APPLICATIONS OF A DIFFERENTIAL SUBORDINATION INVOLVING THE CONVOLUTION OF ANALYTIC FUNCTIONS

R. BRAR AND S. S. BILLING

ABSTRACT. In the present paper, we derive a subordination theorem involving the convolution of analytic functions. As special cases of our main results, we obtain the sufficient conditions for analytic functions to be parabolic ϕ -like, parabolic starlike, ϕ -like and starlike.

2010 Mathematics Subject Classification: 30C45, 30C80.

Keywords: analytic function, univalent function, differential subordination, parabolic ϕ - like function, parabolic starlike function, ϕ - like function, starlike function, convolution.

1. INTRODUCTION

Let \mathcal{A} denote the class of all functions f analytic in $\mathbb{E} = \{z : |z| < 1\}$, normalized by the conditions f(0) = f'(0) - 1 = 0. Therefore, Taylor's series expansion of $f \in \mathcal{A}$, is given by

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k.$$

Let the functions f and g be analytic in \mathbb{E} . We say that f is subordinate to g written as $f \prec g$ in \mathbb{E} , if there exists a Schwarz function ϕ in \mathbb{E} (i.e. ϕ is regular in $|z| < 1, \phi(0) = 0$ and $|\phi(z)| \le |z| < 1$) such that

$$f(z) = g(\phi(z)), |z| < 1.$$

Let $\Phi : \mathbb{C}^2 \times \mathbb{E} \to \mathbb{C}$ be an analytic function, p an analytic function in \mathbb{E} , with $(p(z), zp'(z); z) \in \mathbb{C}^2 \times \mathbb{E}$ for all $z \in \mathbb{E}$ and h be univalent in \mathbb{E} . Then the function p is said to satisfy first order differential subordination if

$$\Phi(p(z), zp'(z); z) \prec h(z), \quad \Phi(p(0), 0; 0) = h(0). \tag{1}$$

A univalent function q is called a dominant of the differential subordination (1) if p(0) = q(0) and $p \prec q$ for all p satisfying (1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1), is said to be the best dominant of (1). The best dominant is unique up to a rotation of \mathbb{E} .

Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ be two analytic functions, then convolution of f(z) and g(z), written as (f * g)(z) is defined by

$$(f * g)(z) = \sum_{k=0}^{\infty} a_k b_k z^k.$$

A function $f \in \mathcal{A}$ is said to be starlike of order $\alpha(0 \leq \alpha < 1)$ in \mathbb{E} if

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha, z \in \mathbb{E}.$$

Let $\mathcal{S}^*(\alpha)$ denote the class of starlike functions of order α . Write $\mathcal{S}^*(0) = \mathcal{S}^*$, the class of starlike functions.

A function $f \in \mathcal{A}$ is said to be parabolic starlike in \mathbb{E} , if

$$\Re \left(\frac{zf'(z)}{f(z)}\right) > \left|\frac{zf'(z)}{f(z)} - 1\right|, z \in \mathbb{E}.$$
(2)

The class of parabolic starlike functions is denoted by $S_{\mathcal{P}}$. A function $f \in \mathcal{A}$ is said to be strongly starlike of order $\alpha, 0 < \alpha \leq 1$, if

$$\left|\arg\frac{zf'(z)}{f(z)}\right| < \frac{\alpha\pi}{2}, z \in \mathbb{E}.$$
(3)

or, equivalently

$$\frac{zf'(z)}{f(z)} \prec \left(\frac{1+z}{1-z}\right)^{\alpha}, z \in \mathbb{E}.$$

Let $\mathcal{S}(\alpha)$ denote the class of strongly starlike functions of order α .

Let ϕ be analytic in a domain containing $f(\mathbb{E}), \phi(0) = 0$ and $\Re(\phi'(0)) > 0$. Then, the function $f \in \mathcal{A}$ is said to be ϕ -like in \mathbb{E} if

$$\Re \left(\frac{zf'(z)}{\phi(f(z))}\right) > 0, \quad z \in \mathbb{E}.$$

This concept was introduced by L. Brickman [1]. He proved that an analytic function $f \in \mathcal{A}$ is univalent if and only if f is ϕ -like for some ϕ . Later, Ruscheweyh [6] investigated the following general class of ϕ -like functions:

