UNIVALENCY OF SOME OPERATORS FOR ANALYTIC FUNCTIONS

S. Owa, H. Saitoh, J. Sokół, M. Nunokawa

ABSTRACT. For analytic functions f(z) in the open unit disk \mathbb{U} , univalency of some integral operators concerning with Alexander type integrals is considered. Also some subordinations for analytic functions f(z) in \mathbb{U} are discussed with the Schwarzian derivative of f(z).

2010 Mathematics Subject Classification: 30C45, 30C80.

Keywords: Schwarzian derivative, Bazilević function, close-to-convex function, subordination, convex function.

1. INTRODUCTION

Let \mathcal{H} denote the class of functions f(z) which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. Also let \mathcal{A} be the subclass of \mathcal{H} consisting of functions f(z) of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \qquad (z \in \mathbb{U}).$$

Let S be the subclass of A consisting of f(z) which are univalent in \mathbb{U} . If $f(z) \in A$ satisfies

(1.2)
$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \quad (z \in \mathbb{U})$$

for some real α ($0 \leq \alpha < 1$), then f(z) is said to be starlike of order α in \mathbb{U} and denoted by $f(z) \in S^*(\alpha)$. For $\alpha = 0$, we say that $f(z) \in S^*$ is starlike with respect to the origin. Further, if a function $f(z) \in \mathcal{A}$ satisfies $zf'(z) \in S^*(\alpha)$ ($0 \leq \alpha < 1$), then f(z) is said to be convex of order α in \mathbb{U} and denoted by $f(z) \in \mathcal{K}(\alpha)$. A function $f(z) \in \mathcal{K}(\alpha)$ satisfies

(1.3)
$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > \alpha \qquad (z \in \mathbb{U}).$$

For $\alpha = 0$, we write that $\mathcal{K}(0) \equiv \mathcal{K}$. We note that

$$\mathcal{K}(\alpha) \subset \mathcal{S}^*(\alpha) \subset \mathcal{S} \subset \mathcal{A} \subset \mathcal{H}.$$

If there exists a function $g(z) \in \mathcal{K}$ such that

(1.4)
$$\operatorname{Re}\left(e^{-i\beta}\frac{f'(z)}{g(z)}\right) > 0 \qquad (z \in \mathbb{U})$$

for $\beta \in (-\pi/2, \pi/2)$ and $f(z) \in \mathcal{A}$, then f(z) is said to be close-to-convex in \mathbb{U} and denoted by $f(z) \in \mathcal{C}$. It is known that $\mathcal{C} \subset \mathcal{S}$.

For $f(z) \in \mathcal{H}$, the Schwarzian derivative of f(z) is given by

(1.5)
$$\{f;z\} = 6\left(\frac{\partial^2}{\partial z \partial \zeta} \log\left(\frac{f(z) - f(\zeta)}{z - \zeta}\right)\right)_{z=\zeta} = \left(\frac{f''(z)}{f'(z)}\right)' - \frac{1}{2}\left(\frac{f''(z)}{f'(z)}\right)^2.$$

For the Schwarzian derivative $\{f; z\}$ for $f(z) \in \mathcal{H}$, it is well-known that if $f(z) \in \mathcal{H}$ is univalent in \mathbb{U} , then

(1.6)
$$|\{f;z\}| \leq \frac{6}{(1-|z|^2)^2} \qquad (z \in \mathbb{U})$$

and the equality holds true for the Koebe function $f(z) = z/(1-z)^2$. Further, we know that the Nehari's condition (see Nehari [10])

(1.7)
$$|\{f;z\}| \leq \frac{2}{(1-|z|^2)^2} \quad (z \in \mathbb{U})$$

implies that $f(z) \in \mathcal{H}$ is univalent in \mathbb{U} .

