APPLICATIONS OF A DIFFERENTIAL SUBORDINATION INVOLVING THE CONVOLUTION OF ANALYTIC FUNCTIONS

R. Brar and S. S. Billing

Abstract. In the present paper, we derive a subordination theorem involving the convolution of analytic functions. As special cases of our main results, we obtain the sufficient conditions for analytic functions to be parabolic ϕ-like, parabolic starlike, ϕ-like and starlike.

2010 Mathematics Subject Classification: 30C45, 30C80.
Keywords: analytic function, univalent function, differential subordination, parabolic ϕ - like function, parabolic starlike function, ϕ - like function, starlike function, convolution.

1. Introduction

Let \mathcal{A} denote the class of all functions f analytic in $\mathbb{E}=\{z:|z|<1\}$, normalized by the conditions $f(0)=f^{\prime}(0)-1=0$. Therefore, Taylor's series expansion of $f \in \mathcal{A}$, is given by

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}
$$

Let the functions f and g be analytic in \mathbb{E}. We say that f is subordinate to g written as $f \prec g$ in \mathbb{E}, if there exists a Schwarz function ϕ in \mathbb{E} (i.e. ϕ is regular in $|z|<1, \phi(0)=0$ and $|\phi(z)| \leq|z|<1)$ such that

$$
f(z)=g(\phi(z)), \quad|z|<1 .
$$

Let $\Phi: \mathbb{C}^{2} \times \mathbb{E} \rightarrow \mathbb{C}$ be an analytic function, p an analytic function in \mathbb{E}, with $\left(p(z), z p^{\prime}(z) ; z\right) \in \mathbb{C}^{2} \times \mathbb{E}$ for all $z \in \mathbb{E}$ and h be univalent in \mathbb{E}. Then the function p is said to satisfy first order differential subordination if

$$
\begin{equation*}
\Phi\left(p(z), z p^{\prime}(z) ; z\right) \prec h(z), \quad \Phi(p(0), 0 ; 0)=h(0) . \tag{1}
\end{equation*}
$$

R. Brar and S. S. Billing - Applications of a Differential Subordination ...

A univalent function q is called a dominant of the differential subordination (1) if $p(0)=q(0)$ and $p \prec q$ for all p satisfying (1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1), is said to be the best dominant of (1). The best dominant is unique up to a rotation of \mathbb{E}.
Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ and $g(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ be two analytic functions, then convolution of $f(z)$ and $g(z)$, written as $(f * g)(z)$ is defined by

$$
(f * g)(z)=\sum_{k=0}^{\infty} a_{k} b_{k} z^{k}
$$

A function $f \in \mathcal{A}$ is said to be starlike of order $\alpha(0 \leq \alpha<1)$ in \mathbb{E} if

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in \mathbb{E} .
$$

Let $\mathcal{S}^{*}(\alpha)$ denote the class of starlike functions of order α. Write $\mathcal{S}^{*}(0)=\mathcal{S}^{*}$, the class of starlike functions.
A function $f \in \mathcal{A}$ is said to be parabolic starlike in \mathbb{E}, if

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|, z \in \mathbb{E} . \tag{2}
\end{equation*}
$$

The class of parabolic starlike functions is denoted by $\mathcal{S}_{\mathcal{P}}$.
A function $f \in \mathcal{A}$ is said to be strongly starlike of order $\alpha, 0<\alpha \leq 1$, if

$$
\begin{equation*}
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\alpha \pi}{2}, z \in \mathbb{E} \tag{3}
\end{equation*}
$$

or, equivalently

$$
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha}, z \in \mathbb{E} .
$$

Let $\tilde{\mathcal{S}}(\alpha)$ denote the class of strongly starlike functions of order α.
Let ϕ be analytic in a domain containing $f(\mathbb{E}), \phi(0)=0$ and $\Re\left(\phi^{\prime}(0)\right)>0$. Then, the function $f \in \mathcal{A}$ is said to be ϕ-like in \mathbb{E} if

$$
\Re\left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)>0, \quad z \in \mathbb{E} .
$$

This concept was introduced by L. Brickman [1]. He proved that an analytic function $f \in \mathcal{A}$ is univalent if and only if f is ϕ-like for some ϕ. Later, Ruscheweyh [6] investigated the following general class of ϕ-like functions:
R. Brar and S. S. Billing - Applications of a Differential Subordination ...

