

ϕ̂(pj−1ξ) ˆ̃ϕ
(
pj−1(ξ ⊕ k)

) L∑
`=1

h`(p
j−1ξ)

ˆ̃
h`
(
pj−1(ξ ⊕ k)

)
= 0.

This completes the proof of the theorem.
Next, we briefly describe how to obtain a pair of compactly supported orthogonal

tight frames from a given compactly supported tight frame system F(Ψ) constructed
via the UEP. More precisely, we construct a pair of orthogonal wavelet frames gener-
ated by the Walsh polynomials for the space L2(R+) with slightly different approach
as described in Theorem 2.

Let A be a 2L× 2L paraunitary matrix. Partition A = (A1 : A2) where A1 and
A2 are the first and last L columns of A. Let B and C be the matrices as
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B =

(
1 0
0 A1

)
, C =

(
1 0
0 A2

)
.

With B and C in hand, we construct new polyphase matrices as Γ1 = BΓ, Γ2 =
CΓ. The new polyphase matrix Γ1 looks like

Γ1 =


1 0 · · · 0
0 a1,1 · · · a1,L
...

...
. . .

...
0 a2L,1 · · · a2L,L




µ0,0(ξ) µ0,1(ξ) . . . µ0,p−1(ξ)
µ1,0(ξ) µ1,1(ξ) . . . µ1,p−1(ξ)

...
...

. . .
...

µL,0(ξ) µL,1(ξ) . . . µL,p−1(ξ)



=



µ0,0(ξ) µ0,1(ξ) . . . µ0,p−1(ξ)
L∑
`=1

a1,L µ`,0(ξ)
L∑
`=1

a1,` µ`,1(ξ) . . .
L∑
`=1

a1,` µ`,p−1(ξ)

...
...

. . .
...

L∑
`=1

a2L,` µ`,0(ξ)
L∑
`=1

a2L,` µ`,1(ξ) . . .
L∑
`=1

a2L,` µ`,p−1(ξ)


.

It is easy to verify that both the matrices Γ1 and Γ2 constructed above are uni-
tary. Moreover, under this algorithm the scaling function does not change. There-
fore, for k = 1, 2, . . . , 2L, the new wavelet masks Gk(ξ) are given by

Gk(ξ) =

p−1∑
m=0

wm(ξ)

L∑
`=1

ak,`(pξ)µm,`(ξ)

=
L∑
`=1

ak,`(pξ)

p−1∑
m=0

wm(ξ)µm,`(ξ)

=

L∑
`=1

ak,`(pξ)h`(ξ). (27)

Likewise one obtains G̃k(ξ) as

G̃k(ξ) =
2L∑

`=L+1

ak,`(pξ)h̃`(ξ). (28)

LetM(ξ) and M̃(ξ) be as in equation (24). Then,M∗(ξ)M(ξ) = I2, M̃∗(ξ)M̃(ξ) =
I2, as both the matricesM and M̃ consist of the columns of the modulation matri-
ces. This satisfies one of the conditions of Theorem 2.
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Lemma 3. Let M0(ξ) and M̃0(ξ) be the matrices of Walsh polynomials (wavelet
masks) as in Theorem 2 Then

M0(ξ)
∗M̃0(ξ) = 0. (29)

Proof. Since the entries of matrix A are Walsh polynomials, so they are periodic in
each components. Therefore, we have

A`,m
(
p(ξ ⊕ δ`)

)
= A`,m

(
pξ ⊕ pδ`

)
= A`,m

(
pξ
)
.

Hence, equations (27) and (28) can be expressed as:

Gk
(
ξ ⊕ δ`

)
=

L∑
`=1

ak,`(pξ)h`
(
ξ ⊕ δ`

)
, G̃k

(
ξ ⊕ δ`

)
=

2L∑
`=L+1

ak,`(pξ)h̃`
(
ξ ⊕ δ`

)
.

