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ON THE UNIVALENCE OF GENERAL INTEGRAL OPERATOR

B.A. Frasin, T. Al-Hawary, F. Yousef

Abstract. The object of the present paper is to obtain new univalence condi-

tions for the general integral operator In(z) =

[
δ
z∫
0

tδ−1
n∏
j=1

(
fj(t)
gj(t)

)αj (f ′j(t)
g′j(t)

)βj
dt

] 1
δ

defined in the open unit disc U = {z : |z| < 1} where the functions fj , gj are analytic
in U , αj , βj and δ are complex numbers.
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1. Introduction and Definitions

LetA denote the class of all analytic functions f in the open unit disc U = {z : |z| < 1}
and normalized by the conditions f(0) = f ′(0)−1 = 0. Further, by S we shall denote
the class of all functions in A which are univalent in U .

A function f(z) ∈ A is said to be a member of the class B(γ) if it satisfies∣∣∣∣z2f ′(z)f2(z)
− 1

∣∣∣∣ < 1− γ, (1)

for some γ(0 ≤ γ < 1) and for all z ∈ U . The class B(γ) was introduced and studied
by Frasin and Darus [13].

Ponnusamy and Sing [20] studied the subclass Sµ of analytic functions defined
as follows

Sµ =

{
f ∈ A :

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < µ |z| , 0 < µ ≤ 1, z ∈ U
}
. (2)

The problem of finding sufficient conditions for univalence of various integral
operators has been investigated in many recent works (see, for example, [2, 4, 5, 6,
8, 10, 16, 17, 18]).
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In [19] (see also [1]), Pescar obtained new univalence criteria for the integral
operator defined by

In(z) =

δ z∫
0

tδ−1
n∏
j=1

(
fj(t)

gj(t)

)αj (f ′j(t)
g′j(t)

)βj
dt

 1
δ

, (3)

where the functions fj , gj ∈ A, αj , βj ∈ C; j = 1, . . . , n, n ∈ N and δ ∈ C\{0}. Here
and throughout in the sequel every many-valued function is taken with the principal
branch.

We observe that the above integral operator In(z) generalizes some integral op-
erators introduced by several researchers, for example.

1. If gj(z) = z; j = 1, . . . , n, then the integral operator In(z) reduces to the

integral operator

Fn(z) =

δ z∫
0

tδ−1
n∏
j=1

(
fj(t)

t

)αj (
f ′j(t)

)βj dt
 1
δ

, (4)

introduced by Frasin [12] (see also [11]).

2. If βj = 0; j = 1, . . . , n, then the integral operator In(z) reduces to the integral
operator

Gn(z) =

δ z∫
0

tδ−1
n∏
j=1

(
fj(t)

gj(t)

)αj
dt

 1
δ

, (5)

introduced by Moldoveanu et al. [14].

3. If gj(z) = z and βj = 0; j = 1, . . . , n, then the integral operator In(z) reduces
to the integral operator

Dn(z) =

δ z∫
0

tδ−1
n∏
j=1

(
fj(t)

t

)αj
dt

 1
δ

, (6)

introduced by Breaz and Breaz [3].
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In our present investigation, we study some univalence conditions for the integral
operator In(z) if the analytic functions fj(z) and gj(z) are in the classes B(γj) and
Sµj ; j = 1, . . . , n.

In order to derive our main results, we need the following lemmas.

Lemma 1. ([7]) If f(z) ∈ B(γ), then∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < (1− γ)(1 + |z|)
1− |z|

(0 ≤ γ < 1, z ∈ U). (7)

Lemma 2. ([9]) If f(z) ∈ B(γ), then∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ < (1− γ)(2 + |z|)
1− |z|

(0 ≤ γ < 1, z ∈ U). (8)

Lemma 3. ([15]) Let λ ∈ C with Re(λ) > 0. If k ∈ A satisfies

1− |z|2Re(λ)

Re(λ)

∣∣∣∣zk′′(z)k′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U , then, for any complex number ζ, with Re(ζ) ≥ Re(λ), the integral
operator

Fζ(z) =

ζ
z∫

0

tζ−1k′(t)dt


1
ζ

, (9)

is in the class S.

2. Univalence Conditions for the Integral Operator In

First, we give univalence conditions for the integral operator In(z) where the analytic
functions fj(z) and gj(z) are in the class B(γj); j = 1, . . . , n.