Let ϕ be analytic in a domain containing $f(\mathbb{E})$, where $\phi(0)=0, \phi^{\prime}(0)=1$ and $\phi(w) \neq 0$ for some $w \in f(\mathbb{E}) \backslash\{0\}$. Let $q(z)$ be a fixed analytic function in $\mathbb{E}, q(0)=1$. Then the function $f \in \mathcal{A}$ is called ϕ-like with respect to q, if

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec q(z), \quad z \in \mathbb{E} .
$$

A function $f \in \mathcal{A}$ is said to be parabolic ϕ-like in \mathbb{E} if

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)>\left|\frac{z f^{\prime}(z)}{\phi(f(z))}-1\right|, \quad z \in \mathbb{E} . \tag{4}
\end{equation*}
$$

Define the parabolic domain Ω as under:

$$
\Omega=\left\{u+i v: u>\sqrt{(u-1)^{2}+v^{2}}\right\} .
$$

Note that the conditions (2) and (4) are equivalent to the condition that $\frac{z f^{\prime}(z)}{f(z)}$ and $\frac{z f^{\prime}(z)}{\phi(f(z))}$ take values in the parabolic domain Ω respectively.
Ronning [5] and Ma and Minda [2] showed that the function defined by

$$
\begin{equation*}
q(z)=1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2} \tag{5}
\end{equation*}
$$

maps the unit disk \mathbb{E} onto the parabolic domain Ω. Therefore, the condition (2) and (4) are equivalent to following conditions respectively:

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q(z), \quad z \in \mathbb{E}
$$

and

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec q(z), \quad z \in \mathbb{E}
$$

where $\mathrm{q}(\mathrm{z})$ is given by (5).
In 2005, Ravichandran et al. [4] proved the following result for ϕ - like functions.
Theorem 1. Let $\alpha \neq 0$ be a complex number and $q(z)$ be convex univalent in \mathbb{E}. Define $h(z)=\alpha q^{2}(z)+(1-\alpha) q(z)+\alpha z q^{\prime}(z)$. Further assume that $\Re\left\{\frac{1-\alpha}{\alpha}+2 q(z)+\right.$ $\left.\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)\right\}>0, \quad z \in \mathbb{E}$. If $f \in \mathbb{A}$ satisfies

$$
\frac{z f^{\prime}(z)}{\phi(f(z))}\left[1+\frac{\alpha z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{\alpha z\left[f^{\prime}(z)-\{\phi(f(z))\}^{\prime}\right]}{\phi(f(z))}\right] \prec h(z)
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec q(z)
$$

and $q(z)$ is the best dominant.
Later, Shanmugham et al. [7] obtained the following result.
Theorem 2. Let $q(z) \neq 0$ be analytic and univalent in \mathbb{E} with $q(0)=1$ such that $\frac{z q^{\prime}(z)}{q(z)}$ is starlike univalent in \mathbb{E}. Let $q(z)$ satisfy

$$
\Re\left[1+\frac{\alpha q(z)}{\gamma}-\frac{z q^{\prime}(z)}{q(z)}+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right] \geq 0
$$

Let for $f, g \in \mathcal{A}$

$$
\Psi(\alpha, \gamma, g ; z):=\alpha\left\{\frac{z(f * g)^{\prime}(z)}{\Phi(f * g)(z)}\right\}+\gamma\left\{1+\frac{z(f * g)^{\prime \prime}(z)}{(f * g)^{\prime}(z)}-\frac{z(\Phi(f * g)(z))^{\prime}}{\Phi(f * g)(z)}\right\}
$$

If q satisfies

$$
\Psi(\alpha, \gamma, g ; z) \prec \alpha q(z)+\frac{\gamma z q^{\prime}(z)}{q(z)}
$$

then

$$
\frac{z(f * g)^{\prime}(z)}{\Phi(f * g)(z)} \prec q(z)
$$

and $q(z)$ is the best dominant.
In the present paper, we derive a subordination theorem involving the convolution of analytic functions. As special cases of our main results, we obtain the sufficient conditions for analytic functions to be parabolic ϕ-like, parabolic starlike, ϕ-like and starlike.

2. Preliminaries

To prove our main results, we shall use the following lemma of Miller and Mocanu ([3], Theorem 3.4h, p.132).

Lemma 3. Let q be a univalent in \mathbb{E} and let Θ and Φ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$, with $\Phi(w) \neq 0$, when $w \in q(\mathbb{E})$. Set $Q(z)=z q^{\prime}(z) \Phi[q(z)], \quad h(z)=$ $\Theta[q(z)]+Q(z)$ and suppose that either
(i) h is convex, or
(ii) Q is starlike.
R. Brar and S. S. Billing - Applications of a Differential Subordination . . .