Let ϕ be analytic in a domain containing $f(\mathbb{E})$, where $\phi(0) = 0, \phi'(0) = 1$ and $\phi(w) \neq 0$ for some $w \in f(\mathbb{E}) \setminus \{0\}$. Let q(z) be a fixed analytic function in $\mathbb{E}, q(0) = 1$. Then the function $f \in \mathcal{A}$ is called ϕ -like with respect to q, if

$$\frac{zf'(z)}{\phi(f(z))} \prec q(z), \ z \in \mathbb{E}.$$

A function $f \in \mathcal{A}$ is said to be parabolic ϕ -like in \mathbb{E} if

$$\Re \left(\frac{zf'(z)}{\phi(f(z))}\right) > \left|\frac{zf'(z)}{\phi(f(z))} - 1\right|, \quad z \in \mathbb{E}.$$
(4)

Define the parabolic domain Ω as under:

$$\Omega = \{ u + iv : u > \sqrt{(u-1)^2 + v^2} \}.$$

Note that the conditions (2) and (4) are equivalent to the condition that $\frac{zf'(z)}{f(z)}$ and zf'(z)

 $\frac{zf'(z)}{\phi(f(z))}$ take values in the parabolic domain Ω respectively.

Ronning [5] and Ma and Minda [2] showed that the function defined by

$$q(z) = 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2 \tag{5}$$

maps the unit disk \mathbb{E} onto the parabolic domain Ω . Therefore, the condition (2) and (4) are equivalent to following conditions respectively:

$$\frac{zf'(z)}{f(z)} \prec q(z), \ z \in \mathbb{E}$$

and

$$\frac{zf'(z)}{\phi(f(z))} \prec q(z), \quad z \in \mathbb{E},$$

where q(z) is given by (5).

In 2005, Ravichandran et al. [4] proved the following result for ϕ - like functions.

Theorem 1. Let $\alpha \neq 0$ be a complex number and q(z) be convex univalent in \mathbb{E} . Define $h(z) = \alpha q^2(z) + (1 - \alpha)q(z) + \alpha zq'(z)$. Further assume that $\Re\{\frac{1-\alpha}{\alpha} + 2q(z) + (1 + \frac{zq''(z)}{q'(z)})\} > 0$, $z \in \mathbb{E}$. If $f \in \mathbb{A}$ satisfies

$$\frac{zf'(z)}{\phi(f(z))} \left[1 + \frac{\alpha z f''(z)}{f'(z)} + \frac{\alpha z [f'(z) - \{\phi(f(z))\}']}{\phi(f(z))} \right] \prec h(z)$$

then

$$\frac{zf'(z)}{\phi(f(z))} \prec q(z)$$

and q(z) is the best dominant.

Later, Shanmugham et al. [7] obtained the following result.

Theorem 2. Let $q(z) \neq 0$ be analytic and univalent in \mathbb{E} with q(0) = 1 such that $\frac{zq'(z)}{q(z)}$ is starlike univalent in \mathbb{E} . Let q(z) satisfy

$$\Re\left[1+\frac{\alpha q(z)}{\gamma}-\frac{zq'(z)}{q(z)}+\frac{zq''(z)}{q'(z)}\right]\geq 0.$$

Let for $f, g \in \mathcal{A}$

$$\Psi(\alpha, \gamma, g; z) := \alpha \left\{ \frac{z(f * g)'(z)}{\Phi(f * g)(z)} \right\} + \gamma \left\{ 1 + \frac{z(f * g)''(z)}{(f * g)'(z)} - \frac{z(\Phi(f * g)(z))'}{\Phi(f * g)(z)} \right\}.$$

If q satisfies

$$\Psi(\alpha, \gamma, g; z) \prec \alpha q(z) + \frac{\gamma z q'(z)}{q(z)},$$

then

$$\frac{z(f*g)'(z)}{\Phi(f*g)(z)} \prec q(z)$$

and q(z) is the best dominant.

In the present paper, we derive a subordination theorem involving the convolution of analytic functions. As special cases of our main results, we obtain the sufficient conditions for analytic functions to be parabolic ϕ -like, parabolic starlike, ϕ -like and starlike.

2. Preliminaries

To prove our main results, we shall use the following lemma of Miller and Mocanu ([3], Theorem 3.4h, p.132).

