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NEIMARK-SACKER BIFURCATION AND CHAOS CONTROL IN A
MODIFIED NICHOLSON-BAILEY MODEL

Q. Din, M.A. Khan

Abstract. This article deals with the study of some qualitative properties of a
discrete-time host-parasitoid model. The present model is a modification of classical
Nicholson-Bailey model and the modification is based on a particular case of Hassel-
Varley model in which the interaction between parasitoids is taken in such a way
that the searching area per parasitoid is inversely proportional to the density of
parasitoid. Moreover, it is shown that there exists Neimark-Sacker bifurcation for
the unique positive steady-state of given system. Confirmation of complexity and
chaotic behavior are verified by plotting largest Lyapunov exponents. Furthermore,
feedback strategy is introduced in order to stabilize the unstable equilibrium.
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1. Introduction

One of the most earliest application to a biological system is the discrete-time Nichol-
son and Bailey model which involved two insects, a host and a parasitoid. The
development of the model goes to Nicholson and Bailey [1]. The parasitoid are the
organism that kills the host organism and live freely as an adult stage but lays eggs
in the larvae or pupae of the host. Host that are not parasitized give rise to their
own offspring. The host that are completely parasitized die but the eggs of the
parasitoid may be survive to the next generation. There are many unrealistic as-
sumptions in such host-parasitoid systems such as a constant reproductivity of the
host, a constant searching efficiency, and a homogeneous environment are unrealis-
tic assumptions. Positive equilibrium state can be stabilized with addition of some
realistic assumptions. In original Nicholson-Bailey model for a long time survival of
parasitoid and its host many modification have been seen in literature.
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The general host-parasitoid model is governed by the following two-dimensional
discrete-time dynamical system:

Nt+1 = rNtf (Nt, Pt) ,

Pt+1 = cNt(1− f (Nt, Pt)),
(1)

where Nt is the density of host species in generation t, Pt is the density of parasitoid
species in generation t, f(Nt, Pt) is the fraction of hosts that are not parasitized,
r is the number of eggs laid by a host that survive through the larvae, pupae,
and adult stages, and c is the number of eggs laid by a parasitoid on a single
host that survive through larvae, pupae, and adult stages. The function f can be
interpreted as the probability that each individual host escapes the parasitoid, so
that the complementary term 1−f in the second equation is the probability of being
parasitized. Moreover, as Nt = 0 implies that Pt+1 = 0, i.e., the parasitoids cannot
survive without the hosts. This is one reason why parasitoids are good biological
control agents. In Nicholson-Bailey model it is assumed that f(Nt, Pt) = exp(−APt),
where A is the searching efficiency of the parasitoid which is the probability that a
given parasitoid will encounter a given host during its searching lifetime. Thus (1)
reduces to the following Nicholson and Bailey model:{

Nt+1 = rNt exp(−APt),

Pt+1 = cNt (1− exp(−APt)) .
(2)

At the rate of low parasitoid densities the oscillatory behavior occurs in Nicholson-
Bailey model, then the host population behaves approximately as follow:

Nt+1 = rNt,

that is, its growth remains unchecked. Moreover, this unrealistic behavior suddenly
results increase in number of parasitoids until the host are killed by attack. To
take into account the effect of parasitoid interference on the hostparasitoid model,
the equation proposed by Hassell and Varley [6] can be used A = aP−mt , where
Pt is the number of parasitoids in generation t, a stands for the quest constant,
which represents the searching efficiency when Pt = 1, m is the mutual interference
constant. Therefore, classical Nicholson-Bailey model can be modified as follows:

Nt+1 = rNt exp(−aP 1−m
t ),

Pt+1 = cNt

(
1− exp(−aP 1−m

t )
)
.

(3)

The greater the values of mutual interference constant m in the model (3) yields
stronger the stability chance, and as m→ 0 it behave like Nicholson-Bailey model,
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i.e., unstable intersection will arise. For simplicity, we take c = 1 and m = 1
2 , then

(3) reduces to the following special form of Hassell-Varley model [7]:

Nt+1 = rNt exp
(
−a
√
Pt

)
,

Pt+1 = Nt

(
1− exp

(
−a
√
Pt

))
.