Theorem 4. Let the analytic functions fj(z) and gj(z) be in the class B(γj); 0 ≤
γj < 1; j = 1, . . . , n and satisfy the inequality

n∑
j=1

(1− γj)(4 |αj |+ 6
∣∣βj∣∣) ≤ { a, if 0 < a < 1

2
1
2 , if 1

2 < a <∞ (10)

where λ ∈ C with Re(λ) = a > 0, then the integral operator In(z) defined by (3) is
analytic and univalent in U .
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Proof. Define the regular function H(z) by

H(z) =

z∫
0

(
f1(t)

g1(t)

)α1

· · ·
(
fn(t)

gn(t)

)αn (f ′1(t)
g′1(t)

)β1

· · ·
(
f ′n(t)

g′n(t)

)βn
dt.

Clearly H ∈ A, i.e. H(0) = H ′(0)− 1 = 0. On the other hand, it is easy to see that

zH ′′(z)

H ′(z)
=

n∑
j=1

αj

[(
zf ′j(t)

fj(t)
−
zg′j(t)

gj(t)

)
+ βj

(
zf ′′j (t)

f ′j(t)
−
zg′′j (t)

g′j(t)

)]
, (11)

or, equivalently,

zH ′′(z)

H ′(z)
=

n∑
j=1

{
αj

[(
zf ′j(t)

fj(t)
− 1

)
−
(
zg′j(t)

gj(t)
− 1

)]
+ βj

(
zf ′′j (t)

f ′j(t)
−
zg′′j (t)

g′j(t)

)}
.

(12)
Since the analytic functions fj(z) and gj(z) are in the class B(γj); j = 1, . . . , n,

from (7), (8) and (12), we obtain∣∣∣∣zH ′′(z)H ′(z)

∣∣∣∣ ≤ n∑
j=1

{
|αj |

[∣∣∣∣zf ′j(t)fj(t)
− 1

∣∣∣∣+

∣∣∣∣zg′j(t)gj(t)
− 1

∣∣∣∣]

+
∣∣βj∣∣

[∣∣∣∣∣zf ′′j (t)

f ′j(t)

∣∣∣∣∣+

∣∣∣∣∣zg′′j (t)

g′j(t)

∣∣∣∣∣
]}

≤
n∑
j=1

{
2(1− γj) |αj |

(
1 + |z|
1− |z|

)
+ 2(1− γj)

∣∣βj∣∣ (2 + |z|
1− |z|

)}

≤ 1

1− |z|

n∑
j=1

(1− γj)(4 |αj |+ 6
∣∣βj∣∣), (13)

for all z ∈ U . Multiply both sides of (13) by 1−|z|2Re(λ)

Re(λ) , we get

1− |z|2Re(λ)

Re(λ)

∣∣∣∣zH ′′(z)H ′(z)

∣∣∣∣ ≤ 1− |z|2Re(λ)

(Re(λ))(1− |z|)

n∑
j=1

(1− γj)(4 |αj |+ 6
∣∣βj∣∣), (14)

for all z ∈ U .
Define the function Φ(x) = 1−x2a

1−x , where |z| = x, x ∈ [0, 1), and Re(λ) = a > 0.
It is easy to prove that

Φ(x) ≤
{

1, if 0 < a < 1
2

2a, if 1
2 < a <∞. (15)
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From (14), (15) and the hypothesis (10), we have

1− |z|2a

a

∣∣∣∣zH ′′(z)H ′(z)

∣∣∣∣ ≤


1
a

n∑
j=1

(1− γj)(4 |αj |+ 6
∣∣βj∣∣), if 0 < a < 1

2

2
n∑
j=1

(1− γj)(4 |αj |+ 6
∣∣βj∣∣), if 1

2 < a <∞

≤ 1,

for all z ∈ U . Applying Lemma 3 for the function H(z), we prove that In(z) ∈ S.
Thus, the proof is complete

Our next result gives univalence conditions for the integral operator In(z) where
the analytic functions fj(z) and gj(z) are in the class Sµj ; j = 1, . . . , n.