Lemma 3. Let q be a univalent in \mathbb{E} and let Θ and Φ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$, with $\Phi(w) \neq 0$, when $w \in q(\mathbb{E})$. Set $Q(z) = zq'(z)\Phi[q(z)]$, $h(z) = \Theta[q(z)] + Q(z)$ and suppose that either (i) h is convex, or (ii) Q is starlike.

In addition, assume that (iii) $\Re \frac{zh'(z)}{Q(z)} = \Re \left[\frac{\Theta'[q(z)]}{\Phi[q(z)]} + \frac{zQ'(z)}{Q(z)} \right] > 0.$ If p is analytic in \mathbb{E} , with $p(0) = q(0), p(\mathbb{E}) \subset \mathbb{D}$ and

$$\Theta[p(z)] + zp'(z)\Phi[p(z)] \prec \Theta[q(z)] + zq'(z)\Phi[q(z)] = h(z),$$

then $p \prec q$, and q is the best dominant.

3. MAIN RESULTS

In what follows, all the powers taken are principal ones.

Theorem 4. Let
$$q(z) \neq 0$$
, be a univalent function in \mathbb{E} such that
(i) $\Re \left[1 + \frac{zq''(z)}{q'(z)} + (\gamma - 1)\frac{zq'(z)}{q(z)} \right] > 0$ and
(ii) $\Re \left[1 + \frac{zq''(z)}{q'(z)} + (\gamma - 1)\frac{zq'(z)}{q(z)} + \frac{\beta(1 - \alpha)}{\alpha}(q(z))^{\beta - \gamma} + \gamma \right] > 0.$
If f and $g \in \mathcal{A}$ satisfy
 $(1 - \alpha) \left[\frac{z(f * g)'(z)}{\phi(f * g)(z)} \right]^{\beta} + \alpha \left[\frac{z(f * g)'(z)}{\phi(f * g)(z)} \right]^{\gamma} \left[2 + \frac{z(f * g)''(z)}{(f * g)'(z)} - \frac{z(\phi((f * g)(z)))'}{\phi((f * g)(z))} \right]$
 $\prec (1 - \alpha)(q(z))^{\beta} + \alpha(q(z))^{\gamma} \left(1 + \frac{zq'(z)}{q(z)} \right),$
(6)

then

$$\frac{z(f*g)'(z)}{\phi((f*g)(z))} \prec q(z), \quad z \in \mathbb{E},$$

where α, β, γ are complex numbers such that $\alpha \neq 0$, and q(z) is the best dominant. Proof. Define the function p(z) by

$$p(z) = \frac{z(f * g)'(z)}{\phi(f * g)(z)}, \quad z \in \mathbb{E}.$$

Then the function p(z) is analytic in \mathbb{E} and p(0) = 1. Therefore, from equation (6) we obtain:

$$(1-\alpha)(p(z))^{\beta} + \alpha(p(z))^{\gamma} \left(1 + \frac{zp'(z)}{p(z)}\right) \prec (1-\alpha)(q(z))^{\beta} + \alpha(q(z))^{\gamma} \left(1 + \frac{zq'(z)}{q(z)}\right),$$

Let us define the functions Θ and Φ as follows:

$$\Theta(w) = (1 - \alpha)w^{\beta} + \alpha w^{\gamma}$$

and

$$\Phi(w) = \alpha w^{\gamma - 1}.$$

Obviously, both the functions Θ and Φ are analytic in $\mathbb{D} = \mathbb{C} \setminus \{0\}$ and $\Phi(w) \neq 0$ in \mathbb{D} . Therefore,

$$Q(z) = \Phi(q(z))zq'(z) = \alpha zq'(z)(q(z))^{\gamma-1}$$

and

$$h(z) = \Theta(q(z)) + Q(z) = (1 - \alpha)(q(z))^{\beta} + \alpha(q(z))^{\gamma} \left(1 + \frac{zq'(z)}{q(z)}\right).$$

On differentiating, we obtain $\frac{zQ'(z)}{Q(z)} = 1 + \frac{zq''(z)}{q'(z)} + (\gamma - 1)\frac{zq'(z)}{q(z)}$ and

$$\frac{zh'(z)}{Q(z)} = 1 + \frac{zq''(z)}{q'(z)} + (\gamma - 1)\frac{zq'(z)}{q(z)} + \frac{\beta(1 - \alpha)}{\alpha}(q(z))^{\beta - \gamma} + \gamma.$$

In view of the given conditions, we see that Q is starlike and $\Re\left(\frac{zh'(z)}{Q(z)}\right) > 0$. Therefore, the proof, now follows from Lemma 3.