(4)

In remaining discussion, we study the bifurcation analysis for confirmation of Neimark-
Sacker bifurcation for positive steady-state of system (4), and feedback control strat-
egy is used to stabilize the chaotic orbits at an unstable steady-state. For more detail
of some interesting population models both in differential equations as well as in dif-
ference equations, we refer the interested reader to [2, 3, 4, 5]. Moreover, for some
interesting results related to the qualitative behavior of difference equations, we refer
the reader to [8, 9, 10, 11, 12].

2. Existence and stability of positive equilibrium

Let (N∗, P∗) be equilibrium point of system (4), then we have the following algebraic
equations:

N∗ = rN∗ exp
(
−a
√
P∗
)
,

P∗ = N∗
(
1− exp

(
−a
√
P∗
))
.

Neglecting the trivial equilibrium (N∗, P∗) = (0, 0), we have the following system of
algebraic equations:

1 = r exp
(
−a
√
P∗

)
,

P∗ = N∗

(
1− exp

(
−a
√
P∗

))
.

(5)

Solving system (5), we obtain P∗ =
(
ln r
a

)2
, and N∗ = P∗

1−exp(−a
√
P∗)

= rP∗
r−1 . In order

to confirm the positivity of (N∗, P∗) =
(

r(ln r)2

a2(r−1) ,
(
ln r
a

)2)
, it is assumed that r > 1.

The Jacobian matrix J (N∗, P∗) evaluated at the unique positive equilibrium point

(N∗, P∗) =
((

r(ln r)2

a2(r−1) ,
(
ln r
a

)2))
of system (4) is given by

J (N∗, P∗) =

[
1 − r ln r

2(r−1)
r−1
r

ln r
2(r−1)

]
.
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The characteristic polynomial of the Jacobian matrix J (N∗, P∗) is given by:

P(λ) = λ2 −
(

1 +
ln r

2(r − 1)

)
λ+

r ln r

2(r − 1)
. (6)

In order to study the stability analysis of unique positive equilibrium point of system
(4), we have the following result.

Lemma 2.1. Assume that F(λ) = λ2 −Aλ+B, and F(1) > 0 with λ1, λ2 are root
of F(λ) = 0. Then the following results hold true:

(i) |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and B < 1.

(ii) |λ1| < 1 and |λ2| > 1, or |λ1| > 1 and |λ2| < 1 if and only if F(−1) < 0.

(iii) |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and B > 1.

(iv) λ1 = −1 and λ2 6= 1 if and only if F(−1) = 0 and B 6= 0, 2.

(v) λ1 and λ2 are complex and |λ1| = 1 and |λ2| = 1 if and only if A2 − 4B < 0 and
B = 1.

Suppose that λ1 and λ2 be eigenvalue of the Jacobian matrix J(N∗, P∗) evaluated
at unique positive equilibrium point of system (4), i.e., roots of the characteristic
polynomial (6). Then unique positive equilibrium point (N∗, P∗) of (4) is called a
sink if |λ1| < 1 and |λ2| < 1 and thus the sink is locally asymptotic stable equilibrium
point. (N∗, P∗) is known as source or repeller if |λ1| > 1 and |λ2| > 1 and thus a
source is always unstable. (N∗, P∗) is called a saddle point if |λ1| < 1 and |λ2| > 1,
or |λ1| > 1 and |λ2| < 1) and thus a saddle point is also unstable. (N∗, P∗) is known
as non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

According to [7], the unique positive equilibrium point of (4) is locally asymp-
totically stable if 1 < r < r0, where r0 be unique positive root of the equa-
tion r ln r − 2r + 2 = 0, then we have r0 ≈ 4.9215536345675055. From (6),
P(1) = 1

2 ln r > 0, so applying Lemma 2.1 the following result gives an explicit
condition on r such that the roots of (6) are complex with unit modulus.

Lemma 2.2. The roots of characteristic polynomial (6) are complex with modulus
one if r = r1, where r1 is unique positive root of the equation r ln r − 2r + 2 = 0 in
]1,∞[ such that r1 ≈ 4.9215536345675055.