Note that $f(z) \in \mathcal{A}$ is uniformly locally univalent if and only if the pre-Schwarzian derivative

(1.8)
$$T_f(z) = \frac{f''(z)}{f'(z)}$$

is hyperbolically bounded, that is, that the norm

(1.9)
$$|| f || = \sup_{|z| < 1} (1 - |z|^2) |T_f(z)|$$

is finite. This quantity can be regarded as the Bloch norm of function $(\log f(z))'$. Both of the pre-Schwarzian derivative and the norm || f || play a central role in the theory of Teichmüller spaces, inner radius of univalence, quasiconformal extension, etc.. If $f(z) \in \mathcal{A}$ is univalent in \mathbb{U} , then || f || < 6 and the bound 6 is sharp for the Koebe function $k(z) = z/(1-z)^2$.

Conversely, if $f(z) \in \mathcal{A}$ satisfies || f || < 1, then f(z) is univalent in \mathbb{U} by Becker [1]. Also, it is known that || f || < 4 for $f(z) \in \mathcal{K}$. For $f(z) \in \mathcal{A}$, the Alexander transformation J[f](z) is defined by

(1.10)
$$J[f](z) = \int_0^z \frac{f(t)}{t} dt.$$

If $f(z) \in S$, then f(z) is locally univalent and || J[f] || < 6 by Kim, Choi and Sugawa [6]. Also, Yamashita [12] proved that if $f(z) \in S^*(\alpha)$, then $|| f || < 6 - 4\alpha$ and $|| J[f] || < 4(1 - \alpha)$. By means of (1.5) and (1.8), we see that

(1.11)
$$\{f;z\} = (T_f(z))' - \frac{1}{2}(T_f(z))^2.$$

The Alexander transformation J[f](z) of $f(z) \in \mathcal{A}$ is also called as Biernacki's integral. It is known that $J[f](\mathcal{S}^*) = \mathcal{K}$ while $J[f](\mathcal{S})$ is not in \mathcal{S} . In this paper, we would like to extend the type of functions f(z) to be considered by introducing a parameter α and setting an integral of the form

(1.12)
$$F_{\alpha}(z) = \int_0^z \left(\frac{tf'(t)}{f(t)}\right)^{\alpha} dt.$$

For more details on this integral, we refer to Goodman [4]. The following lemma due to Fukui and Sakaguchi [3] is a generalization of Jack's lemma by Jack [5] (also by Miller and Mocanu [9]).

Lemma 1.1 Let $w(z) = a_p z^p + a_{p+1} z^{p+1} + \cdots$ be analytic in \mathbb{U} with $a_p \neq 0$ and $p \geq 1$. If the maximum value of |w(z)| on the circle |z| = r < 1 is attained at $z = z_0$, then $z_0 w'(z_0)/w(z_0)$ is real and

(1.13)
$$\frac{z_0 w'(z_0)}{w(z_0)} \ge p.$$

2. Univalency of some operators

We first derive

Theorem 2.1 Let f(z) be analytic in \mathbb{U} with f(0) = 0. If f(z) satisfies

(2.1)
$$|f(z)| \leq \frac{M}{1 - |z|^2} \quad (z \in \mathbb{U})$$

for a bounded positive constant M, then

(2.2)
$$|f(z)| \leq \frac{3\sqrt{3}M|z|}{2} \leq \frac{3\sqrt{3}M|z|}{2(1-|z|^2)} \qquad (|z| \leq \frac{\sqrt{3}}{3})$$

and

(2.3)
$$|f(z)| \leq \frac{\sqrt{3}M|z|}{1-|z|^2} \leq \frac{3\sqrt{3}M|z|}{2(1-|z|^2)} \qquad (\frac{\sqrt{3}}{3} \leq |z| < 1).$$

Proof For the case of $|z| \leq \sqrt{3}/3$, we have

(2.4)
$$\frac{1}{1-|z|^2} \le \frac{3}{2}.$$

Thus, the inequality (2.1) gives

(2.5)
$$|f(z)| \leq \frac{3M}{2} \quad (|z| \leq \frac{\sqrt{3}}{3}).$$

Therefore, applying the Schwarz lemma for f(z) with $|z| \leq \sqrt{3}/3$, we obtain that

(2.6)
$$|f(z)| \leq \sqrt{3}|z| \frac{3M}{2} \quad (|z| \leq \frac{\sqrt{3}}{3})$$

which shows (2.2). If $\sqrt{3}/3 \leq |z| < 1$, we know that $\sqrt{3}|z| \geq 1$. This gives us that

(2.7)
$$|f(z)| \leq \frac{\sqrt{3}M|z|}{1-|z|^2} \qquad (\frac{\sqrt{3}}{3} \leq |z| < 1)$$

which implies the inequality (2.3).