Selecting $g(z) = \frac{z}{1-z}$ in Theorem 4, we get the following result:

Theorem 5. Let $q(z) \neq 0$, be a univalent function in \mathbb{E} such that (i) $\Re \left[1 + \frac{zq''(z)}{q'(z)} + (\gamma - 1)\frac{zq'(z)}{q(z)} \right] > 0$ and (ii) $\Re \left[1 + \frac{zq''(z)}{q'(z)} + (\gamma - 1)\frac{zq'(z)}{q(z)} + \frac{\beta(1 - \alpha)}{\alpha}(q(z))^{\beta - \gamma} + \gamma \right] > 0.$ If $f \in \mathcal{A}$ satisfy

$$(1-\alpha)\left[\frac{zf'(z)}{\phi(f(z))}\right]^{\beta} + \alpha\left[\frac{zf'(z)}{\phi(f(z))}\right]^{\gamma}\left[2 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z))'}{\phi(f(z))}\right]$$
$$\prec (1-\alpha)(q(z))^{\beta} + \alpha(q(z))^{\gamma}\left(1 + \frac{zq'(z)}{q(z)}\right),$$

then

$$\frac{zf'(z)}{\phi(f(z))} \prec q(z), \quad z \in \mathbb{E},$$

where α, β, γ are complex numbers such that $\alpha \neq 0$, and q(z) is the best dominant. Selecting $\phi(w) = w$ in Theorem 5, we get: $\begin{aligned} \text{Theorem 6. Let } q(z) \neq 0, \ be \ a \ univalent \ function \ in \ \mathbb{E} \ such \ that \\ (i) \ \Re \left[1 + \frac{zq''(z)}{q'(z)} + (\gamma - 1)\frac{zq'(z)}{q(z)} \right] &> 0 \ and \\ (ii) \ \Re \left[1 + \frac{zq''(z)}{q'(z)} + (\gamma - 1)\frac{zq'(z)}{q(z)} + \frac{\beta(1 - \alpha)}{\alpha}q(z)^{\beta - \gamma} + \gamma \right] &> 0. \\ If \ f \in \mathcal{A} \ satisfy \\ (1 - \alpha) \left[\frac{zf'(z)}{f(z)} \right]^{\beta} + \alpha \left[\frac{zf'(z)}{f(z)} \right]^{\gamma} \left[2 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right] \\ &\prec (1 - \alpha)(q(z))^{\beta} + \alpha(q(z))^{\gamma} \left(1 + \frac{zq'(z)}{q(z)} \right), \end{aligned}$

then

$$\frac{zf'(z)}{f(z)} \prec q(z), \quad z \in \mathbb{E},$$

where α, β, γ are complex numbers such that $\alpha \neq 0$, and q(z) is the best dominant.

4. Applications

Remark 1. When we select $\beta = 1, \gamma = 0$ and $q(z) = 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2$ in Theorem 5 and Theorem 6, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} = \frac{1+z}{2(1-z)} + \frac{\sqrt{z}}{(1-z)\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)} - \frac{\frac{4\sqrt{z}}{\pi^2(1-z)}\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1 + \frac{2}{\pi^2}\left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2}$$

and

$$\begin{split} 1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \left(\frac{1-\alpha}{\alpha}\right)q(z) &= \frac{1+z}{2(1-z)} + \frac{\sqrt{z}}{(1-z)\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)} - \frac{\frac{4\sqrt{z}}{\pi^2(1-z)}\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1+\frac{2}{\pi^2}\left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2} \\ &+ \frac{(1-\alpha)}{\alpha}\left(1 + \frac{2}{\pi^2}\left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2\right). \end{split}$$

Thus for real number α such that $0 < \alpha \leq 1$, we notice that q(z) satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we derive next two results from Theorem 5 and Theorem 6 respectively.