Proof. According to part (v) of Lemma 2.1, the roots of (6) are complex and lie on

unit circle under the conditions
∣∣∣(1 + ln r

2(r−1)

)∣∣∣ < 2 and r ln r
2(r−1) = 1, or equivalently
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we have
ln r

2(r − 1)
< 1, r ln r − 2r + 2 = 0. (7)

Assume that Θ(r) = r ln r−2r+2 and Ψ(r) = ln r
2(r−1)−1. Then it follows that Θ(r) <

0 for all r ∈]1, r1[, Θ(r) > 0 for all r ∈]r1,∞[, Θ′(r) > 0 for r > 2.718281828459045,
where r1 ≈ 4.9215536345675055 and Θ(4.9215536345675055) ≈ 0. Thus r1 ≈
4.9215536345675055 be unique positive root of Θ(r) = 0 in ]1,∞[. On the other

hand, lim
r→1

Ψ(r) = −1

2
, lim
r→∞

Ψ(r) = −1 and Ψ′(r) = r−1−r ln r
2r(r−1)2 < 0 for all r ∈]1,∞[

because r − 1 < r ln r for all r > 1.

3. Neimark-Sacker bifurcation

We investigate the parametric conditions for Neimark-Sacker bifurcation for the
unique positive equilibrium point (N∗, P∗) of system (4) by taking r as bifurcation
parameter. Similar results found in [13, 14, 15, 16, 17, 18, 19, 20]. Under the
influence of Neimark-Sacker bifurcation dynamically invariant closed curves are pro-
duced. The characteristic equation of the linearized system of (4) has two complex
conjugate roots with modulus 1 under the conditions (7) of Lemma 2.2. Next, we
assume that

ΩNS =

{
(a, r) :

ln r

2(r − 1)
< 1, r ln r − 2r + 2 = 0, r > 1, a > 0

}
.

Then it follows from Lemma 2.2 that

ΩNS = {(a, r) : r ≈ 4.9215536345675055, a > 0} .

Choosing the parameters (a, r1) in an arbitrary fashion from the set ΩNS with r1 ≈
4.9215536345675055. System (4) can be described by the following two-dimensional
map: (

N
P

)
→

(
rNe−a

√
P

N(1− e−a
√
P )

)
. (8)

It is easy to see that map (8) has a unique positive fixed point
(

r(ln r)2

a2(r−1) ,
(
ln r
a

)2)
which

is also the unique positive equilibrium point of system (4). Since (a, r1) ∈ ΩNS and
r1 ≈ 4.9215536345675055. Taking r̃ as bifurcation parameter and considering the
perturbation of (8) as follows:(

N
P

)
→

(
(r1 + r̃)Ne−a

√
P

N(1− e−a
√
P )

)
, (9)
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where |r̃| � 1 is taken as small perturbation parameter. Next we consider the

transformations u = N − r(ln r)2

a2(r−1) , v = P −
(
ln r
a

)2
so that map (8) is transferred into

the following form:(
u
v

)
→
(
a11 a12
a21 a22

)(
u
v

)
+

(
f1(u, v)
f2(u, v)

)
, (10)

where
f1(u, v) = a13uv + a14v

2 + b1uv
2 + b2v

3 + +O
(
(|u|+ |v|)4

)
,

f2(u, v) = a23uv + a24v
2 + d1uv

2 + d2v
3 +O

(
(|u|+ |v|)4

)
,

a11 = 1, a12 = −(r1 + r̃) ln(r1 + r̃)

2(r1 + r̃ − 1)
, a21 =

r1 + r̃ − 1

r1 + r̃
, a22 =

ln(r1 + r̃)

2(r1 + r̃ − 1)
,

a13 = − a2

2 ln (r1 + r̃)
, a14 =

a2(r1 + r̃) (1 + ln(r1 + r̃))

8 ln(r1 + r̃)(r1 + r̃ − 1)
, b1 =

a4 (1 + ln(r1 + r̃))

8 (ln(r1 + r̃))3
,

b2 = −
a4(r1 + r̃)

[
(ln(r1 + r̃))2 + 3 ln(r1 + r̃) + 3

]
48(r1 + r̃ − 1) (ln(r1 + r̃))3

, a23 =
a2

2(r1 + r̃) ln(r1 + r̃)
,

a24 = − ln(r1 + r̃) + 1

8 ln(r1 + r̃)(r1 + r̃ − 1)
, d1 = − a4(ln(r1 + r̃) + 1)

8(r1 + r̃)(ln(r1 + r̃))3
,

d2 = −
a4
[
(ln(r1 + r̃))2 + 3 ln(r1 + r̃) + 3

]
48(r1 + r̃ − 1) (ln(r1 + r̃))3

.

