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Abstract. For analytic functions f(z) in the open unit disk U, univalency
of some integral operators concerning with Alexander type integrals is considered.
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1. Introduction

Let H denote the class of functions f(z) which are analytic in the open unit disk
U = {z ∈ C : |z| < 1}. Also let A be the subclass of H consisting of functions f(z)
of the form

(1.1) f(z) = z +

∞∑
n=2

anz
n (z ∈ U).

Let S be the subclass of A consisting of f(z) which are univalent in U. If f(z) ∈ A
satisfies

(1.2) Re

(
zf ′(z)

f(z)

)
> α (z ∈ U)

for some real α (0 5 α < 1), then f(z) is said to be starlike of order α in U and
denoted by f(z) ∈ S∗(α). For α = 0, we say that f(z) ∈ S∗ is starlike with respect
to the origin. Further, if a fnction f(z) ∈ A satisfies zf ′(z) ∈ S∗(α) (0 5 α < 1),
then f(z) is said to be convex of order α in U and denoted by f(z) ∈ K(α). A
function f(z) ∈ K(α) satisfies

(1.3) Re

(
1 +

zf ′′(z)

f ′(z)

)
> α (z ∈ U).
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For α = 0, we write that K(0) ≡ K. We note that

K(α) ⊂ S∗(α) ⊂ S ⊂ A ⊂ H.

If there exists a function g(z) ∈ K such that

(1.4) Re

(
e−iβ

f ′(z)

g(z)

)
> 0 (z ∈ U)

for β ∈ (−π/2, π/2) and f(z) ∈ A, then f(z) is said to be close-to-convex in U and
denoted by f(z) ∈ C. It is known that C ⊂ S.

For f(z) ∈ H, the Schwarzian derivative of f(z) is given by

(1.5) {f ; z} = 6

(
∂2

∂z∂ζ
log

(
f(z)− f(ζ)

z − ζ

))
z=ζ

=

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

.

For the Schwarzian derivative {f ; z} for f(z) ∈ H, it is well-known that if f(z) ∈ H
is univalent in U, then

(1.6) |{f ; z}| 5 6

(1− |z|2)2
(z ∈ U)

and the equality holds true for the Koebe function f(z) = z/(1 − z)2. Further, we
know that the Nehari’s condition (see Nehari [10])

(1.7) |{f ; z}| 5 2

(1− |z|2)2
(z ∈ U)

implies that f(z) ∈ H is univalent in U.
Note that f(z) ∈ A is uniformly locally univalent if and only if the pre-Schwarzian
derivative

(1.8) Tf (z) =
f ′′(z)

f ′(z)

is hyperbolically bounded, that is, that the norm

(1.9) ‖ f ‖= sup|z|<1(1− |z|2)|Tf (z)|

is finite. This quantity can be regarded as the Bloch norm of function (logf(z))′.
Both of the pre-Schwarzian derivative and the norm ‖ f ‖ play a central role in the
theory of Teichmüller spaces, inner radius of univalence, quasiconformal extension,
etc.. If f(z) ∈ A is univalent in U, then ‖ f ‖< 6 and the bound 6 is sharp for the
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Koebe function k(z) = z/(1− z)2.
Conversely, if f(z) ∈ A satisfies ‖ f ‖< 1, then f(z) is univalent in U by Becker
[1]. Also, it is known that ‖ f ‖< 4 for f(z) ∈ K. For f(z) ∈ A, the Alexander
transformation J [f ](z) is defined by

(1.10) J [f ](z) =

∫ z

0

f(t)

t
dt.

If f(z) ∈ S, then f(z) is locally univalent and ‖ J [f ] ‖< 6 by Kim, Choi and
Sugawa [6]. Also, Yamashita [12] proved that if f(z) ∈ S∗(α), then ‖ f ‖< 6 − 4α
and ‖ J [f ] ‖< 4(1− α). By means of (1.5) and (1.8), we see that

(1.11) {f ; z} = (Tf (z))′ − 1

2
(Tf (z))2.

The Alexander transformation J [f ](z) of f(z) ∈ A is also called as Biernacki’s
integral. It is known that J [f ](S∗) = K while J [f ](S) is not in S. In this paper, we
would like to extend the type of functions f(z) to be considered by introducing a
parameter α and setting an integral of the form

(1.12) Fα(z) =

∫ z

0

(
tf ′(t)

f(t)

)α
dt.

For more details on this integral, we refer to Goodman [4]. The following lemma
due to Fukui and Sakaguchi [3] is a generalization of Jack’s lemma by Jack [5] (also
by Miller and Mocanu [9]).