Theorem 7. Let α be a real number such that $0 < \alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$\begin{split} (1-\alpha)\frac{zf'(z)}{\phi(f(z))} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z))'}{\phi(f(z))}\right) \\ \\ \prec (1-\alpha)\left[1 + \frac{2}{\pi^2}\left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2\right] \\ + \frac{\frac{4\alpha\sqrt{z}}{\pi^2(1-z)}\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1 + \frac{2}{\pi^2}\left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2}, \end{split}$$

then

$$\frac{zf'(z)}{\phi(f(z))} \prec 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2, \quad z \in \mathbb{E}.$$

Theorem 8. Let α be a real number such that $0 < \alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right)$$
$$\prec (1-\alpha) \left[1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2\right]$$
$$+ \frac{\frac{4\alpha\sqrt{z}}{\pi^2(1-z)} \log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2},$$

then

$$\frac{zf'(z)}{f(z)} \prec 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2, \quad z \in \mathbb{E}.$$

Remark 2. When we select $\beta = 1, \gamma = 0$ and $q(z) = e^z$ in Theorem 5 and Theorem 6, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} = 1$$

and

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \left(\frac{1-\alpha}{\alpha}\right)q(z) = 1 + \left(\frac{1-\alpha}{\alpha}\right)e^z.$$

Thus for positive real number α such that $0 < \alpha \leq 1$, we notice that q(z) satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we get the following results from Theorem 5 and Theorem 6 respectively.

Theorem 9. Let α be a real number such that $0 < \alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$(1-\alpha)\frac{zf'(z)}{\phi(f(z))} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z))')}{\phi(f(z))}\right)$$
$$\prec (1-\alpha)e^z + \alpha z,$$

then

$$\frac{zf'(z)}{\phi(f(z))} \prec e^z, \quad z \in \mathbb{E}.$$

Theorem 10. Let α be a real number such that $0 < \alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right)$$
$$\prec (1-\alpha)e^z + \alpha z,$$

then

$$\frac{zf'(z)}{f(z)} \prec e^z, \quad z \in \mathbb{E}$$

Remark 3. When we select $\beta = 1, \gamma = 0$ and $q(z) = \frac{1 + (1 - 2\delta)z}{1 - z}; 0 \le \delta < 1$ in Theorem 5 and Theorem 6, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} = \frac{1 + (1 - 2\delta)z^2}{(1 - z)(1 + (1 - 2\delta)z)}$$

and

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \left(\frac{1-\alpha}{\alpha}\right)q(z) = \frac{1+(1-2\delta)z^2}{(1-z)(1+(1-2\delta)z)} + \left(\frac{1-\alpha}{\alpha}\right)\left[\frac{1+(1-2\delta)z}{1-z}\right]$$

Thus for real number α such that $0 < \alpha \leq 1$, we notice that q(z) satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we arrive at the following results from Theorem 5 and Theorem 6 respectively.

Theorem 11. Let α be a real number such that $0 < \alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$(1-\alpha)\frac{zf'(z)}{\phi(f(z))} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z))'}{\phi(f(z))}\right) \\ \prec (1-\alpha)\left[\frac{1+(1-2\delta)z}{1-z}\right] + \frac{2\alpha z(1-\delta)}{(1-z)[1+(1-2\delta)z]}, z \in \mathbb{E},$$

$$\frac{zf'(z)}{\phi(f(z))} \prec \frac{1+(1-2\delta)z}{1-z}, where \ 0 \leq \delta < 1.$$

Theorem 12. Let α be a real number such that $0 < \alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right) \prec (1-\alpha) \left[\frac{1+(1-2\delta)z}{1-z}\right] + \frac{2\alpha z(1-\delta)}{(1-z)[1+(1-2\delta)z]}, z \in \mathbb{E},$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{1 + (1 - 2\delta)z}{1 - z}, where \ 0 \le \delta < 1.$$

Remark 4. When we select $\beta = 1, \gamma = 0$ and $q(z) = 1 + az; 0 \le a < 1$ in Theorem 5 and Theorem 6, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} = \frac{1}{1+az}$$

and

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \left(\frac{1-\alpha}{\alpha}\right)q(z) = \frac{1}{1+az} + \left(\frac{1-\alpha}{\alpha}\right)(1+az).$$

Thus for real number α such that $0 < \alpha \leq 1$, we notice that q(z) satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we obtain the following results from Theorem 5 and Theorem 6 respectively.