Corollary 2.1 If f(z) is analytic in \mathbb{U} with f(0) = 0, then there exists some $z \in \mathbb{U}$ such that

(2.8)
$$|f(z)| \leq \frac{M}{1 - |z|^2}$$

satisfies

4

(2.9)
$$|f(z)| \leq \frac{3\sqrt{3}M|z|}{2(1-|z|^2)}$$

for a positive constant M.

Remark 2.1 Noting that $3\sqrt{3}/2 = 2.598...$, we conjecture that $3\sqrt{3}/2$ in Corollary 2.1 can be replaced by 1.

Next, we derive

Theorem 2.2 For a function $f(z) \in S$, we assume that the function $(zf'(z)/f(z))^{\alpha}$ is analytic in \mathbb{U} for $\alpha > 0$ with

(2.10)
$$\left. \left(\frac{zf'(z)}{f(z)} \right)^{\alpha} \right|_{z=0} = 1$$

Then, the integral transformation $F_{\alpha}(z)$ defined by (1.12) is univalent in \mathbb{U} for

(2.11)
$$0 < \alpha \leq \alpha_0 = \frac{2\sqrt{5} - 4}{15\sqrt{3}} = 0.0181725\dots$$

Proof Note that

(2.12)
$$F'_{\alpha}(z) = \left(\frac{zf'(z)}{f(z)}\right)^{\alpha} \qquad (z \in \mathbb{U})$$

by $F_{\alpha}(z)$ in (1.12). This gives us that

(2.13)
$$\frac{F_{\alpha}''(z)}{F_{\alpha}'(z)} = \frac{\alpha}{z} \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right).$$

If we put

(2.14)
$$h(z) = 1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \qquad (z \in \mathbb{U}),$$

we have that h(0) = 0 and

(2.15)
$$|h(z)| \leq \left|1 + \frac{zf''(z)}{f'(z)}\right| + \left|\frac{zf'(z)}{f(z)}\right|.$$

On the other hand, it is well-known that if $f(z) \in S$, then

(2.16)
$$\left|\frac{zf''(z)}{f'(z)} - \frac{2|z|^2}{1-|z|^2}\right| \le \frac{4|z|}{1-|z|^2} \qquad (z \in \mathbb{U})$$

that is,

(2.17)
$$\left|1 + \frac{zf''(z)}{f'(z)} - \frac{1+|z|^2}{1-|z|^2}\right| \leq \frac{4|z|}{1-|z|^2} \qquad (z \in \mathbb{U}).$$

This gives that

(2.18)
$$\left|1 + \frac{zf''(z)}{f'(z)}\right| \leq \frac{4|z|}{1 - |z|^2} + \frac{1 + |z|^2}{1 - |z|^2} < \frac{6}{1 - |z|^2} \qquad (z \in \mathbb{U}).$$

Further, we know that

(2.19)
$$\left|\frac{zf'(z)}{f(z)}\right| \leq \frac{1+|z|}{1-|z|} = \frac{(1+|z|)^2}{1-|z|^2} < \frac{4}{1-|z|^2} \qquad (z \in \mathbb{U}).$$

Therefore, the inequality (2.15) implies that

(2.20)
$$|h(z)| < \frac{10}{1 - |z|^2} \qquad (z \in \mathbb{U}).$$

Considering M = 10 in (2.1) of Theorem 2.1, we say that

(2.21)
$$|h(z)| < \frac{15\sqrt{3}|z|}{1-|z|^2} \quad (z \in \mathbb{U}).$$

Therefore, we have that

(2.22)
$$\left|\frac{F_{\alpha}''(z)}{F_{\alpha}'(z)}\right| \leq \frac{\alpha}{|z|}|h(z)| < \frac{15\sqrt{3}\alpha}{1-|z|^2} \qquad (z \in \mathbb{U}).$$