In addition, assume that
(iii) $\Re \frac{z h^{\prime}(z)}{Q(z)}=\Re\left[\frac{\Theta^{\prime}[q(z)]}{\Phi[q(z)]}+\frac{z Q^{\prime}(z)}{Q(z)}\right]>0$.

If p is analytic in \mathbb{E}, with $p(0)=q(0), p(\mathbb{E}) \subset \mathbb{D}$ and

$$
\Theta[p(z)]+z p^{\prime}(z) \Phi[p(z)] \prec \Theta[q(z)]+z q^{\prime}(z) \Phi[q(z)]=h(z),
$$

then $p \prec q$, and q is the best dominant.

3. Main Results

In what follows, all the powers taken are principal ones.
Theorem 4. Let $q(z) \neq 0$, be a univalent function in \mathbb{E} such that
(i) $\Re\left[1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+(\gamma-1) \frac{z q^{\prime}(z)}{q(z)}\right]>0$ and
(ii) $\Re\left[1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+(\gamma-1) \frac{z q^{\prime}(z)}{q(z)}+\frac{\beta(1-\alpha)}{\alpha}(q(z))^{\beta-\gamma}+\gamma\right]>0$.

If f and $g \in \mathcal{A}$ satisfy

$$
\begin{gather*}
(1-\alpha)\left[\frac{z(f * g)^{\prime}(z)}{\phi(f * g)(z)}\right]^{\beta}+\alpha\left[\frac{z(f * g)^{\prime}(z)}{\phi(f * g)(z)}\right]^{\gamma}\left[2+\frac{z(f * g)^{\prime \prime}(z)}{(f * g)^{\prime}(z)}-\frac{z(\phi((f * g)(z)))^{\prime}}{\phi((f * g)(z))}\right] \\
\prec(1-\alpha)(q(z))^{\beta}+\alpha(q(z))^{\gamma}\left(1+\frac{z q^{\prime}(z)}{q(z)}\right), \tag{6}
\end{gather*}
$$

then

$$
\frac{z(f * g)^{\prime}(z)}{\phi((f * g)(z))} \prec q(z), \quad z \in \mathbb{E}
$$

where α, β, γ are complex numbers such that $\alpha \neq 0$, and $q(z)$ is the best dominant.
Proof. Define the function $p(z)$ by

$$
p(z)=\frac{z(f * g)^{\prime}(z)}{\phi(f * g)(z)}, \quad z \in \mathbb{E} .
$$

Then the function $p(z)$ is analytic in \mathbb{E} and $p(0)=1$. Therefore, from equation (6) we obtain:

$$
(1-\alpha)(p(z))^{\beta}+\alpha(p(z))^{\gamma}\left(1+\frac{z p^{\prime}(z)}{p(z)}\right) \prec(1-\alpha)(q(z))^{\beta}+\alpha(q(z))^{\gamma}\left(1+\frac{z q^{\prime}(z)}{q(z)}\right)
$$

Let us define the functions Θ and Φ as follows:

$$
\Theta(w)=(1-\alpha) w^{\beta}+\alpha w^{\gamma}
$$

R. Brar and S. S. Billing - Applications of a Differential Subordination ...
and

$$
\Phi(w)=\alpha w^{\gamma-1} .
$$

Obviously, both the functions Θ and Φ are analytic in $\mathbb{D}=\mathbb{C} \backslash\{0\}$ and $\Phi(w) \neq 0$ in \mathbb{D}. Therefore,

$$
Q(z)=\Phi(q(z)) z q^{\prime}(z)=\alpha z q^{\prime}(z)(q(z))^{\gamma-1}
$$

and

$$
h(z)=\Theta(q(z))+Q(z)=(1-\alpha)(q(z))^{\beta}+\alpha(q(z))^{\gamma}\left(1+\frac{z q^{\prime}(z)}{q(z)}\right) .
$$

On differentiating, we obtain $\frac{z Q^{\prime}(z)}{Q(z)}=1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+(\gamma-1) \frac{z q^{\prime}(z)}{q(z)}$ and

$$
\frac{z h^{\prime}(z)}{Q(z)}=1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+(\gamma-1) \frac{z q^{\prime}(z)}{q(z)}+\frac{\beta(1-\alpha)}{\alpha}(q(z))^{\beta-\gamma}+\gamma
$$