Thus, we have

M0(ξ) =



L∑
`=1

a1,L(pξ)h`(ξ)
L∑
`=1

a1,`(pξ)h`
(
ξ ⊕ δ`

)
L∑
`=1

a2,L(pξ)h`(ξ)

L∑
`=1

a2,`(pξ)h`
(
ξ ⊕ δ`

)
...

...
L∑
`=1

aL,`(pξ)h`(ξ)
L∑
`=1

aL,`(pξ)h`
(
ξ ⊕ δ`

)



=


a1,1(pξ) a1,2(pξ) · · · a1,L(pξ)
a2,1(pξ) a2,1(pξ) · · · a2,L(pξ)

...
...

. . .
...

aL,1(pξ) aL,2(pξ) · · · aL,L(pξ)




h1(ξ) h1(ξ ⊕ δ`)
h2(ξ) h2(ξ ⊕ δ`)

...
...

hL(ξ) hL(ξ ⊕ δ`)

 .

The corresponding dual matrix M̃0(ξ) can be obtained similarly. Using the fact
that the matrix A is paraunitary, it follows that M0(ξ)

∗M̃0(ξ) = 0.
For k = 1, 2, . . . , 2L, we consider the new wavelet system as

ψ̂∗k (pξ) = Gk(ξ)ϕ̂(ξ), φ̂∗k (pξ) = G̃k(ξ) ˆ̃ϕ(ξ)

and let Ψ∗ = {ψ∗1, ψ∗2, . . . , ψ∗2L} and Φ∗ = {φ∗1, φ∗2, . . . , φ∗2L}.

Theorem 4. The wavelet systems F(Ψ∗) and F(Φ∗) generated by {ψ∗1, ψ∗2, . . . , ψ∗2L}
and {φ∗1, φ∗2, . . . , φ∗2L} form a pair of orthogonal wavelet frames for L2(R+).
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Proof. The proof of the theorem follows immediately from Theorem 1, Lemma 3
and the fact that the matrices Γ1 and Γ2 are unitary.

The following result show the relationship between a pair of orthogonal MRA
based wavelet frames generated by the Walsh polynomials.

Theorem 5. Suppose that F(Ψ) and F(Φ) are a pair of orthogonal MRA wavelet
frames generated by the Walsh polynomials. If P (Ψ) = P (Φ) and there exists func-
tions h, g ∈ L2(R+) such that Ψg := {ψg1 , ψ

g
2 , . . . , ψ

g
L} and Φh := {φh1 , φh2 , . . . , φhL}

are wavelet frames, where ψg` and φh` are defined by ψ̂g` (ξ) = ψ̂`(ξ)ĝ(ξ), φ̂h` (ξ) =

φ̂`(ξ)ĥ(ξ), 1 ≤ ` ≤ L, respectively. Then, F(Ψg) and F(Φh) are a pair of orthogonal
wavelet frames for L2(R+).

Proof. Suppose that F(Ψ) and F(Φ) are a pair of orthogonal wavelet frames in
L2(R+) and P (Ψ) = P (Φ). Then, by the property of MRA based wavelet frames,
for any n 6= m ∈ Z, we have P (pmΨ) ⊥ P (pnΦ). Therefore, for all f1 ∈ P (Ψ), we
have

0 = Pf1(x) =
L∑
`=1

∑
j∈Z

∑
k∈Z+

〈
f1(x), ψ`

(
pjx	 k

)〉
φ`
(
pjx	 k

)
=

L∑
`=1

∑
k∈Z+

C`f1,kφ`(x	 k),

(30)

where C`f1,k =
〈
f1(x), ψ`(x 	 k)

〉
. For any f ∈ L2(R+), we define f = f1 + f2,

where f1 ∈ P (Ψ), f2 ∈ L2(R+) \ P (Ψ), then, 〈f1, f2〉 = 0. With this, we get

Pf2(x) =

L∑
`=1

∑
k∈Z+

〈
f1(x), ψ`(x	 k)

〉
φ`(x	 k) =

L∑
`=1

∑
k∈Z+

C`f2,kφ`(x	 k) = 0.

