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Abstract: A generalized nonlinear Schrödinger equation was recently pointed out as a
new exactly solvable model in different context of mathematical sciences. In this paper,
we propose a systematic study of a higher order nonlinear Schrödinger equation arising in
literature in two different contexts regarding the biological science and the nonlinear optics.
The model, in the first context interprets a generalized Davydov model for energy transfer in
alpha helical protein and in the second one describes the propagation of femtosecond pulses
in nonlinear fibres. Without the restriction of the solitary wave ansatz, but on the contrary,
working with the systematic analysis of Lie’s theory, we are able to generate exact solutions
which carry important physical meanings.
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In the context of biophysics, much attention is devoted to the biological phenomena; one of
the well-established problems is the understanding of energy transport along protein molecules.
Molecular systems especially those of biological interest are very complicated structures, built
from atoms connected by hydrogen bonds.

The energy required for most of the protein activities (such as DNA duplication, active transport
of substances through bio-membranes, the neuroelectric pulse transfer on the membranes of
neurocyte, etc) is provided by the hydrolysis of the ATP (adenosine triphosphate) molecule.

The mechanism converting this chemical energy into a mechanical motion was for the first time
pointed by Davydov who established in [1] that the energy released in the ATP hydrolysis could
stay localized in amide-I bond through nonlinear interactions of the vibrational excitation and
deformation in the protein structure caused by the excitation [1]-[4].

During the last three decades, the Davydov model has been a subject of intensive studies and
has attracted the attention of many researchers. Recently, the Davydov model has been gener-
alized taking into account the interspine coupling, the long-range interaction effects and some
additional higher-order molecular excitations and interactions. In a recent contribution, it has
been investigated the dynamics of three coupled a-polypeptide chains of a collagen molecule
with the influence of power-law long-range exciton-exciton interactions [5].

The nonlinear dynamics of DNA molecule has been widely studied in the past by Daniel et
al. [6]-[8] and several other authors in various contexts (see for example [9]-[11]). For instance,
the study of waves propagation, especially solitons through inhomogeneous or disordered one-
dimensional model of α-helical proteins can be found in [12], [13].
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In the context of Davydov soliton theory, Todorovic et al. have demostrated that the soliton
velocity is inversely proportional to the soliton amplitude and that two exciton - phonon coupling
constants influence separately the soliton behavior [14].

While an interesting study concerning the dynamics of Davydov’s model of α-helical proteins
considered by including the influence of inhomogeneities in the monomer units, can be found in
[15].

Motivated by all these great number of biophysics applications, our aim in this paper is to make
a complete study of a generalized Davydov model arising in literature in two different contexts
regarding the biological science and the nonlinear optics; without the restriction of the solitary
wave ansatz, but on the contrary, working with the systematic analysis of Lie’s theory, we are
able to generate exact solutions which carry important physical meanings.

1 The Model

In this paper, we focus our attention on the (1+1) dimensional higher order nonlinear Schrödinger
equation

i
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∂x2
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∂x3
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∂q
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where q(t, x) is a complex functions of t and x, q∗(t, x) is the complex conjugate of q(t, x) and
subscripts denote partial derivatives with respect to space and time coordinates.

In the context of biological sciences, equation (1) was proposed in [6] as a generalized Davydov
model. In this interpretation, the dependent variable q represents the vibrational coordinate of
the amide-I vibrations, the coefficient k1 is a contribution related to self-steepening (also known
as Kerr dispersion) and k2 is linked to stimulated Raman scattering effects, while ε represents
the lattice parameter.

Moreover in equation (1), the second term is a dispersion term representing the dipole-dipole
coupling and arises from the effective mass of the exciton, the third term is a nonlinear term
representing coupling to hydrogen bonds, while the last term represents a term related to a
global interaction due to molecular excitations along a single hydrogen bonding spine of the
helix and the effect of interspine coupling.

Inter alia, the third-oder term represent the third-order dispersion and when it loses importance
in the model’s dynamics then also self-steepening and Raman scattering effects collapse too.