By using of the result in [11], we know that there exists a point $z \in \mathbb{U}$ that if

(2.23)
$$|h(z)| < \frac{1}{1 - |z|^2} \qquad (z \in \mathbb{U}),$$

then

(2.24)
$$|h'(z)| < \frac{4}{(1-|z|^2)^2} \quad (z \in \mathbb{U}).$$

It follows from the above that

(2.25)
$$\left| \left(\frac{F_{\alpha}''(z)}{F_{\alpha}'(z)} \right)' \right| < \frac{60\sqrt{3}\alpha}{(1-|z|^2)^2} \qquad (z \in \mathbb{U}).$$

Therefore, we have that

(2.26)
$$\left|\left\{F_{\alpha}(z);z\right\}\right| \leq \left|\left(\frac{F_{\alpha}''(z)}{F_{\alpha}'(z)}\right)'\right| + \frac{1}{2}\left|\frac{F_{\alpha}''(z)}{F_{\alpha}'(z)}\right|^{2}$$

$$\leq \frac{60\sqrt{3}\alpha}{(1-|z|^2)^2} + \frac{1}{2}\left(\frac{15\sqrt{3}\alpha}{1-|z|^2}\right)^2 = \frac{15(45\alpha + 8\sqrt{3})\alpha}{2(1-|z|^2)^2} \qquad (z \in \mathbb{U})$$

Applying the Nehari's condition (1.7) for $F_{\alpha}(z)$, we need that

(2.27)
$$\frac{15(45\alpha + 8\sqrt{3})\alpha}{2} \leq 2,$$

that is, that

(2.28)
$$0 < \alpha \leq \alpha_0 = \frac{2\sqrt{5} - 4}{15\sqrt{3}} = 0.0181725\dots$$

This completes the proof of the theorem.

Next, we recall here a result by Chichra and Singh [2] that if

(2.29)
$$z + z^2 \log \frac{g(z)}{z} \in \mathcal{S}^*$$

then there exist some $t \ (0 \leq t \leq 1)$ and $\alpha \ (0 \leq \alpha \leq 1/2)$ such that

(2.30)
$$tz + (1-t) \int_0^z \left(\frac{tg'(t)}{g(t)}\right)^\alpha dt \in \mathcal{S}^*.$$

Letting

(2.31)
$$\frac{g(z)}{z} = \frac{zf'(z)}{f(z)}$$

for $f(z) \in \mathcal{A}$, Theorem 2.2 becomes

Theorem 2.3 Assume that $g(z) \in \mathcal{A}$ satisfies

(2.32)
$$z \exp\left(\int_0^z \frac{\frac{g(t)}{t} - 1}{t} dt\right) \in \mathcal{S},$$

the function $(g(z)/z)^{\alpha}$ is analytic in $\mathbb U$ with $0 < \alpha < 1$ and

(2.33)
$$\left(\frac{g(z)}{z}\right)^{\alpha}\Big|_{z=0} = 1.$$

If $0 < \alpha \leq \alpha_0 = (2\sqrt{5}-4)/15\sqrt{3} = 0.0181725\cdots$, then the integration $\int_0^z (g(t)/t)^{\alpha} dt$ is univalent in \mathbb{U} .

By means of the result due to Krzyż [7], we know that $g(z) \in S$ is not implies that $\int_0^z (g(t)/t) dt \in S$. The counterexample for the above is given by

(2.34)
$$g(z) = \frac{z}{(1-iz)^{1-i}}$$

On the other hand, Merkes and Wright [8] showed that if $g(z) \in \mathcal{S}^*$, then

(2.35)
$$\int_0^z \left(\frac{g(t)}{t}\right)^\alpha dt \in \mathcal{C}$$

for $-1/2 \leq \alpha \leq 3/2$. Theorem 2.3 says that if

(2.36)
$$z \exp\left(\int_0^z \frac{\frac{g(t)}{t} - 1}{t} dt\right) \in \mathcal{S},$$

then

(2.37)
$$\int_0^z \left(\frac{g(t)}{t}\right)^\alpha dt \in \mathcal{S}$$

for $0 < \alpha \leq \alpha_0 = (2\sqrt{5} - 4)/15\sqrt{3}$.