Lemma 1.1 Let w(z) = apz
p + ap+1z

p+1 + · · · be analytic in U with ap 6= 0
and p = 1. If the maximum value of |w(z)| on the circle |z| = r < 1 is attained at
z = z0, then z0w

′(z0)/w(z0) is real and

(1.13)
z0w

′(z0)

w(z0)
= p.

2. Univalency of some operators

We first derive

Theorem 2.1 Let f(z) be analytic in U with f(0) = 0. If f(z) satisfies

(2.1) |f(z)| 5 M

1− |z|2
(z ∈ U)
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for a bounded positive constant M , then

(2.2) |f(z)| 5 3
√

3M |z|
2

5
3
√

3M |z|
2(1− |z|2)

(|z| 5
√

3

3
)

and

(2.3) |f(z)| 5
√

3M |z|
1− |z|2

5
3
√

3M |z|
2(1− |z|2)

(

√
3

3
5 |z| < 1).

Proof For the case of |z| 5
√

3/3, we have

(2.4)
1

1− |z|2
5

3

2
.

Thus, the inequality (2.1) gives

(2.5) |f(z)| 5 3M

2
(|z| 5

√
3

3
).

Therefore, applying the Schwarz lemma for f(z) with |z| 5
√

3/3, we obtain that

(2.6) |f(z)| 5
√

3|z|3M
2

(|z| 5
√

3

3
)

which shows (2.2). If
√

3/3 5 |z| < 1, we know that
√

3|z| = 1. This gives us that

(2.7) |f(z)| 5
√

3M |z|
1− |z|2

(

√
3

3
5 |z| < 1)

which implies the inequality (2.3).

Corollary 2.1 If f(z) is analytic in U with f(0) = 0, then there exists some
z ∈ U such that

(2.8) |f(z)| 5 M

1− |z|2

satisfies

(2.9) |f(z)| 5 3
√

3M |z|
2(1− |z|2)

for a positive constant M .

‘
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Remark 2.1 Noting that 3
√

3/2 = 2.598 . . . , we conjecture that 3
√

3/2 in
Corollary 2.1 can be replaced by 1.

Next, we derive

Theorem 2.2 For a function f(z) ∈ S, we assume that the function (zf ′(z)/f(z))α

is analytic in U for α > 0 with

(2.10)

(
zf ′(z)

f(z)

)α∣∣∣∣
z=0

= 1.

Then, the integral transformation Fα(z) defined by (1.12) is univalent in U for

(2.11) 0 < α 5 α0 =
2
√

5− 4

15
√

3
= 0.0181725 . . . .

Proof Note that

(2.12) F ′α(z) =

(
zf ′(z)

f(z)

)α
(z ∈ U)

by Fα(z) in (1.12). This gives us that

(2.13)
F ′′α(z)

F ′α(z)
=
α

z

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
.

If we put

(2.14) h(z) = 1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
(z ∈ U),

we have that h(0) = 0 and

(2.15) |h(z)| 5
∣∣∣∣1 +

zf ′′(z)

f ′(z)

∣∣∣∣+

∣∣∣∣zf ′(z)f(z)

∣∣∣∣ .
On the other hand, it is well-known that if f(z) ∈ S, then

(2.16)

∣∣∣∣zf ′′(z)f ′(z)
− 2|z|2

1− |z|2

∣∣∣∣ 5 4|z|
1− |z|2

(z ∈ U)

that is,

(2.17)

∣∣∣∣1 +
zf ′′(z)

f ′(z)
− 1 + |z|2

1− |z|2

∣∣∣∣ 5 4|z|
1− |z|2

(z ∈ U).
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This gives that

(2.18)

∣∣∣∣1 +
zf ′′(z)

f ′(z)

∣∣∣∣ 5 4|z|
1− |z|2

+
1 + |z|2

1− |z|2
<

6

1− |z|2
(z ∈ U).

Further, we know that

(2.19)

∣∣∣∣zf ′(z)f(z)

∣∣∣∣ 5 1 + |z|
1− |z|

=
(1 + |z|)2

1− |z|2
<

4

1− |z|2
(z ∈ U).

Therefore, the inequality (2.15) implies that

(2.20) |h(z)| < 10

1− |z|2
(z ∈ U).

Considering M = 10 in (2.1) of Theorem 2.1, we say that

(2.21) |h(z)| < 15
√

3|z|
1− |z|2

(z ∈ U).

Therefore, we have that

(2.22)

∣∣∣∣F ′′α(z)

F ′α(z)

∣∣∣∣ 5 α

|z|
|h(z)| < 15

√
3α

1− |z|2
(z ∈ U).

By using of the result in [11], we know that there exists a point z ∈ U that if

(2.23) |h(z)| < 1

1− |z|2
(z ∈ U),

then

(2.24) |h′(z)| < 4

(1− |z|2)2
(z ∈ U).