The Davydov model explains lossless energy transfer in alpha helical proteins, in particular
Davydov proved that the transfer of metabolic energy and of electrons along the chain describes
excitations accompanied by a local deformation of the chain that move uniformly and undamped
what is called a soliton. In this context, Davydov showed that the dynamic of alpha helical
proteins is governed by the completely integrable nonlinear Schrödinger (NLS) equation which
possesses N-soliton solutions [16] and he suggested that solitons in protein molecules are formed
as a result of the dynamical balance between the dispersion due to the resonant interaction of
intrapeptide dipole vibrations, amide-I and the nonlinearity provided by the interaction of these
vibrations with the local displacements of the equilibrium positions of the peptide groups [1].

A generalized Davydov model was proposed in [6] as a model of single spine in order to study the
nature of nonlinear molecular excitations and energy transfer along the chain. The generalized
Davydov model includes molecular excitations along a single hydrogen bonding spine of the
helix and also the effect of interspine coupling and describes the nature of nonlinear molecular
excitations and energy transfer along the chain of alpha helical protein molecules [6].
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Equation (1) contains some integrable models for certain specific set of parametric values which
can be established by carrying out a Painlevé singularity structure analysis [17]. The results
of the Painlevé analysis show that equation (1) reduces to completely integrable models and
admits N-soliton solutions for different choices of parameters, which are well summarized in the
interesting article of Daniel-Latha [6].

When ε = 0, equation (1) reduces to the completely integrable cubic nonlinear Schrödinger
(NLS) equation; it is interesting to find out that a class of integrable equations belonging to the
NLS family are connected to the Heisenberg ferromagnetic spin system via gauge transformation
when the Lax pair of operators are known. In this connection, Zakharov and Takhtajan [18]
showed that cubic NLS equation is gauge equivalent to the integrable Heisenberg spin equation
which describes the dynamics of spins in an isotropic ferromagnet in the classical continuum
limit.

The cubic NLS equation is a completely integrable equation admitting N-soliton solutions which
can be found using the inverse scattering transform method [19] or by writing the equation in
the bilinear form [20] or through Bäcklund transformation [21] or using other methods.

After employing suitable rescaling of q, equation (1) contains the completely integrable mixed
derivative nonlinear Schrödinger (MDNLS) equation [6], which was first studied in the context
of soliton and integrability by Wadati et al. [22]-[23] and is of frequent occurrence in various
physical systems including nonlinear propagation of Alfven waves with a small nonvanishing
wave number and in explaining the dynamics of the deformed Heisenberg spin chain (see [24] -
[25]).

It is worthwhile noticing that, in the framework of nonlinear optics, with a interchange of
independent variables (t←→ x), equation (1), as well as certain version of it, can be written as
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(
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and describes the propagation of femtosecond pulses in nonlinear fibres. In this context, q
represents the slowly-varying envelope of the electromagnetic field and the coefficients ε, k1, k2
that appear in (2) are real parameters related to group velocity dispersion, self phase modula-
tion, third-order dispersion, self steepening and self-frequency shift due to stimulated Raman
scattering respectively.

It is well known that the propagation of picosecond pulses in optical fibres is described by the
nonlinear Schrödinger equation [26, 27] to which equation (2) reduces when the last three terms
are omitted. However, for ultrashort femtosecond pulses, the last three terms are non-negligible
and should be retained [28]-[29].

If k2 = 0 equation (1) becomes the Hirota equation [20], of which there exist N-soliton solutions,
while for k2 6= 0 the hyperbolic secant (bright) and hyperbolic tangent (dark) soliton solutions
for equation (1) have been obtained in [29]. A interesting set of cusp solitary wave solutions of
equation (1), when the cusps are rounded off are obtained in [30].

Finally, it is interesting to observe the meaning of parameter ε in two different contexts; in fact
in the framework of biological sciences, ε represents the lattice parameter and in the context of
nonlinear optics can be interpreted as a dispersion parameter.