In view of the given conditions, we see that Q is starlike and $\Re\left(\frac{z h^{\prime}(z)}{Q(z)}\right)>0$.
Therefore, the proof, now follows from Lemma 3.
Selecting $g(z)=\frac{z}{1-z}$ in Theorem 4, we get the following result:
Theorem 5. Let $q(z) \neq 0$, be a univalent function in \mathbb{E} such that
(i) $\Re\left[1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+(\gamma-1) \frac{z q^{\prime}(z)}{q(z)}\right]>0$ and
(ii) $\Re\left[1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+(\gamma-1) \frac{z q^{\prime}(z)}{q(z)}+\frac{\beta(1-\alpha)}{\alpha}(q(z))^{\beta-\gamma}+\gamma\right]>0$. If $f \in \mathcal{A}$ satisfy

$$
\begin{aligned}
(1-\alpha)\left[\frac{z f^{\prime}(z)}{\phi(f(z))}\right]^{\beta}+\alpha & {\left[\frac{z f^{\prime}(z)}{\phi(f(z))}\right]^{\gamma}\left[2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(f(z))^{\prime}\right.}{\phi(f(z))}\right] } \\
& \prec(1-\alpha)(q(z))^{\beta}+\alpha(q(z))^{\gamma}\left(1+\frac{z q^{\prime}(z)}{q(z)}\right),
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec q(z), \quad z \in \mathbb{E}
$$

where α, β, γ are complex numbers such that $\alpha \neq 0$, and $q(z)$ is the best dominant.
Selecting $\phi(w)=w$ in Theorem 5, we get:
R. Brar and S. S. Billing - Applications of a Differential Subordination ...

Theorem 6. Let $q(z) \neq 0$, be a univalent function in \mathbb{E} such that (i) $\Re\left[1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+(\gamma-1) \frac{z q^{\prime}(z)}{q(z)}\right]>0$ and
(ii) $\Re\left[1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+(\gamma-1) \frac{z q^{\prime}(z)}{q(z)}+\frac{\beta(1-\alpha)}{\alpha} q(z)^{\beta-\gamma}+\gamma\right]>0$.

If $f \in \mathcal{A}$ satisfy

$$
\begin{aligned}
(1-\alpha)\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{\beta}+ & \alpha\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{\gamma}\left[2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right] \\
& \prec(1-\alpha)(q(z))^{\beta}+\alpha(q(z))^{\gamma}\left(1+\frac{z q^{\prime}(z)}{q(z)}\right)
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q(z), \quad z \in \mathbb{E}
$$

where α, β, γ are complex numbers such that $\alpha \neq 0$, and $q(z)$ is the best dominant.

4. Applications

Remark 1. When we select $\beta=1, \gamma=0$ and $q(z)=1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}\right.$ in Theorem 5 and Theorem 6, a little calculation yields that

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}=\frac{1+z}{2(1-z)}+\frac{\sqrt{z}}{(1-z) \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}-\frac{\frac{4 \sqrt{z}}{\pi^{2}(1-z)} \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}}
$$

and

$$
\begin{gathered}
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}+\left(\frac{1-\alpha}{\alpha}\right) q(z)=\frac{1+z}{2(1-z)}+\frac{\sqrt{z}}{(1-z) \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}-\frac{\frac{4 \sqrt{z}}{\pi^{2}(1-z)} \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}} \\
+\frac{(1-\alpha)}{\alpha}\left(1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}\right)
\end{gathered}
$$

Thus for real number α such that $0<\alpha \leq 1$, we notice that $q(z)$ satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we derive next two results from Theorem 5 and Theorem 6 respectively.
R. Brar and S. S. Billing - Applications of a Differential Subordination . . .

Theorem 7. Let α be a real number such that $0<\alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$
\begin{gathered}
(1-\alpha) \frac{z f^{\prime}(z)}{\phi(f(z))}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(f(z))^{\prime}\right.}{\phi(f(z))}\right) \\
\quad \prec(1-\alpha)\left[1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}\right] \\
+\frac{\frac{4 \alpha \sqrt{z}}{\pi^{2}(1-z)} \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}}
\end{gathered}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec 1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}, \quad z \in \mathbb{E}
$$

Theorem 8. Let α be a real number such that $0<\alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
& (1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \\
& \quad \prec(1-\alpha)\left[1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}\right] \\
& +\frac{\frac{4 \alpha \sqrt{z}}{\pi^{2}(1-z)} \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}}
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}, \quad z \in \mathbb{E}
$$

Remark 2. When we select $\beta=1, \gamma=0$ and $q(z)=e^{z}$ in Theorem 5 and Theorem 6, a little calculation yields that

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}=1
$$

and

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}+\left(\frac{1-\alpha}{\alpha}\right) q(z)=1+\left(\frac{1-\alpha}{\alpha}\right) e^{z}
$$

Thus for positive real number α such that $0<\alpha \leq 1$, we notice that $q(z)$ satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we get the following results from Theorem 5 and Theorem 6 respectively.
R. Brar and S. S. Billing - Applications of a Differential Subordination ...