Theorem 13. Let α be a real number such that $0 < \alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$(1-\alpha)\frac{zf'(z)}{\phi(f(z))} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z))'}{\phi(f(z))}\right)$$
$$\prec (1-\alpha)(1+az) + \frac{\alpha az}{1+az}, z \in \mathbb{E},$$

then

$$\frac{zf'(z)}{\phi(f(z))} \prec 1 + az, where \ 0 \le a < 1.$$

Theorem 14. Let α be a real number such that $0 < \alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right)$$
$$\prec (1-\alpha)(1+az) + \frac{\alpha az}{1+az}, z \in \mathbb{E},$$

$$\frac{zf'(z)}{f(z)} \prec 1 + az, where \ 0 \le a < 1.$$

Remark 5. When we select $\beta = 1, \gamma = 0$ and $q(z) = \left(\frac{1+z}{1-z}\right)^{\eta}$, $0 < \eta \leq 1$ in Theorem 5 and Theorem 6, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} = \frac{1+z^2}{1-z^2}$$

and

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \left(\frac{1-\alpha}{\alpha}\right)q(z) = \frac{1+z^2}{1-z^2} + \left(\frac{1-\alpha}{\alpha}\right)\left(\frac{1+z}{1-z}\right)^{\eta}$$

Thus for real number α such that $0 < \alpha \leq 1$, we notice that q(z) satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we have the following results from Theorem 5 and Theorem 6 respectively.

Theorem 15. Let α be a real number such that $0 < \alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$(1-\alpha)\frac{zf'(z)}{\phi(f(z))} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z))'}{\phi(f(z))}\right)$$
$$\prec (1-\alpha)\left(\frac{1+z}{1-z}\right)^{\eta} + \frac{2\eta\alpha z}{1-z^2}, z \in \mathbb{E},$$

then

$$\frac{zf'(z)}{\phi(f(z))} \prec \left(\frac{1+z}{1-z}\right)^{\eta}, where \ 0 < \eta \le 1.$$

Theorem 16. Let α be a real number such that $0 < \alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right)$$
$$\prec (1-\alpha) \left(\frac{1+z}{1-z}\right)^{\eta} + \frac{2\eta\alpha z}{1-z^2}, z \in \mathbb{E}$$

then

$$\frac{zf'(z)}{f(z)} \prec \left(\frac{1+z}{1-z}\right)^{\eta}, where \ 0 < \eta \le 1.$$

Remark 6. When we select $\beta = 1, \gamma = 0$ and $q(z) = \frac{\alpha'(1-z)}{\alpha'-z}, \alpha' > 1$ in Theorem 5 and Theorem 6, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} = \frac{1}{1-z} + \frac{z}{\alpha'-z}$$

and

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \left(\frac{1-\alpha}{\alpha}\right)q(z) = \frac{1}{1-z} + \frac{z}{\alpha'-z} + \left(\frac{1-\alpha}{\alpha}\right)\left[\frac{\alpha'(1-z)}{\alpha'-z}\right]$$

Thus for real number α such that $0 < \alpha \leq 1$, we notice that q(z) satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we get the following results from Theorem 5 and Theorem 6 respectively.

Theorem 17. Let α be a real number such that $0 < \alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$(1-\alpha)\frac{zf'(z)}{\phi(f(z))} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z))'}{\phi(f(z))}\right)$$
$$\prec (1-\alpha)\frac{\alpha'(1-z)}{\alpha'-z} + \frac{(1-\alpha')\alpha z}{(1-z)(\alpha'-z)}, z \in \mathbb{E},$$

then

$$\frac{zf'(z)}{\phi(f(z))} \prec \frac{\alpha'(1-z)}{\alpha'-z}, where \ \alpha' > 1.$$

Theorem 18. Let α be a real number such that $0 < \alpha \leq 1$. If $f \in \mathcal{A}$ satisfies

$$(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right)$$
$$\prec (1-\alpha)\frac{\alpha'(1-z)}{\alpha'-z} + \frac{(1-\alpha')\alpha z}{(1-z)(\alpha'-z)}, z \in \mathbb{E},$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{\alpha'(1-z)}{\alpha'-z}, where \ \alpha' > 1.$$

Remark 7. When we select $\beta = 1, \gamma = 1$ and $q(z) = 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2$ in Theorem 5 and Theorem 6, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} = \frac{1+z}{2(1-z)} + \frac{\sqrt{z}}{(1-z)\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}$$

and

$$1 + \frac{zq''(z)}{q'(z)} + \frac{1}{\alpha} = \frac{1+z}{2(1-z)} + \frac{\sqrt{z}}{(1-z)\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)} + \frac{1}{\alpha}$$

Thus for positive real number α , we notice that q(z) satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we obtain the following results from Theorem 5 and Theorem 6 respectively.