Our aim in this paper is to investigate, in the framework of the Lie group analysis, the (1 + 1)
dimensional generalized nonlinear Schrödinger equation (1) in order to obtain exact invariant
solutions. The plan of the paper is the following. In the next section we introduce the math-
ematical method in order to determine the symmetry transformations of the equation (1). In
Sec. 3 we investigate the reductions of (1) to ODEs and we formally derived a variety of exact
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solutions with distinct structures. In Sec. 4 we make conclusions, the results of our study con-
firm that the equation can, in general, support periodic wave solutions, soliton solutions and
interesting solutions expressed in terms of Bessel functions.

2 Mathematical Method

In this section, the basic infinitesimal method for calculating symmetry groups of the model
(1) is introduced in order to, first derive the continuous symmetry transformations and then to
prove that the model under investigation can, in general, support exact solutions which carry
important physical meanings.

For the mathematical analysis, it is convenient to rewrite the model and after introducing
q = u + i v, with u(t, x) and v(t, x) real functions, let us first rewrite the complex equation (1)
as a system of real equations

ut + vxx + (u2 + v2) v + ε
{
uxxx + k1(u

2 + v2)ux

+ k2
[
(u2 − v2)ux + 2u v vx

]}
= 0 (3)

vt − uxx − (u2 + v2)u+ ε
{
vxxx + k1(u

2 + v2)vx

+ k2
[
(v2 − u2)vx + 2u v ux

]}
= 0. (4)

So, we search for the symmetry transformations of the equation (1), by applying the classical
Lie method to the system (3)-(4) and look for the one-parameter group of infinitesimal trans-
formations in the (t, x, u, v)-space; following the well known monographs on this argument (see
e.g. [31] -[36]), we introduce the third prolongation of the operator X
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∂

∂t
+ ξ2

∂

∂x
+ η1

∂

∂u
+ η2

∂

∂v
. (5)

in the form
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∂
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)
, (6)

where we have utilized the local notation u = y1, v = y2, and we have set

ζit = Dt(η
i)− yitDt(ξ

1)− yixDt(ξ
2), (7)

ζix = Dx(ηi)− yitDx(ξ1)− yixDx(ξ2), (8)

ζixx = Dx(ζix)− yitxDx(ξ1)− yixxDx(ξ2), (9)

ζixxx = Dx(ζixx)− yixxtDx(ξ1)− yixxxDx(ξ2), (10)

with i = 1, 2 and the operators Dt and Dx denote total derivatives with respect to t and x,
respectively. The invariance conditions of (3)-(4) reads as follow

X(3)
(
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{
uxxx + k1(u

2 + v2)ux

+ k2
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+ k2
[
(v2 − u2)vx + 2u v ux

]})
= 0, (12)

under the constraints that the variables ut and vt have to satisfy the system equations (3)-(4).
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The determining system arising from (11)-(12) allows us to obtain:

ξ1 = 9 ε a2 t+ a1, (13)

ξ2 = a2 (2 t+ 3 ε x) + a3, (14)

η1 = −3 ε a2 u− (a2 x− a4) v, (15)

η2 = (a2 x− a4)u− 3 ε a2 v, (16)

(k2− k1 + 3) a2 = 0, (17)

where ai (i = 1, 2, 3, 4), are constants. From (17) arises the following cases:

Case I : a2 = 0.

In this case the Lie algebra is tree-dimensional and is spanned by the operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = v

∂

∂u
− u ∂

∂v
, (18)

Case II : k2 = k1 − 3.

It is worthwhile noticing that the above condition is a structural condition of the equation (1).
In this case the Lie algebra is four-dimensional and is spanned by the tree operators (18) plus
the following fourth operator:

X4 = 9 ε t
∂

∂t
+ (2 t+ 3 ε x)

∂

∂x
− (3 ε u+ x v)

∂

∂u
+ (xu− 3 ε v)

∂

∂v
. (19)

3 Self-similar solutions of the Higher Order Nonlinear Schrödinger
Equation

In this section, the solitary wave ansatz is not used and, working without preliminary assump-
tions and using the substitution following from the symmetry group obtained in the Cases I and
II, we construct self-similar solutions which carry important physical meanings.