(31)

Combining (30) and (31), we conclude that

Pf(x) = Pf1(x) + Pf2(x) = 0. (32)
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Since φ̂h` (ξ) = φ̂`(ξ)ĥ(ξ) and Pf(x) = 0, we have

0 = P̂ f(x)

=
L∑
`=1

∑
k∈Z+

C`f,kφ̂`(ξ)wk(ξ)

=
L∑
`=1

∑
k∈Z+

C`f1,kφ̂`(ξ)wk(ξ) +
L∑
`=1

∑
k∈Z+

C`f2,kφ̂`(ξ)wk(ξ)

= h(ξ)

 L∑
`=1

∑
k∈Z+

C`f1,kφ̂`(ξ)wk(ξ) +
L∑
`=1

∑
k∈Z+

C`f2,kφ̂`(ξ)wk(ξ)


=

L∑
`=1

∑
k∈Z+

C`f1,kφ̂
h
` (ξ)wk(ξ) +

L∑
`=1

∑
k∈Z+

C`f2,kφ̂
h
` (ξ)wk(ξ)

=
L∑
`=1

∑
k∈Z+

C`f,kφ̂
h
` (ξ)wk(ξ). (33)

Applying inverse Walsh-Fourier transform on equation (33), we obtain

0 = Pf(x) =
L∑
`=1

∑
k∈Z+

C`f,kφ
h
` (x	 k). (34)

From the above equality, we deduce that

L∑
`=1

∑
k∈Z+

C`f,k

〈
f(x), φh`

(
x	 k

)〉
=

〈
f(x),

L∑
`=1

∑
k∈Z+

C`f,kφ
h
`

(
x	 k

)〉
=
〈
f(x), 0

〉
=

〈
f(x),

L∑
`=1

∑
k∈Z+

〈
f(x), φh`

(
x	 k

)〉
ψ`(x	 k)

〉
.

(35)

Thus, we have

L∑
`=1

∑
k∈Z+

〈
f(x), φh`

(
x	 k

)〉
ψ`(x	 k) = 0. (36)
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In a similar manner, we can show that

L∑
`=1

∑
k∈Z+

〈
f(x), φh`

(
x	 k

)〉
ψg` (x	 k) = 0. (37)

Therefore, for any j ∈ Z, we have

L∑
`=1

∑
k∈Z+

〈
f(x), φh`

(
pjx	 k

)〉
ψg
` (pjx	 k) = p−j

L∑
`=1

∑
k∈Z+

〈
f
(
p−jx

)
, φh`
(
x	 k

)〉
ψg
`

(
x	 k

)
= 0.

(38)

Putting everything together, we conclude that

L∑
`=1

∑
k∈Z+

〈
f(x), φh`

(
pjx	 k

)〉
ψg` (pjx	 k) = 0.

Hence, F(Ψg) and F(Φh) constitutes a pair of orthogonal wavelet frames gener-
ated by Walsh polynomials for L2(R+).

The following theorem describes a general construction algorithm for orthogonal
wavelet tight frames related to the Walsh polynomials.

Theorem 6. Suppose A(ξ) is an L × L paraunitary matrix with integral periodic
entries a`,m(ξ) and let Am(ξ) denotes the mth column. Let h0, h1, . . . , hL be the
Walsh polynomials (masks) given by (11) and (14) such that H∗(ξ)H(ξ) = I2,
where H = [h0(ξ), h1(ξ), . . . , hL(ξ)] is the combined mask of the wavelet masks, and
let the wavelet system F(Ψ) forms a normalized wavelet frame for L2(R+). For
m = 1, 2, . . . , L, define new wavelet masks via

ηm1,1(ξ)

ηm1,2(ξ)
...

ηm1,L(ξ)

ηm2,1(ξ)
...