Theorem 9. Let α be a real number such that $0<\alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$
\begin{array}{r}
(1-\alpha) \frac{z f^{\prime}(z)}{\phi(f(z))}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(f(z))^{\prime}\right.}{\phi(f(z))}\right) \\
\\
\prec(1-\alpha) e^{z}+\alpha z
\end{array}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec e^{z}, \quad z \in \mathbb{E}
$$

Theorem 10. Let α be a real number such that $0<\alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$
\begin{array}{r}
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \\
\\
\prec(1-\alpha) e^{z}+\alpha z
\end{array}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec e^{z}, \quad z \in \mathbb{E}
$$

Remark 3. When we select $\beta=1, \gamma=0$ and $q(z)=\frac{1+(1-2 \delta) z}{1-z} ; 0 \leq \delta<1$ in Theorem 5 and Theorem 6, a little calculation yields that

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}=\frac{1+(1-2 \delta) z^{2}}{(1-z)(1+(1-2 \delta) z)}
$$

and
$1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}+\left(\frac{1-\alpha}{\alpha}\right) q(z)=\frac{1+(1-2 \delta) z^{2}}{(1-z)(1+(1-2 \delta) z)}+\left(\frac{1-\alpha}{\alpha}\right)\left[\frac{1+(1-2 \delta) z}{1-z}\right]$.
Thus for real number α such that $0<\alpha \leq 1$, we notice that $q(z)$ satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we arrive at the following results from Theorem 5 and Theorem 6 respectively.
Theorem 11. Let α be a real number such that $0<\alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
& (1-\alpha) \frac{z f^{\prime}(z)}{\phi(f(z))}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(f(z))^{\prime}\right.}{\phi(f(z))}\right) \\
& \quad \prec(1-\alpha)\left[\frac{1+(1-2 \delta) z}{1-z}\right]+\frac{2 \alpha z(1-\delta)}{(1-z)[1+(1-2 \delta) z]}, z \in \mathbb{E}
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec \frac{1+(1-2 \delta) z}{1-z} \text {, where } 0 \leq \delta<1 \text {. }
$$

R. Brar and S. S. Billing - Applications of a Differential Subordination ...

Theorem 12. Let α be a real number such that $0<\alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
& (1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \\
& \quad \prec(1-\alpha)\left[\frac{1+(1-2 \delta) z}{1-z}\right]+\frac{2 \alpha z(1-\delta)}{(1-z)[1+(1-2 \delta) z]}, z \in \mathbb{E}
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+(1-2 \delta) z}{1-z} \text {, where } 0 \leq \delta<1
$$

Remark 4. When we select $\beta=1, \gamma=0$ and $q(z)=1+a z ; 0 \leq a<1$ in Theorem 5 and Theorem 6, a little calculation yields that

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}=\frac{1}{1+a z}
$$

and

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}+\left(\frac{1-\alpha}{\alpha}\right) q(z)=\frac{1}{1+a z}+\left(\frac{1-\alpha}{\alpha}\right)(1+a z)
$$

Thus for real number α such that $0<\alpha \leq 1$, we notice that $q(z)$ satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we obtain the following results from Theorem 5 and Theorem 6 respectively.
Theorem 13. Let α be a real number such that $0<\alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
&(1-\alpha) \frac{z f^{\prime}(z)}{\phi(f(z))}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(f(z))^{\prime}\right.}{\phi(f(z))}\right) \\
& \prec(1-\alpha)(1+a z)+\frac{\alpha a z}{1+a z}, z \in \mathbb{E}
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec 1+a z, \text { where } 0 \leq a<1
$$

Theorem 14. Let α be a real number such that $0<\alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha & \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \\
& \prec(1-\alpha)(1+a z)+\frac{\alpha a z}{1+a z}, z \in \mathbb{E}
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+a z, \text { where } 0 \leq a<1
$$

R. Brar and S. S. Billing - Applications of a Differential Subordination . . .

Remark 5. When we select $\beta=1, \gamma=0$ and $q(z)=\left(\frac{1+z}{1-z}\right)^{\eta}, \quad 0<\eta \leq 1$ in Theorem 5 and Theorem 6, a little calculation yields that

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}=\frac{1+z^{2}}{1-z^{2}}
$$

and

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}+\left(\frac{1-\alpha}{\alpha}\right) q(z)=\frac{1+z^{2}}{1-z^{2}}+\left(\frac{1-\alpha}{\alpha}\right)\left(\frac{1+z}{1-z}\right)^{\eta} .
$$

Thus for real number α such that $0<\alpha \leq 1$, we notice that $q(z)$ satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we have the following results from Theorem 5 and Theorem 6 respectively.