Theorem 19. Let α be a positive real number. If $f \in A$ satisfies

$$\frac{zf'(z)}{\phi(f(z))} + \alpha \left(\frac{zf'(z)}{\phi(f(z))}\right) \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z))'}{\phi(f(z))}\right)$$
$$\prec 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2 + \frac{4\alpha\sqrt{z}}{\pi^2(1-z)}\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right),$$

then

$$\frac{zf'(z)}{\phi(f(z))} \prec 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2, \quad z \in \mathbb{E}.$$

Theorem 20. Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$\begin{aligned} \frac{zf'(z)}{f(z)} + \alpha \left(\frac{zf'(z)}{f(z)}\right) \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right) \\ & \prec 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2 \\ & + \frac{4\alpha\sqrt{z}}{\pi^2(1-z)} \log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right), \end{aligned}$$

then

$$\frac{zf'(z)}{f(z)} \prec 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2, \quad z \in \mathbb{E}.$$

Remark 8. When we select $\beta = 1, \gamma = 1$ and $q(z) = \frac{1 + (1 - 2\delta)z}{1 - z}$, for $0 \le \delta < 1$ in Theorem 5 and Theorem 6, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} = \frac{1+z}{1-z}$$

and

$$1 + \frac{zq''(z)}{q'(z)} + \frac{1}{\alpha} = \frac{1+z}{1-z} + \frac{1}{\alpha}.$$

Thus for positive real number α , we notice that q(z) satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we arrive at the following results from Theorem 5 and Theorem 6 respectively.

Theorem 21. Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$\frac{zf'(z)}{\phi(f(z))} + \alpha \left(\frac{zf'(z)}{\phi(f(z))}\right) \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z))'}{\phi(f(z))}\right)$$

then

$$\frac{zf'(z)}{\phi(f(z))} \prec \frac{1+(1-2\delta)z}{1-z}, \ z \in \mathbb{E}, where \ 0 \leq \delta < 1.$$

Theorem 22. Let α be a positive real number. If $f \in A$ satisfies

$$\frac{zf'(z)}{f(z)} + \alpha \left(\frac{zf'(z)}{f(z)}\right) \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right)$$
$$\prec \frac{1 + (1 - 2\delta)z}{1 - z} + \frac{2\alpha z(1 - \delta)}{(1 - z)^2},$$

 $\prec \frac{1+(1-2\delta)z}{1-z} + \frac{2\alpha z(1-\delta)}{(1-z)^2},$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{1 + (1 - 2\delta)z}{1 - z}, \quad z \in \mathbb{E}, where \ 0 \le \delta < 1.$$

Remark 9. When we select $\beta = 1, \gamma = 1$ and $q(z) = e^z$, in Theorem 5 and Theorem 6, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} = 1 + z$$

and

$$1 + \frac{zq''(z)}{q'(z)} + \frac{1}{\alpha} = 1 + z + \frac{1}{\alpha}.$$

Thus for positive real number α , we notice that q(z) satisfies the condition (i) and (ii) in Theorem 5 and Theorem 6. Therefore, we have the following results from Theorem 5 and Theorem 6 respectively.

Theorem 23. Let α be a positive real number. If $f \in A$ satisfies

$$\frac{zf'(z)}{\phi(f(z))} + \alpha \left(\frac{zf'(z)}{\phi(f(z))}\right) \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z))')}{\phi(f(z))}\right) \prec e^z(1 + \alpha z),$$

then

$$\frac{zf'(z)}{\phi(f(z))} \prec e^z, \quad z \in \mathbb{E}.$$

Theorem 24. Let α be a positive real number. If $f \in A$ satisfies

$$\frac{zf'(z)}{f(z)} + \alpha \left(\frac{zf'(z)}{f(z)}\right) \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right) \prec e^z(1 + \alpha z),$$

$$\frac{zf'(z)}{f(z)} \prec e^z, \quad z \in \mathbb{E}.$$

Remark 10. When we select $\beta = 1, \gamma = 1$ and $q(z) = \frac{\alpha'(1-z)}{\alpha'-z}, 1 \le \alpha' < \frac{3}{2}$ in Theorem 5 and Theorem 6, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} = \frac{\alpha' + z}{\alpha' - z},$$
$$1 + \frac{zq''(z)}{q'(z)} + \frac{1}{\alpha} = \frac{\alpha' + z}{\alpha' - z} + \frac{1}{\alpha}$$

For a positive real number α , we see that q(z) satisfies the conditions (i) and (ii) of Theorem 5 and Theorem 6. Therefore, we get the following results from Theorem 5 and Theorem 6 respectively.