Corollary 2.2 If $g(z) \in \mathcal{A}$ satisfies

(2.38)
$$\operatorname{Re}\left(\frac{g(z)}{z}\right) > 0 \quad (z \in \mathbb{U}),$$

then

(2.39)
$$\int_0^z \left(\frac{g(t)}{t}\right)^\alpha dt$$

is univalent in \mathbb{U} , where $0 < \alpha \leq \alpha_0 = (2\sqrt{5} - 4)/15\sqrt{3}$.

3. An application of Schwarzian derivative

Next, we would like to consider an application of Schwarzian derivative concerning with the subordinations. Let $f(z) \in \mathcal{A}$ and $g(z) \in \mathcal{A}$. Then the function f(z) is said to subordinate to g(z) if there exists a function w(z) analytic in \mathbb{U} with w(0) = 0and |w(z)| < 1 such that f(z) = g(w(z)) for $z \in \mathbb{U}$. We write that

$$(3.1) f(z) \prec g(z) (z \in \mathbb{U})$$

if f(z) subordinates to g(z) in U. Also, if g(z) is univalent in U, then $f(z) \prec g(z)$ is equivalent to f(0) = g(0) and $f(\mathbb{U}) \subset g(\mathbb{U})$ (see Miller and Mocanu [9]).

Now, we derive

Theorem 3.1 Let $f(z) \in \mathcal{A}$ satisfy

$$(3.2) |z2{f;z}| < \alpha(1-\beta) (z \in \mathbb{U}),$$

where $0 < \alpha < 1$ and

(3.3)
$$\left|\frac{zh''(z)}{h'(z)} - \frac{2zh'(z)}{h(z)+1}\right| \leq \beta \qquad (z \in \mathbb{U})$$

with

(3.4)
$$h(z) = (f'(z))^{1/\alpha} \neq \pm 1.$$

Then we have that

(3.5)
$$f'(z) \prec \left(\frac{1+z}{1-z}\right)^{\alpha} \qquad (z \in \mathbb{U})$$

or

(3.6)
$$|\arg f'(z)| < \frac{\pi}{2}\alpha \qquad (z \in \mathbb{U}).$$

Therefore, f(z) is univalent in \mathbb{U} .

Proof For $h(z) = (f'(z))^{1/\alpha}$ (0 < α < 1), we define the function w(z) by

(3.7)
$$w(z) = \frac{h(z) - 1}{h(z) + 1} = \frac{c_n}{2}z + \cdots$$

with w(0) = 0. This implies that

(3.8)
$$f'(z) = \left(\frac{1+w(z)}{1-w(z)}\right)^{\alpha}$$

It follows from (3.8) that

(3.9)
$$f''(z) = \frac{2\alpha w'(z)}{1 - w(z)^2} \left(\frac{1 + w(z)}{1 - w(z)}\right)^{\alpha} = \frac{2\alpha w'(z)}{1 - w(z)^2} f'(z),$$

that is, that

(3.10)
$$\frac{f''(z)}{f'(z)} = \frac{2\alpha w'(z)}{1 - w(z)^2}.$$

Thus, we obtain that

(3.11)
$$\left(\frac{f''(z)}{f'(z)}\right)^2 = \left(\frac{zf''(z)}{f'(z)}\right)^2 \frac{1}{z^2} = \left(\frac{2\alpha zw'(z)}{1-w(z)^2}\right)^2 \frac{1}{z^2}.$$

We suppose that there exists a point $z_0 \in \mathbb{U}$ such that |w(z)| < 1 $(|z| < |z_0| < 1)$ and $|w(z_0)| = 1$. Then Lemma 1.1 gives us that