It follows from the above that

(2.25)

∣∣∣∣(F ′′α(z)

F ′α(z)

)′∣∣∣∣ < 60
√

3α

(1− |z|2)2
(z ∈ U).

Therefore, we have that

(2.26) |{Fα(z); z}| 5
∣∣∣∣(F ′′α(z)

F ′α(z)

)′∣∣∣∣+
1

2

∣∣∣∣F ′′α(z)

F ′α(z)

∣∣∣∣2
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5
60
√

3α

(1− |z|2)2
+

1

2

(
15
√

3α

1− |z|2

)2

=
15(45α+ 8

√
3)α

2(1− |z|2)2
(z ∈ U).

Applying the Nehari’s condition (1.7) for Fα(z), we need that

(2.27)
15(45α+ 8

√
3)α

2
5 2,

that is, that

(2.28) 0 < α 5 α0 =
2
√

5− 4

15
√

3
= 0.0181725 . . . .

This completes the proof of the theorem.

Next, we recall here a result by Chichra and Singh [2] that if

(2.29) z + z2log
g(z)

z
∈ S∗,

then there exist some t (0 5 t 5 1) and α (0 5 α 5 1/2) such that

(2.30) tz + (1− t)
∫ z

0

(
tg′(t)

g(t)

)α
dt ∈ S∗.

Letting

(2.31)
g(z)

z
=
zf ′(z)

f(z)

for f(z) ∈ A, Theorem 2.2 becomes

Theorem 2.3 Assume that g(z) ∈ A satisfies

(2.32) zexp

(∫ z

0

g(t)
t − 1

t
dt

)
∈ S,

the function (g(z)/z)α is analytic in U with 0 < α < 1 and

(2.33)

(
g(z)

z

)α ∣∣∣∣
z=0

= 1.

If 0 < α 5 α0 = (2
√

5−4)/15
√

3 = 0.0181725 · · · , then the integration
∫ z
0 (g(t)/t)αdt

is univalent in U.
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By means of the result due to Krzyż [7], we know that g(z) ∈ S is not implies
that

∫ z
0 (g(t)/t)dt ∈ S. The counterexample for the above is given by

(2.34) g(z) =
z

(1− iz)1−i
.

On the other hand, Merkes and Wright [8] showed that if g(z) ∈ S∗, then

(2.35)

∫ z

0

(
g(t)

t

)α
dt ∈ C

for −1/2 5 α 5 3/2. Theorem 2.3 says that if

(2.36) zexp

(∫ z

0

g(t)
t − 1

t
dt

)
∈ S,

then

(2.37)

∫ z

0

(
g(t)

t

)α
dt ∈ S

for 0 < α 5 α0 = (2
√

5− 4)/15
√

3.

Corollary 2.2 If g(z) ∈ A satisfies

(2.38) Re

(
g(z)

z

)
> 0 (z ∈ U),

then

(2.39)

∫ z

0

(
g(t)

t

)α
dt

is univalent in U, where 0 < α 5 α0 = (2
√

5− 4)/15
√

3.

3. An application of Schwarzian derivative

Next, we would like to consider an application of Schwarzian derivative concerning
with the subordinations. Let f(z) ∈ A and g(z) ∈ A. Then the function f(z) is said
to subordinate to g(z) if there exists a function w(z) analytic in U with w(0) = 0
and |w(z)| < 1 such that f(z) = g(w(z)) for z ∈ U. We write that

(3.1) f(z) ≺ g(z) (z ∈ U)
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if f(z) subordinates to g(z) in U. Also, if g(z) is univalent in U, then f(z) ≺ g(z)
is equivalent to f(0) = g(0) and f(U) ⊂ g(U) (see Miller and Mocanu [9]).

Now, we derive

Theorem 3.1 Let f(z) ∈ A satisfy

(3.2) |z2{f ; z}| < α(1− β) (z ∈ U),

where 0 < α < 1 and

(3.3)

∣∣∣∣zh′′(z)h′(z)
− 2zh′(z)

h(z) + 1

∣∣∣∣ 5 β (z ∈ U)

with

(3.4) h(z) = (f ′(z))1/α 6= ±1.

Then we have that

(3.5) f ′(z) ≺
(

1 + z

1− z

)α
(z ∈ U)

or

(3.6) |argf ′(z)| < π

2
α (z ∈ U).

Therefore, f(z) is univalent in U.

Proof For h(z) = (f ′(z))1/α (0 < α < 1), we define the function w(z) by

(3.7) w(z) =
h(z)− 1

h(z) + 1
=
cn
2
z + · · ·

with w(0) = 0. This implies that

(3.8) f ′(z) =

(
1 + w(z)

1− w(z)

)α
.