ηm2,L(ξ)
...

ηmN,1(ξ)

ηmN,2(ξ)
...

ηmN,L(ξ)



=


Am(ξ)h1(ξ)
Am(ξ)h2(ξ)

...
Am(ξ)hN (ξ)

 . (39)
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Then, for m = 1, 2, . . . , L, the wavelet systems generated by Ψm = {ψmn,` : 1 ≤
n ≤ N, 1 ≤ ` ≤ L}, obtained via

ψ̂mn,`(pξ) = ηmn,`(ξ)ϕ̂(ξ), (40)

are tight wavelet frames and are pairwise orthogonal.

Proof. We first prove that the systems F(Ψm), 1 ≤ m ≤ L are tight wavelet frames
for L2(R+). To do so, we first consider

Mm =
[
h0(ξ), η

m
1,1(ξ), η

m
1,2(ξ), . . . , η

m
1,L(ξ), ηm2,1(ξ), . . . , η

m
2,L(ξ), . . . , ηmN,1(ξ), . . . , η

m
N,L(ξ)

]
.

Then, we define Mm(ξ) according to (24) as:

Mm(ξ) =



h0(ξ) h0(ξ ⊕ δk)
ηm1,1(ξ) ηm1,1(ξ ⊕ δk)
ηm1,2(ξ) ηm1,2(ξ ⊕ δk)

...
...

ηm1,L(ξ) ηm1,L(ξ ⊕ δk)
ηm2,1(ξ) ηm2,1(ξ ⊕ δk)

...
...

ηm2,L(ξ) ηm2,L(ξ ⊕ δk)
...

...
ηmN,1(ξ) ηmN,1(ξ ⊕ δk)
ηmN,2(ξ) ηmN,2(ξ ⊕ δk)

...
...

ηmN,L(ξ) ηmN,L(ξ ⊕ δk)



, (41)

where δk = k/p, for k = 1, 2, . . . , p− 1. Clearly,M∗m(ξ)Mm(ξ) is a 2× 2 matrix.
Next, we examine the entries of M∗m(ξ)Mm(ξ) individually. Since the columns of
A(ξ) have length 1, it follows that[

M∗m(ξ)Mm(ξ)
]
1,1

=
∣∣h0(ξ)∣∣2 +

L∑
`=1

N∑
n=1

∣∣a`,m(ξ)hn(ξ)
∣∣2

=
∣∣h0(ξ)∣∣2 +

L∑
`=1

∣∣a`,m(ξ)
∣∣2 N∑
n=1

∣∣hn(ξ)
∣∣2

=
∣∣h0(ξ)∣∣2 +

N∑
n=1

∣∣hn(ξ)
∣∣2

= 1.
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Similarly,

[
M∗m(ξ)Mm(ξ)

]
2,2

=
∣∣h0(ξ ⊕ δk)∣∣2 +

L∑
`=1

N∑
n=1

∣∣a`,m(ξ ⊕ δk)hn(ξ ⊕ δk)
∣∣2

=
∣∣h0(ξ ⊕ δk)∣∣2 +

L∑
`=1

N∑
n=1

∣∣a`,m(ξ ⊕ δk)
∣∣2∣∣hn(ξ ⊕ δk)

∣∣2
=
∣∣h0(ξ ⊕ δk)∣∣2 +

N∑
n=1

∣∣hn(ξ ⊕ δk)
∣∣2

= 1.

Using the fact that M∗(ξ)M(ξ) = I2 and all the entries of A(ξ) are integral
periodic, we obtain

[
M∗m(ξ)Mm(ξ)

]
1,2

= h0(ξ ⊕ δk)h0(ξ) +
L∑
`=1

N∑
n=1

a`,m(ξ ⊕ δk)hn(ξ ⊕ δk) a`,m(ξ)hn(ξ)

= h0(ξ ⊕ δk)h0(ξ) +

L∑
`=1

N∑
n=1

∣∣a`,m(ξ)
∣∣2hn(ξ)hn(ξ ⊕ δk)

= h0(ξ ⊕ δk)h0(ξ) +
N∑
n=1

hn(ξ)hn(ξ ⊕ δk)

= 0.