(3.12)
$$\frac{z_0 w'(z_0)}{w(z_0)} = k \ge 1.$$

Further, by the result due to Miller and Mocanu [9], we have that

(3.13)
$$\operatorname{Re}\left(\frac{z_0 w''(z_0)}{w'(z_0)}\right) \ge 0.$$

Therefore, we have that

(3.14)
$$\left(\frac{f''(z_0)}{f'(z_0)}\right)^2 = \left(\frac{2\alpha k w(z_0)}{1 - w(z_0)^2}\right)^2 \frac{1}{z_0^2}$$
$$= \left(\frac{i\alpha k}{\sin\theta}\right)^2 \frac{1}{z_0^2} = -\left(\frac{\alpha k}{\sin\theta}\right)^2 \frac{1}{z_0^2},$$

where $w(z_0) = e^{i\theta}$ $(0 \le \theta < 2\pi)$. Also, we see that

(3.15)
$$\left(\frac{f''(z)}{f'(z)} \right)' \Big|_{z=z_0} = \left(\frac{2\alpha w'(z)}{1 - w(z)^2} \right)' \Big|_{z=z_0}$$
$$= 2\alpha \left(\frac{w''(z_0)}{1 - w(z_0)^2} \right) + \frac{4\alpha w(z)(w'(z))^2}{(1 - w(z)^2)^2} \Big|_{z=z_0}$$
$$= \frac{ik\alpha}{\sin\theta} \left(\frac{z_0 w''(z_0)}{w'(z_0)} \right) \frac{1}{z_0} + \left(\frac{ik}{\sin\theta} \right)^2 \frac{\alpha w(z_0)}{z_0^2}$$
$$= \frac{k\alpha}{\sin\theta} \left\{ i \left(\frac{z_0 w''(z_0)}{w'(z_0)} \right) - \frac{kw(z_0)}{\sin\theta} \right\} \frac{1}{z_0^2}.$$

Consequetly, we obtain that

(3.16)
$$z_0^2\{f;z\} = \frac{k\alpha}{\sin\theta} \left\{ i \left(\frac{z_0 w''(z_0)}{w'(z_0)} \right) - \frac{kw(z_0)}{\sin\theta} + \frac{\alpha k}{2\sin\theta} \right\}$$
$$= \frac{k\alpha}{2\sin\theta} \left\{ 2i \left(\frac{z_0 w''(z_0)}{w'(z_0)} \right) + \frac{k}{\sin\theta} (\alpha - 2\cos\theta - 2i\sin\theta) \right\}$$

and so

$$(3.17) \qquad |z_0^2\{f; z_0\}| \ge \frac{\alpha}{2} \left| \left| \frac{k}{\sin \theta} \right| |\alpha - 2\cos \theta - 2i\sin \theta| - 2 \left| \frac{z_0 w''(z_0)}{w'(z_0)} \right| \right|$$
$$\ge \frac{\alpha}{2} \left| k \sqrt{\frac{\alpha^2 - 4\alpha \cos \theta + 4}{1 - \cos^2 \theta}} - 2 \left| \frac{z_0 w''(z_0)}{w'(z_0)} \right| \right|.$$

If we define a function p(x) by

(3.18)
$$p(x) = \frac{\alpha^2 - 4\alpha x + 4}{1 - x^2} \qquad (x = \cos \theta),$$

then

(3.19)
$$p'(x) = \frac{-2(2x-\alpha)(\alpha x - 2)}{(1-x^2)^2}$$

gives that p(x) takes its minimum value at $x = \alpha/2 < 1/2$, because $0 < \alpha < 1$ and $-1 \leq x \leq 1$. This shows us that $p(x) \geq 4$ and so

(3.20)
$$|z_0^2\{f; z_0\}| \ge \alpha \left|1 - \left|\frac{z_0 w''(z_0)}{w'(z_0)}\right|\right|$$
$$= \alpha \left|1 - \left|\frac{z_0 h''(z_0)}{h'(z_0)} - \frac{2z_0 h'(z_0)}{h(z_0) + 1}\right|\right| \ge \alpha (1 - \beta).$$

This contradicts the condition (3.2) of the theorem. Therefore, there is no $z_0 \in \mathbb{U}$ such that $|w(z_0)| = 1$. This implies that there exists w(z) such that

(3.21)
$$f'(z) = \left(\frac{1+w(z)}{1-w(z)}\right)^{\alpha} \qquad (z \in \mathbb{U})$$

with w(0) = 0 and |w(z)| < 1 ($z \in \mathbb{U}$). Consequently, we prove the subordination (3.5).