The characteristic equation of Jacobian matrix of linearized system of (10) evaluated
at the equilibrium (0, 0) can be written as follows:

λ2 − p(r̃)λ+ q(r̃) = 0, (11)

where

p(r̃) = 1 +
ln(r1 + r̃)

2(r1 + r̃ − 1)
, q(r̃) =

(r1 + r̃) ln(r1 + r̃)

2(r1 + r̃ − 1)
.

Since (a, r1) ∈ ΩNS , the roots of (11) are conjugate complex numbers λ1, λ2 with
|λ1| = |λ2| = 1. Then it follows that:

λ1, λ2 =
p(r̃)

2
± ι

2

√
4q(r̃)− p2(r̃).

Then we obtain(
d|λ1|
dr̃

)
r̃=0

=

(
d|λ2|
dr̃

)
r̃=0

=
r1 − 1− ln r1

2
√

2(r1 − 1)
3
2
√
r1 ln r1

≈ 0.037843691260996154 > 0.
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Furthermore, we have p(0) = 1 + ln r1
2(r1−1) 6= 0, 1. Moreover, (a, r1) ∈ ΩNS implies

that −2 < p(0) < 2. Thus p(0) 6= ±2, 0, 1 gives λm1 , λ
m
2 6= 1 for all m = 1, 2, 3, 4 at

r̃ = 0. Hence, roots of (11) do not lie in the intersection of the unit circle with the
coordinate axes when r̃ = 0 and r1 ≈ 4.9215536345675055.

In order to obtain the canonical form of (10) at r̃ = 0, we take α = p(0)
2 ,

β = 1
2

√
4q(0)− p2(0) and consider the following mapping:(

u
v

)
=

(
a12 0

α− a11 −β

)(
x
y

)
. (12)

Under mapping (12), the canonical form of (10) can be expressed as:(
x
y

)
→
(
α −β
β α

)(
x
y

)
+

(
f̃(x, y)
g̃(x, y)

)
, (13)

where

f̃(x, y) =
a13
a12

uv +
a14
a12

v2 +
b1
a12

uv2 +
b2
a12

v3,

g̃(x, y) =

(
a13(α− a11)

βa12
− a23

β

)
uv +

(
a14(α− a11)

βa12
− a24

β

)
v2

+

(
b1(α− a11)

βa12
− d1
β

)
uv2 +

(
b2(α− a11)

βa12
− d2
β

)
v3 +O

(
(|x|+ |y|)4

)
,

u = a12x and v = (α − a11)x − βy. Next, we define the following nonzero real
number:

L =

([
−Re

(
(1− 2λ1)λ

2
2

1− λ1
ξ20ξ11

)
− 1

2
|ξ11|2 − |ξ02|2 +Re(λ2ξ21)

])
r̃=0

,

where

ξ20 =
1

8

[
f̃xx − f̃yy + 2g̃xy + ι

(
g̃xx − g̃yy − 2f̃xy

)]
,

ξ11 =
1

4

[
f̃xx + f̃yy + ι (g̃xx + g̃yy)

]
,

ξ02 =
1

8

[
f̃xx − f̃yy − 2g̃xy + ι

(
g̃xx − g̃yy + 2f̃xy

)]
,

ξ21 =
1

16

[
f̃xxx + f̃xyy + g̃xxy + g̃yyy + ι

(
g̃xxx + g̃xyy − f̃xxy − f̃yyy

)]
.

Due to above analysis, we have the following conclusion.
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Theorem 3.1. Assume that r1 ≈ 4.9215536345675055 holds and L 6= 0, then
system (4) undergoes Neimark-Sacker bifurcation at the unique positive equilib-
rium point (N∗, P∗) when the parameter r varies in a small neighborhood of r1 ≈
4.9215536345675055. Furthermore, if L < 0, then an attracting invariant closed
curve bifurcates from the equilibrium point for r > r1, and if L > 0, then a repelling
invariant closed curve bifurcates from the equilibrium point for r < r1.