Theorem 15. Let α be a real number such that $0<\alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
(1-\alpha) \frac{z f^{\prime}(z)}{\phi(f(z))}+\alpha & \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(f(z))^{\prime}\right.}{\phi(f(z))}\right) \\
& \prec(1-\alpha)\left(\frac{1+z}{1-z}\right)^{\eta}+\frac{2 \eta \alpha z}{1-z^{2}}, z \in \mathbb{E},
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec\left(\frac{1+z}{1-z}\right)^{\eta} \text {, where } 0<\eta \leq 1 \text {. }
$$

Theorem 16. Let α be a real number such that $0<\alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha & \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \\
& \prec(1-\alpha)\left(\frac{1+z}{1-z}\right)^{\eta}+\frac{2 \eta \alpha z}{1-z^{2}}, z \in \mathbb{E},
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\eta} \text {, where } 0<\eta \leq 1 \text {. }
$$

Remark 6. When we select $\beta=1, \gamma=0$ and $q(z)=\frac{\alpha^{\prime}(1-z)}{\alpha^{\prime}-z}, \alpha^{\prime}>1$ in Theorem 5 and Theorem 6, a little calculation yields that

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}=\frac{1}{1-z}+\frac{z}{\alpha^{\prime}-z}
$$

and

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}+\left(\frac{1-\alpha}{\alpha}\right) q(z)=\frac{1}{1-z}+\frac{z}{\alpha^{\prime}-z}+\left(\frac{1-\alpha}{\alpha}\right)\left[\frac{\alpha^{\prime}(1-z)}{\alpha^{\prime}-z}\right] .
$$

Thus for real number α such that $0<\alpha \leq 1$, we notice that $q(z)$ satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we get the following results from Theorem 5 and Theorem 6 respectively .

Theorem 17. Let α be a real number such that $0<\alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
(1-\alpha) \frac{z f^{\prime}(z)}{\phi(f(z))} & +\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(f(z))^{\prime}\right.}{\phi(f(z))}\right) \\
& \prec(1-\alpha) \frac{\alpha^{\prime}(1-z)}{\alpha^{\prime}-z}+\frac{\left(1-\alpha^{\prime}\right) \alpha z}{(1-z)\left(\alpha^{\prime}-z\right)}, z \in \mathbb{E},
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec \frac{\alpha^{\prime}(1-z)}{\alpha^{\prime}-z} \text {, where } \alpha^{\prime}>1
$$

Theorem 18. Let α be a real number such that $0<\alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)} & +\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \\
& \prec(1-\alpha) \frac{\alpha^{\prime}(1-z)}{\alpha^{\prime}-z}+\frac{\left(1-\alpha^{\prime}\right) \alpha z}{(1-z)\left(\alpha^{\prime}-z\right)}, z \in \mathbb{E}
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{\alpha^{\prime}(1-z)}{\alpha^{\prime}-z} \text {, where } \alpha^{\prime}>1 \text {. }
$$

Remark 7. When we select $\beta=1, \gamma=1$ and $q(z)=1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}$ in Theorem 5 and Theorem 6, a little calculation yields that

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}=\frac{1+z}{2(1-z)}+\frac{\sqrt{z}}{(1-z) \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}
$$

and

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{1}{\alpha}=\frac{1+z}{2(1-z)}+\frac{\sqrt{z}}{(1-z) \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}+\frac{1}{\alpha} .
$$

Thus for positive real number α, we notice that $q(z)$ satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we obtain the following results from Theorem 5 and Theorem 6 respectively.