By the conjugate symmetry of M∗m(ξ)Mm(ξ), the entry (2,1) must be zero.
Hence, we can say that

M∗m(ξ)Mm(ξ) = I2, 1 ≤ m ≤ L. (42)

Putting everything together, from Theorem (2), the wavelet systems F(Ψm)
defined via (40) are tight wavelet frames for L2(R+). It only remains to prove the
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orthogonality. According to equation (24), for 1 ≤ m ≤ L, we have

M0
m(ξ) =



ηm1,1(ξ) ηm1,1(ξ ⊕ δk)
ηm1,2(ξ) ηm1,2(ξ ⊕ δk)

...
...

ηm1,L(ξ) ηm1,L(ξ ⊕ δk)

ηm2,1(ξ) ηm2,1(ξ ⊕ δk)
...

...
ηm2,L(ξ) ηm2,L(ξ ⊕ δk)

...
...

ηmN,1(ξ) ηmN,1(ξ ⊕ δk)

ηmN,2(ξ) ηmN,2(ξ ⊕ δk)
...

...
ηmN,L(ξ) ηmN,L(ξ ⊕ δk)



=


Am(ξ)h1(ξ) Am(ξ ⊕ δk)h1(ξ ⊕ δk)

Am(ξ)h2(ξ) Am(ξ ⊕ δk)h2(ξ ⊕ δk)
...

...
Am(ξ)hN (ξ) Am(ξ ⊕ δk)hN (ξ ⊕ δk)

 .

(43)

If 1 ≤ m 6= m′ ≤ L, then
M0

m(ξ)∗M0
m(ξ)

=


Am(ξ)h1(ξ) Am(ξ ⊕ δk)h1(ξ ⊕ δk)
Am(ξ)h2(ξ) Am(ξ ⊕ δk)h2(ξ ⊕ δk)

.

.

.

.

.

.
Am(ξ)hN (ξ) Am(ξ ⊕ δk)hN (ξ ⊕ δk)


∗

Am′ (ξ)h1(ξ) Am′ (ξ ⊕ δk)h1(ξ ⊕ δk)
Am′ (ξ)h2(ξ) Am′ (ξ ⊕ δk)h2(ξ ⊕ δk)

.

.

.

.

.

.
Am′ (ξ)hN (ξ) Am′ (ξ ⊕ δk)hN (ξ ⊕ δk)



=


A∗m(ξ)Am′ (ξ)

N∑
n=1

|hn(ξ)|2 A∗m(ξ)Am′ (ξ ⊕ δk)
N∑

n=1

hn(ξ)hn(ξ ⊕ δk)

A∗m(ξ ⊕ δk)Am′ (ξ)
N∑

n=1

hn(ξ ⊕ δk)hn(ξ) A∗m(ξ ⊕ δk)Am′ (ξ ⊕ δk)
N∑

n=1

hn(ξ ⊕ δk)hn(ξ ⊕ δk)



=


A∗m(ξ)Am′ (ξ)

N∑
n=1

|hn(ξ)|2 A∗m(ξ)Am′ (ξ)
N∑

n=1

hn(ξ)hn(ξ ⊕ δk)

A∗m(ξ ⊕ δk)Am′ (ξ)
N∑

n=1

hn(ξ ⊕ δk)hn(ξ) A∗m(ξ ⊕ δk)Am′ (ξ)
N∑

n=1

hn(ξ ⊕ δk)hn(ξ ⊕ δk)


= 0,

where we use the fact that the product of the two matrices A∗m(ξ)Am′(ξ) = 0
by the orthogonality of the columns of A(ξ). Using Theorem 2, we get the desired
result.
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