Theorem 5. Let the analytic functions fj(z) and gj(z) be in the class Sµj ; 0 <
µj ≤ 1; j = 1, . . . , n and satisfy the inequality∣∣∣∣∣zf ′′j (z)

f ′j(z)
−
zg′′j (z)

g′j(z)

∣∣∣∣∣ < |z| (j = 1, . . . , n, z ∈ U). (16)

If λ ∈ C with Re(λ) = a > 0 and

n∑
j=1

(2µj |αj |+ βj) ≤
(2a+ 1)

2a+1
2a

2
, (17)

then the integral operator In(z) defined by (3) is analytic and univalent in U .

Proof. Let the analytic functions fj(z) and gj(z) be in the class Sµj ; 0 < µj ≤ 1;
j = 1, . . . , n. Then from (2) and (12) we get∣∣∣∣zH ′′(z)H ′(z)

∣∣∣∣ ≤ n∑
j=1

{
|αj |

[∣∣∣∣zf ′j(t)fj(t)
− 1

∣∣∣∣+

∣∣∣∣zg′j(t)gj(t)
− 1

∣∣∣∣]

+
∣∣βj∣∣

∣∣∣∣∣zf ′′j (t)

f ′j(t)
−
zg′′j (t)

g′j(t)

∣∣∣∣∣
}

≤
n∑
j=1

(2µj |αj |+ βj) |z| .

Thus, we have

1− |z|2a

a

∣∣∣∣zH ′′(z)H ′(z)

∣∣∣∣ ≤ 1

a

n∑
j=1

(2µj |αj |+ βj) |z| (1− |z|
2a) (z ∈ U).
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Let us denote |z| = x, x ∈ [0, 1], Re(λ) = a > 0 and Ψ(x) = x(1−x2a). It is easy
to prove that the maximum is attained at the point x = 1/(2a+1)1/2a and therefore
we have

Ψ(x) ≤ 2a

(2a+ 1)
2a+1
2a

.

In view of this inequality and (17), we obtain

1− |z|2a

a

∣∣∣∣zH ′′(z)H ′(z)

∣∣∣∣ ≤ 1 (z ∈ U).

Applying Lemma 3 for the function H(z), we prove that In(z) ∈ S.

We conclude our present investigation by mentioning that, by suitably special-
izing the parameters involved, our main results would yield the following new uni-
valence conditions for some integral operators introduced in Section 1.

Corollary 6. Let the analytic functions fj(z) in the class B(γj); 0 ≤ γj < 1;
j = 1, . . . , n and satisfy the inequality

n∑
j=1

(1− γj)(4 |αj |+ 6
∣∣βj∣∣) ≤ { a, if 0 < a < 1

2
1
2 , if 1

2 < a <∞ (18)

where λ ∈ C with Re(λ) = a > 0, then the integral operator Fn(z) defined by (4) is
analytic and univalent in U .

Corollary 7. Let the analytic functions fj(z) in the class B(γj); 0 ≤ γj < 1;
j = 1, . . . , n and satisfy the inequality

n∑
j=1

(1− γj) |αj | ≤
{

a
4 , if 0 < a < 1

2
1
8 , if 1

2 < a <∞ (19)

where λ ∈ C with Re(λ) = a > 0, then the integral operator Gn(z) defined by (5) is
analytic and univalent in U .

Corollary 8. Let the analytic functions fj(z) be in the class Sµj ; 0 < µj ≤ 1;
j = 1, . . . , n and satisfy the inequality∣∣∣∣∣zf ′′j (z)

f ′j(z)

∣∣∣∣∣ < |z| (j = 1, . . . , n, z ∈ U). (20)
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If λ ∈ C with Re(λ) = a > 0 and

n∑
j=1

(2µj |αj |+ βj) ≤
(2a+ 1)

2a+1
2a

2
, (21)

then the integral operator Fn(z) defined by (4) is analytic and univalent in U .

Corollary 9. Let the analytic functions fj(z) and gj(z) be in the class Sµj ; 0 <
µj ≤ 1; j = 1, . . . , n and satisfy the inequality∣∣∣∣∣zf ′′j (z)

f ′j(z)
−
zg′′j (z)

g′j(z)

∣∣∣∣∣ < |z| (j = 1, . . . , n, z ∈ U). (22)

If λ ∈ C with Re(λ) = a > 0 and

n∑
j=1

µj |αj | ≤
(2a+ 1)

2a+1
2a

4
, (23)

then the integral operator Dn(z) defined by (6) is analytic and univalent in U .
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