Further, since

(3.22)
$$\left| \arg\left(\frac{1+z}{1-z}\right) \right| < \frac{\pi}{2} \qquad (z \in \mathbb{U}),$$

we obtain (3.6) for $\arg f'(z)$.

Making $\alpha = 1/2$ in Theorem 3.1, we derive Corollary 3.1 Let $f(z) \in \mathcal{A}$ satisfy

(3.23)
$$|z^2\{f;z\}| < \frac{1-\beta}{2} \qquad (z \in \mathbb{U})$$

with

(3.24)
$$\left|\frac{zh''(z)}{h'(z)} - \frac{2zh'(z)}{h(z)+1}\right| \leq \beta \qquad (z \in \mathbb{U})$$

and $h(z) = \sqrt{f'(z)} \neq \pm 1$. Then we have

(3.25)
$$f'(z) \prec \sqrt{\frac{1+z}{1-z}} \qquad (z \in \mathbb{U})$$

or

(3.26)
$$|\operatorname{arg} f'(z)| < \frac{\pi}{4} \qquad (z \in \mathbb{U}).$$

Acknowledgements Professor Mamoru Nunokawa has got the decoration of [Zuihouchujishou] by Japanese Gavernment on May 12, 2017. He would like to express his deep thanks for Prof. Owa, Prof. Saitoh and Prof. Sokółto support his research for long time.

References

[1] J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen (German), J. Reine Angew. Math., 255(1972), 23 – 43.

[2] P. N. Chichra and R. Singh, *Convex sum of univalent functions*. J. Austral. Math. Soc., 14(1972), 503 – 507.

[3] S. Fukui and K. Sakaguchi, An extension of a theorem of S. Ruscheweyh, Bull. Fac. Edu. Wakayama Univ. Nat. Sci., 29(1980), 1–3.

[4] A. W. Goodman, *Univalent Functions*, Vols. I and II, Mariner Publishing Co., Tampa, Florida (1983).

[5] I. S. Jack, Functions starlike and convex of order α , J. London Math. Soc., 3(1971), 469–474.

[6] Y.C. Kim, J.H. Choi and T. Sugawa, *Coefficient bounds and convolution prop*erties for certain classes of close-to-convex functions. Proc. Japan Acad., 76(2000), 95 – 98.

[7] J. Krzyż and Z. Lewandowski, On the integral of univalent functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 11(1963), 447–448.

[8] E. P. Merkes and D. J. Wright, On the univalence of a certain integral, Proc. Amer. Math. Soc., 27(1971), 97 – 100.

[9] S. S. Miller and P. T. Mocanu, *Differential Subordinations, Theory and Applications*, Series of Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York / Basel 2000.

[10] Z. Nehari, *The Schwarzian derivative and schlicht functions*, Bull. Amer. Math. Soc., 55(1949), 545 – 551.

[11] Research Problems, Bull. Amer. Math. Soc., 71(1965), 545 – 551. Research Problems from a Symposium on Analytic Function Theory which was held at the University of Kentucky, May 28-June 1, 1965.

[12] S. Yamashita, Norm estimates for function starlike or convex of order alpha. Hokkaido Math. J., 28(1999), 217 – 230.

Shigeyoshi Owa Department of Mathematics Yamato University Katayama 2-5-1, Suita, Osaka 564-0082, Japan e-mail: shige21@ican.zaq.ne.jp

Hitoshi Saitoh Department of Mathematics Gunma National College of Technology Toriba, Maebashi, Gunma 371-8530, Japan e-mail: sp822457@db4.so-net.ne.jp

Janusa Sokół University of Rzeszów Faculty of Mathematics and Natural Sciences UL. Prof. Pigonia 1, 35-310 Rzeszów, Poland e-mail: jsokol@ur.edu.pl

Mamoru Nunokawa Honorary Professor University of Gunma Hoshikuki-Cho 798-8, Chuou-Ward, Chiba 260-0808, Japan e-mail: mamoru_nuno@doctor.nifty.jp