Theorem 19. Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
\frac{z f^{\prime}(z)}{\phi(f(z))}+\alpha & \left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(f(z))^{\prime}\right.}{\phi(f(z))}\right) \\
& \prec 1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}+\frac{4 \alpha \sqrt{z}}{\pi^{2}(1-z)} \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right),
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec 1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}, \quad z \in \mathbb{E}
$$

Theorem 20. Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
& \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \\
& \prec 1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2} \\
&+\frac{4 \alpha \sqrt{z}}{\pi^{2}(1-z)} \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}, \quad z \in \mathbb{E} .
$$

Remark 8. When we select $\beta=1, \gamma=1$ and $q(z)=\frac{1+(1-2 \delta) z}{1-z}$, for $0 \leq \delta<$ 1in Theorem 5 and Theorem 6, a little calculation yields that

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}=\frac{1+z}{1-z}
$$

and

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{1}{\alpha}=\frac{1+z}{1-z}+\frac{1}{\alpha} .
$$

Thus for positive real number α, we notice that $q(z)$ satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we arrive at the following results from Theorem 5 and Theorem 6 respectively.

Theorem 21. Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$
\frac{z f^{\prime}(z)}{\phi(f(z))}+\alpha\left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(f(z))^{\prime}\right.}{\phi(f(z))}\right)
$$

R. Brar and S. S. Billing - Applications of a Differential Subordination ...

$$
\prec \frac{1+(1-2 \delta) z}{1-z}+\frac{2 \alpha z(1-\delta)}{(1-z)^{2}},
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec \frac{1+(1-2 \delta) z}{1-z}, \quad z \in \mathbb{E}, \text { where } 0 \leq \delta<1
$$

Theorem 22. Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
\frac{z f^{\prime}(z)}{f(z)}+\alpha\left(\frac{z f^{\prime}(z)}{f(z)}\right) & \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \\
& \prec \frac{1+(1-2 \delta) z}{1-z}+\frac{2 \alpha z(1-\delta)}{(1-z)^{2}}
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+(1-2 \delta) z}{1-z}, \quad z \in \mathbb{E}, \text { where } 0 \leq \delta<1
$$

Remark 9. When we select $\beta=1, \gamma=1$ and $q(z)=e^{z}$, in Theorem 5 and Theorem 6, a little calculation yields that

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}=1+z
$$

and

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{1}{\alpha}=1+z+\frac{1}{\alpha}
$$

Thus for positive real number α, we notice that $q(z)$ satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we have the following results from Theorem 5 and Theorem 6 respectively.
Theorem 23. Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$
\frac{z f^{\prime}(z)}{\phi(f(z))}+\alpha\left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(f(z))^{\prime}\right.}{\phi(f(z))}\right) \prec e^{z}(1+\alpha z)
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec e^{z}, \quad z \in \mathbb{E}
$$

Theorem 24. Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$
\frac{z f^{\prime}(z)}{f(z)}+\alpha\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec e^{z}(1+\alpha z)
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec e^{z}, \quad z \in \mathbb{E}
$$

Remark 10. When we select $\beta=1, \gamma=1$ and $q(z)=\frac{\alpha^{\prime}(1-z)}{\alpha^{\prime}-z}, 1 \leq \alpha^{\prime}<\frac{3}{2}$ in Theorem 5 and Theorem 6, a little calculation yields that

$$
\begin{aligned}
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)} & =\frac{\alpha^{\prime}+z}{\alpha^{\prime}-z}, \\
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{1}{\alpha} & =\frac{\alpha^{\prime}+z}{\alpha^{\prime}-z}+\frac{1}{\alpha} .
\end{aligned}
$$

For a positive real number α, we see that $q(z)$ satisfies the conditions (i) and (ii) of Theorem 5 and Theorem 6. Therefore, we get the following results from Theorem 5 and Theorem 6 respectively.

Theorem 25. Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
\frac{z f^{\prime}(z)}{\phi(f(z))}+\alpha & \left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(f(z))^{\prime}\right.}{\phi(f(z))}\right) \\
& \prec \frac{\alpha^{\prime}(1-z)}{\alpha^{\prime}-z}+\alpha \frac{\left(\alpha^{\prime}-\alpha^{\prime 2}\right) z}{\left(\alpha^{\prime}-z\right)^{2}}
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec \frac{\alpha^{\prime}(1-z)}{\alpha^{\prime}-z}, \quad z \in \mathbb{E}, \text { where } 1 \leq \alpha^{\prime}<\frac{3}{2} .
$$

Theorem 26. Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
\frac{z f^{\prime}(z)}{f(z)}+ & \alpha\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \\
& \prec \frac{\alpha^{\prime}(1-z)}{\alpha^{\prime}-z}+\alpha \frac{\left(\alpha^{\prime}-\alpha^{\prime 2}\right) z}{\left(\alpha^{\prime}-z\right)^{2}}
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{\alpha^{\prime}(1-z)}{\alpha^{\prime}-z}, \quad z \in \mathbb{E}, \text { where } 1 \leq \alpha^{\prime}<\frac{3}{2}
$$