4. Chaos control

In order to stabilize the unstable equilibrium of system (4) we introduce feedback
strategy [21, 22]. Consider the following controlled system corresponding to (4):

Nt+1 = rNt exp
(
−a
√
Pt

)
− Ut,

Pt+1 = Nt

(
1− exp

(
−a
√
Pt

))
,

(14)

where Ut = K
(
Nt − r(ln r)2

a2(r−1)

)
+ W

(
Pt −

(
ln r
a

)2)
is taken as controlling force and

K and W are the feedback gains. The Jacobian matrix of controlled system (14)

evaluated at unique positive equilibrium point (N∗, P∗) =
(

r(ln r)2

a2(r−1) ,
(
ln r
a

)2)
is given

as:

CJ(N∗, P∗) =

[
1−K − r ln r

2(r−1) −W
r−1
r

ln r
2(r−1)

]
.

The characteristic equation of the Jacobian matrix CJ(N∗, P∗) is given by

λ2 −
(

1 +
ln r

2(r − 1)
−K

)
λ+

ln r

2(r − 1)
(r −K) +

W (r − 1)

r
= 0. (15)

Let λ1 and λ2 be the roots of (15), then we have

λ1 + λ2 = 1 +
ln r

2(r − 1)
−K, (16)

and

λ1λ2 =
ln r

2(r − 1)
(r −K) +

W (r − 1)

r
. (17)

In order to obtain the lines of marginal stability we must assume that λ1 = ±1 and
λ1λ2 = 1. Under these restrictions the absolute values of λ1 and λ2 must be less
than 1. First we suppose that λ1λ2 = 1, then it follows from (17) that:

L1 :
ln r

2(r − 1)
K − r − 1

r
W =

r ln r

2(r − 1)
− 1. (18)
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Next, suppose that λ1 = 1 and from (16) and (17), we obtain the following line for
marginal stability:

L2 :

(
ln r − 2r + 2

2(r − 1)

)
K − r − 1

r
W =

ln r

2(r − 1)
. (19)

Finally, if λ1 = −1, then from (16) and (17) we get

L3 :

(
ln r + 2r − 2

2(r − 1)

)
K − r − 1

r
W = 2 +

(1 + r) ln r

2(r − 1)
. (20)

It is easy to see that stable eigenvalues lie within the triangular region bounded by
the straight lines L1, L2 and L3 (see Fig. 1).

Figure 1: Stability region of system (14) for a = 0.95 and r = 4.8

5. Numerical simulation and discussion

Example 5.1. First, we consider system (4) such that a = 0.5, r ∈ [4, 12] and
with initial conditions N0 = 12.7, P0 = 10.1. In this case, system (4) undergoes
Neimar-Sacker bifurcation and bifurcation diagrams are shown in Fig. 2. From Fig.
2a and Fig. 2b, it easy to see that both populations undergo Neimark-Sacker bifur-
cation when r varies in the interval [4, 12]. The corresponding maximum Lyapunov
exponents (MLE) are plotted in Fig. 2c. In Fig. 3 the local amplification of Fig.
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2 is shown when r is taken in a subinterval [4.4, 6] of [4, 12]. Furthermore, in Fig.
4 another local amplification of Fig. 2 is shown when r is taken in a subinterval
[10, 12] of [4, 12]. In Fig. 5, phase portraits of system (4) with varying r as r = 4.89,
r = 4.9, r = 4.921553635, r = 4.93, r = 4.95 and r = 4.98 while keeping a = 0.5 and
initial conditions N0 = 12.7, P0 = 10.1 are shown in Figures 5a, 5b, 5c, 5d, 5e and
5f, respectively.

(a) Bifurcation diagram for Nt. (b) Bifurcation diagram for Pt.

(c) Maximum Lypunov exponents

Figure 2: Plots for the system (4)
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(a) Local amplification corresponding to Fig.
2a.

(b) Local amplification corresponding to Fig.
2b.

(c) Local amplification corresponding to Fig.
2c

Figure 3: Local amplification corresponding to Fig. 2 for r ∈ [4.4, 6].
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(a) Local amplification corresponding to Fig.
2a.

(b) Local amplification corresponding to Fig.
2b.