It follows from (3.8) that

(3.9) f ′′(z) =
2αw′(z)

1− w(z)2

(
1 + w(z)

1− w(z)

)α
=

2αw′(z)

1− w(z)2
f ′(z),
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that is, that

(3.10)
f ′′(z)

f ′(z)
=

2αw′(z)

1− w(z)2
.

Thus, we obtain that

(3.11)

(
f ′′(z)

f ′(z)

)2

=

(
zf ′′(z)

f ′(z)

)2 1

z2
=

(
2αzw′(z)

1− w(z)2

)2 1

z2
.

We suppose that there exists a point z0 ∈ U such that |w(z)| < 1 (|z| < |z0| < 1)
and |w(z0)| = 1. Then Lemma 1.1 gives us that

(3.12)
z0w

′(z0)

w(z0)
= k = 1.

Further, by the result due to Miller and Mocanu [9], we have that

(3.13) Re

(
z0w

′′(z0)

w′(z0)

)
= 0.

Therefore, we have that

(3.14)

(
f ′′(z0)

f ′(z0)

)2

=

(
2αkw(z0)

1− w(z0)2

)2 1

z20

=

(
iαk

sinθ

)2 1

z20
= −

(
αk

sinθ

)2 1

z20
,

where w(z0) = eiθ (0 5 θ < 2π).
Also, we see that

(3.15)

(
f ′′(z)

f ′(z)

)′ ∣∣∣∣
z=z0

=

(
2αw′(z)

1− w(z)2

)′ ∣∣∣∣
z=z0

= 2α

(
w′′(z0)

1− w(z0)2

)
+

4αw(z)(w′(z))2

(1− w(z)2)2

∣∣∣∣
z=z0

=
ikα

sinθ

(
z0w

′′(z0)

w′(z0)

)
1

z0
+

(
ik

sinθ

)2 αw(z0)

z20

=
kα

sinθ

{
i

(
z0w

′′(z0)

w′(z0)

)
− kw(z0)

sinθ

}
1

z20
.

130
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Consequetly, we obtain that

(3.16) z20{f ; z} =
kα

sin θ

{
i

(
z0w

′′(z0)

w′(z0)

)
− kw(z0)

sim θ
+

αk

2sin θ

}

=
kα

2sin θ

{
2i

(
z0w

′′(z0)

w′(z0)

)
+

k

sin θ
(α− 2cos θ − 2isin θ)

}
and so

(3.17) |z20{f ; z0}| =
α

2

∣∣∣∣ ∣∣∣∣ k

sin θ

∣∣∣∣ |α− 2cos θ − 2isin θ| − 2

∣∣∣∣z0w′′(z0)w′(z0)

∣∣∣∣ ∣∣∣∣
=
α

2

∣∣∣∣k
√
α2 − 4αcos θ + 4

1− cos2θ
− 2

∣∣∣∣z0w′′(z0)w′(z0)

∣∣∣∣ ∣∣∣∣.
If we define a function p(x) by

(3.18) p(x) =
α2 − 4αx+ 4

1− x2
(x = cos θ),

then

(3.19) p′(x) =
−2(2x− α)(αx− 2)

(1− x2)2

gives that p(x) takes its minimum value at x = α/2 < 1/2, because 0 < α < 1 and
−1 5 x 5 1. This shows us that p(x) = 4 and so

(3.20) |z20{f ; z0}| = α

∣∣∣∣1− ∣∣∣∣z0w′′(z0)w′(z0)

∣∣∣∣ ∣∣∣∣
= α

∣∣∣∣1− ∣∣∣∣z0h′′(z0)h′(z0)
− 2z0h

′(z0)

h(z0) + 1

∣∣∣∣ ∣∣∣∣ = α(1− β).

This contradicts the condition (3.2) of the theorem. Therefore, there is no z0 ∈ U
such that |w(z0)| = 1. This implies that there exists w(z) such that

(3.21) f ′(z) =

(
1 + w(z)

1− w(z)

)α
(z ∈ U)

with w(0) = 0 and |w(z)| < 1 (z ∈ U). Consequently, we prove the subordination
(3.5).
Further, since

(3.22)

∣∣∣∣arg

(
1 + z

1− z

)∣∣∣∣ < π

2
(z ∈ U),
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we obtain (3.6) for argf ′(z).

Making α = 1/2 in Theorem 3.1, we derive
Corollary 3.1 Let f(z) ∈ A satisfy

(3.23) |z2{f ; z}| < 1− β
2

(z ∈ U)

with

(3.24)

∣∣∣∣zh′′(z)h′(z)
− 2zh′(z)

h(z) + 1

∣∣∣∣ 5 β (z ∈ U)

and h(z) =
√
f ′(z) 6= ±1. Then we have

(3.25) f ′(z) ≺
√

1 + z

1− z
(z ∈ U)

or

(3.26) |argf ′(z)| < π

4
(z ∈ U).
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