Case I: a2 = 0.

In this case we consider the operator X as a linear combination of the operators (18), namely

X =
∂

∂t
+ c1

∂

∂x
+ c2

(
v
∂

∂u
− u ∂

∂v

)
, (20)

where c1 and c2 are real constants, which give the following similarity variable

z = x− c1 t (21)

and similarity solutions

u = φ(z) sin (c2 t) + ψ(z) cos (c2 t), (22)

v = φ(z) cos (c2 t)− ψ(z) sin (c2 t), (23)

where φ and ψ must satisfy the following system of ODEs to which (3)-(4) are reduced by

means of the operator (20):
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c1 φ
′ + c2 ψ + ψ′′ +

(
φ2 + ψ2

)
ψ

−ε
{
φ′′′ +

[
(k1 + k2) φ

2 + (k1 − k2) ψ2
]
φ′ + 2 k2 φψ ψ

′} = 0, (24)

c1 ψ
′ − c2 φ− φ′′ −

(
φ2 + ψ2

)
φ

−ε
{
ψ′′′ +

[
(k1 − k2) φ2 + (k1 + k2) ψ

2
]
ψ′ + 2 k2 φψ φ

′} = 0. (25)

A solution of (24)-(25) is
φ = cos z, ψ = sin z, (26)

under the condition c2 = c1 + ε [(k2 − k1) + 1] , with the constant of integration normalized to
one. Coming back to the original variables, we obtain that the system (2)-(3) of real equation
admits a periodic wave solution of the form:

u = cos (x− c1 t) sin (c2 t) + sin (x− c1 t), cos (c2 t), (27)

v = cos (x− c1 t) cos (c2 t)− sin (x− c1 t), sin (c2 t), (28)

If, in particular, in (24)-(25), we have also the validity of the structural condition k2 = k1 − 3,
the solution can be expressed in terms of

φ = sech( z), ψ = sech( z) (29)

When c2 = −1 and c1 = ε, the model under investigation (2)-(3) admits a soliton solution of
the form

u = sech (x− ε t) cos ( t)− sech (x− ε t) sin ( t), (30)

v = sech (x− ε t) sin ( t) + sech (x− ε t) cos ( t). (31)

We point out that, the soliton solution possesses a remarkable property that it can propagate

steadily with two peaks of the same height.

In biological interpretation, as confirmed by Daniel, it turns out that the model (1), as well as
certain version of it, describes a protein chain in which the nonlinear coupling, that is responsible
for the formation of solitons, comes from slightly different interaction, unlike the Davydov model
in which the nonlinear coupling proportional is responsible for the formation of solitons. We
can also observe that the energy transfer in alpha helical proteins is in the form of solitons even
if the left and right neighbouring interactions are unequal.

On the other hands, looking solutions (30)-(31) from the point of view of nonlinear optics, as
predicted by Trippenbach et al. [37], the presence of higher order nonlinearities crucially affects
the dynamics (see for example Figure 1).

Upon including self steepening, the trailing edge of the pulse becomes shocked, the peak intensity
of the pulse is increased, and the peak of the pulse moves towards the trailing edge of the pulse.
Self frequency shifting serves to transfer photons to lower frequency, and the lower frequency
photons travel slower in the anomalous dispersion regime. Hence the leading edge of the pulse
is suppressed relative to the trailing edge of the pulse because of both self steepening and
self frequency shifting. Pulse breakup following self-focusing of the incident pulse is therefore
strongly suppressed. However, in this case self steepening, as well as self frequency shift terms
are still dominant and should be retained.

Case II: k2 = k1 − 3.
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Figure 1: Snapshots of 3D view of the solution (30)-(31) for equation (2), with a interchange of
independent variables (t←→ x), when ε = 1.