(c) Local amplification corresponding to Fig.
2c

Figure 4: Local amplification corresponding to Fig. 2 for r ∈ [10, 12].
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(a) Phase portrait for r = 4.89 (b) Phase portrait for r = 4.9

(c) Phase portrait for r =
4.921553635

(d) Phase portrait for r = 4.93

(e) Phase portrait for r = 4.95 (f) Phase portrait for r = 4.98

Figure 5: Phase portraits of system (4) for different values of r with a = 0.5 and
initial conditions N0 = 12.7, P0 = 10.1

Example 5.2. Next, we take a = 0.95, r = 4.95 and initial conditions (N0, P0) =
(3.53, 2.81). In this case, the unique positive equilibrium point
(3.5519621500321303, 2.834394038914528) of system (4) is unstable. In Fig. 5,
plot of Nt is shown in Fig. 6a, plot of Pt is shown in Fig. 6b and phase por-
trait is shown in Fig. 6c for system (4). In order to make the equilibrium point
(3.5519621500321303, 2.834394038914528) locally asymptotically stable, we use the
state feedback control strategy. For this, we consider the corresponding controlled
system (14) in which the feedback controlling force is taken as Ut = K(Nt −
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3.5519621500321303) + W (Pt − 2.834394038914528) with feedback gains K = 0.01
and W = −0.02. In Fig. 6, plot of Nt is shown in Fig. 7a, plot of Pt is shown in
Fig. 7b and phase portrait is shown in Fig. 7c for system (14).

(a) Plot of Nt for system (4) (b) Plot of Pt for system (4)

(c) Phase portrait for system (4)

Figure 6: Plots for system (4) with a = 0.95, r = 4.95 and initial conditions
(N0, P0) = (3.53, 2.81)
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(a) Plot of Nt for system (14) (b) Plot of Pt for system (14)

(c) Phase portrait for system (14)

Figure 7: Plots for system (14) with a = 0.95, r = 4.95, K = 0.01, W = −0.02 and
initial conditions (N0, P0) = (3.53, 2.81)

References

[1] V. A. Bailey, A. J. Nicholson, The balance of animal populations, I. Proc. Zool.
Soc. Lond., 3(1935), 551–598.

[2] Linda J.S. Allen, An Introduction to Mathematical Biology, Prentice Hall,
(2007).

[3] F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and
Epidemiology, Springer, (2000).

[4] L. Edelstein-Keshet,Mathematical Models in Biology, McGraw-Hill, (1988).

107



Q. Din, M.A. Khan – Neimark-Sacker bifurcation and chaos control . . .

[5] S. Elaydi, Discrete chaos: With applications in science and engineering, second
edition, Chapman and Hall/CRC, (2008).

[6] M. P. Hassell, G. C. Varley, New inductive population model for insect parasites
and its bearing on biological control, Nature, 223(1969), 1133–1137.

[7] M. N. Qureshi, A. Q. Khan, Q. Din, Asymptotic behavior of a Nicholson-Bailey
model, Adv. Differ. Equ., 2014(2014), 62.

[8] Q. Din, Dynamics of a host-pathogen model with constant mortality rate, Non-
linear Anal. Model. Control, 22(2)(2017), 173–187.

[9] Q. Din, Global stability of a population model, Chaos Soliton Fract., 59(2014),
119–128.

[10] Q. Din, Global behavior of a plant-herbivore model, Adv. Differ. Equ.,
2015(2015), 1–12.

[11] Q. Din, Global behavior of a host-parasitoid model under the constant refuge
effect, Appl. Math. Model., 40(4)(2016), 2815–2826.

[12] Q. Din, M.A. Khan, U. Saeed, Qualitative Behaviour of Generalised Beddington
Model, Z. Naturforsch. A, 71(2)(2016), 145–155.

[13] Q. Din, Global stability of Beddington model, Qual. Theor. Dyn. Syst., (2016),
DOI: 10.1007/s12346-016-0197-9, 25 pages.

[14] Q. Din, Global stability and Neimark-Sacker bifurcation of a host-parasitoid
model, Int. J. Syst. Sci., 48(2017), 1194–1202.

[15] Q. Din, Neimark-Sacker bifurcation and chaos control in Hassell-Varley model,
J. Differ. Equations Appl., (2017), DOI:10.1080/10236198.2016.1277213, 22 pages.
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