Remark 11. When we select $\beta=1, \gamma=1$ and $q(z)=1+a z, 0 \leq a<1$ in Theorem 5 and Theorem 6, a little calculation yields that

$$
\begin{aligned}
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)} & =1, \\
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{1}{\alpha} & =1+\frac{1}{\alpha} .
\end{aligned}
$$

For a positive real number α, we see that $q(z)$ satisfies the conditions (i) and (ii) of Theorem 5 and Theorem 6. Therefore, we derive next two results from Theorem 5 and Theorem 6 respectively.
R. Brar and S. S. Billing - Applications of a Differential Subordination ...

Theorem 27. Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$
\frac{z f^{\prime}(z)}{\phi(f(z))}+\alpha\left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(f(z))^{\prime}\right.}{\phi(f(z))}\right) \prec 1+a z+\alpha a z
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec 1+a z, \quad z \in \mathbb{E}, \text { where } 0 \leq a<1
$$

Theorem 28. Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$
\frac{z f^{\prime}(z)}{f(z)}+\alpha\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec 1+a z+\alpha a z
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+a z, \quad z \in \mathbb{E}, \text { where } 0 \leq a<1
$$

Remark 12. When we select $\beta=1, \gamma=1$ and $q(z)=\left(\frac{1+z}{1-z}\right)^{\eta}, 0<\eta \leq 1$ in Theorem 5 and Theorem 6, a little calculation yields that

$$
\begin{aligned}
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)} & =\frac{1+z^{2}+2 \eta z}{1-z^{2}} \\
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{1}{\alpha} & =\frac{1+z^{2}+2 \eta z}{1-z^{2}}+\frac{1}{\alpha}
\end{aligned}
$$

For a positive real number α, we see that $q(z)$ satisfies the conditions (i) and (ii) of Theorem 5 and Theorem 6. Therefore, we obtain the following results from Theorem 5 and Theorem 6 respectively.

Theorem 29. Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
\frac{z f^{\prime}(z)}{\phi(f(z))}+\alpha & \left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(f(z))^{\prime}\right.}{\phi(f(z))}\right) \\
& \prec\left(\frac{1+z}{1-z}\right)^{\eta}\left[1+\frac{2 \alpha \eta z}{1-z^{2}}\right]
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec\left(\frac{1+z}{1-z}\right)^{\eta}, \quad z \in \mathbb{E}, \text { where } 0<\eta \leq 1
$$

R. Brar and S. S. Billing - Applications of a Differential Subordination . . .

Theorem 30. Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$
\begin{aligned}
\frac{z f^{\prime}(z)}{f(z)}+ & \alpha\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \\
& \prec\left(\frac{1+z}{1-z}\right)^{\eta}\left[1+\frac{2 \alpha \eta z}{1-z^{2}}\right]
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\eta}, \quad z \in \mathbb{E}, \text { where } 0<\eta \leq 1 \text {. }
$$

References

[1] L. Brickman, ϕ-like analytic functions, I, Bull. Amer. Math. Soc., 79 (1973), 555-558.
[2] W. C. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57, 2 (1992), 165-175.
[3] S. S. Miller and P. T. Mocanu, Differential subordination Theory and applications, Marcel Dekker New York and Basel. (2000).
[4] V. Ravichandran, N. Magesh and R. Rajalakshmi, On certain applications of differential subordinations for ϕ-like functions, Tamkang J. Math., 36, 2 (2005), 137-142.
[5] F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118, 1 (1993), 189-196.
[6] St. Ruscheweyh, A subordination theorem for ϕ-like functions, J. London Math. Soc., 2, 13 (1976), 275-280.
[7] T. N. Shanmugam, S. Sivasubramanian and Maslina Darus, Subordination and superordination results for ϕ-like functions, J. Inq. Pure and App. Math., 8, 1 (2007), Art. 20, 6pp.

Richa Brar
Department of Mathematics,
Sri Guru Granth sahib World University,
Fatehgarh Sahib - 140407, Punjab
email: richabrar4@gmail.com
S. S. Billing

Department of Mathematics,
R. Brar and S. S. Billing - Applications of a Differential Subordination ...

Sri Guru Granth sahib World University, Fatehgarh Sahib - 140407, Punjab email: ssbilling@gmail.com