Proceeding as in the previous case, by applying the invariant surface condition, through the
operator (19), namely

X4 = 9 ε t
∂

∂t
+ (2 t+ 3 ε x)

∂

∂x
− (3 ε u+ x v)

∂

∂u
+ (xu− 3 ε v)

∂

∂v

we obtain the following similarity variable and similarity solutions, respectively:

z =

(
x− 1

3 ε
t

)
t−

1
3 , (32)

u =

[
φ(z) cos

(
x

3 ε
− 2 t

27 ε2

)
− ψ(z) sin

(
x

3 ε
− 2 t

27 ε2

)]
t−

1
3 , (33)

v =

[
φ(z) sin

(
x

3 ε
− 2 t

27 ε2

)
+ ψ(z) cos

(
x

3 ε
− 2 t

27 ε2

)]
t−

1
3 . (34)

Also here, φ and ψ must satisfy the system of ODEs to which (3)-(4) are reduced by means of
the operator (19), i.e.

3 ε
{
φ′′′ +

[
(2 k1 − 3)φ2 + 3ψ2

]
φ′ + 2 (k1 − 3)φψ ψ′

}
−z φ′ − φ = 0, (35)

3 ε
{
ψ′′′ +

[
(2 k1 − 3)ψ2 + 3φ2

]
ψ′ + 2 (k1 − 3)φψ φ′

}
−z ψ′ − ψ = 0. (36)

In this case, we obtain a rational solution of (35)-(36) which reads as

φ = ψ = H z−1, H = ±
√

3

3− 2 k1
(37)
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under the condition k1 6= 3
2 .

If, on the contrary, k1 = 3
2 , a solution of (35)-(36) can be expressed in terms of Bessel functions

φ = ψ =
√
z

h1
J 1

3

∫ √
z J− 1

3

i z
√

3 ε z
(
J− 4

3
J 1

3
− J− 2

3
J− 1

3

)
+ 3 ε J− 1

3
J 1

3

dz

−J− 1
3

∫ √
z J 1

3

i z
√

3 ε z
(
J− 4

3
J 1

3
− J− 2

3
J− 1

3

)
+ 3 ε J− 1

3
J 1

3

dz

+ h2 J 1
3

+ h3 J− 1
3

 (38)

where we have set the Bessel functions as: Jα = Jα

(
2 i z

3
2

3
√
3 ε

)
,
(
α = ±1

3 , −
2
3 , −

4
3

)
and h1, h2, h3

are arbitrary constants.

These class of solutions for (1) is stricly admits for ε 6= 0 and then it is no longer valid in the
limit of cubic nonlinear Schrödinger equation. Under the structural condition for the model
k2 = k1 − 3, when k1 6= 3

2 , its traveling wave front is detailed in Figure 2.

Figure 2: Snapshot of 3D view of the solution (33)-(34), when φ = ψ = H z−1, H =
√

3
3−2 k1

with k1 = 1.

4 Conclusions

Usually, the nonlinear Schrödinger equation describes physical processes in which nonlinearity
and dispersion cancel giving birth to solitons. The literature shows that the higher order non-
linear Schrödinger equation can, in general, support both soliton and periodic wave solutions.
We studied the higher order nonlinear Schrödinger equation and we showed that, using the sys-
tematic methods of group analysis, it admits some beautiful and most interesting reductions to
ordinary differential equations. Moreover, our results complement and generalize the well-known
results in literature.
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The hyperbolic secant and hyperbolic tangent soliton solutions for equation (1) have been ob-
tained [29]. In [28], it is also shown that a higher-order nonlinear Schrödinger equation is solvable
by means of the inverse scattering transform.

In our study, the solitary wave ansatz is not used and, working without preliminary assumptions,
our results confirm that the model can, in general, support periodic wave solutions, soliton
solutions and interesting solutions expressed in terms of Bessel functions and then the results
are consistent with literature.

Moreover, the literature shows that some solutions of cubic nonlinear Schrödinger equations (i.e.
ε = 0) can be found in term of Bessel function under the assumption of cylindrical symmetries.

In this paper, we have also recover solutions in term of Bessel functions when we incorporate in
the model the propagation of ultrashort femtosecond pulses and working without the hypothesis
of separation of variables in polar coordinates.
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