Theorem 25. Let α be a positive real number. If $f \in A$ satisfies

$$\begin{split} \frac{zf'(z)}{\phi(f(z))} + \alpha \left(\frac{zf'(z)}{\phi(f(z))}\right) \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z))'}{\phi(f(z))}\right) \\ \prec \frac{\alpha'(1-z)}{\alpha'-z} + \alpha \frac{(\alpha'-\alpha'^2)z}{(\alpha'-z)^2}, \end{split}$$

then

$$\frac{zf'(z)}{\phi(f(z))} \prec \frac{\alpha'(1-z)}{\alpha'-z}, \ z \in \mathbb{E}, where \ 1 \le \alpha' < \frac{3}{2}.$$

Theorem 26. Let α be a positive real number. If $f \in A$ satisfies

$$\frac{zf'(z)}{f(z)} + \alpha \left(\frac{zf'(z)}{f(z)}\right) \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right)$$
$$\prec \frac{\alpha'(1-z)}{\alpha'-z} + \alpha \frac{(\alpha'-\alpha'^2)z}{(\alpha'-z)^2},$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{\alpha'(1-z)}{\alpha'-z}, \quad z \in \mathbb{E}, where \ 1 \le \alpha' < \frac{3}{2}.$$

Remark 11. When we select $\beta = 1, \gamma = 1$ and $q(z) = 1 + az, 0 \le a < 1$ in Theorem 5 and Theorem 6, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} = 1,$$

$$1 + \frac{zq''(z)}{q'(z)} + \frac{1}{\alpha} = 1 + \frac{1}{\alpha}.$$

For a positive real number α , we see that q(z) satisfies the conditions (i) and (ii) of Theorem 5 and Theorem 6. Therefore, we derive next two results from Theorem 5 and Theorem 6 respectively. **Theorem 27.** Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$\frac{zf'(z)}{\phi(f(z))} + \alpha \left(\frac{zf'(z)}{\phi(f(z))}\right) \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z))'}{\phi(f(z))}\right) \prec 1 + az + \alpha az,$$

then

$$\frac{zf'(z)}{\phi(f(z))} \prec 1 + az, \ z \in \mathbb{E}, where \ 0 \le a < 1.$$

Theorem 28. Let α be a positive real number. If $f \in A$ satisfies

$$\frac{zf'(z)}{f(z)} + \alpha \left(\frac{zf'(z)}{f(z)}\right) \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right) \prec 1 + az + \alpha az,$$

then

$$\frac{zf'(z)}{f(z)} \prec 1 + az, \quad z \in \mathbb{E}, where \ 0 \le a < 1.$$

Remark 12. When we select $\beta = 1, \gamma = 1$ and $q(z) = \left(\frac{1+z}{1-z}\right)^{\eta}, 0 < \eta \leq 1$ in Theorem 5 and Theorem 6, a little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} = \frac{1 + z^2 + 2\eta z}{1 - z^2},$$
$$1 + \frac{zq''(z)}{q'(z)} + \frac{1}{\alpha} = \frac{1 + z^2 + 2\eta z}{1 - z^2} + \frac{1}{\alpha}.$$

For a positive real number α , we see that q(z) satisfies the conditions (i) and (ii) of Theorem 5 and Theorem 6. Therefore, we obtain the following results from Theorem 5 and Theorem 6 respectively.

Theorem 29. Let α be a positive real number. If $f \in \mathcal{A}$ satisfies

$$\begin{aligned} \frac{zf'(z)}{\phi(f(z))} + \alpha \left(\frac{zf'(z)}{\phi(f(z))}\right) \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z))'}{\phi(f(z))}\right) \\ \prec \left(\frac{1+z}{1-z}\right)^{\eta} \left[1 + \frac{2\alpha\eta z}{1-z^2}\right],\end{aligned}$$

$$\frac{zf'(z)}{\phi(f(z))} \prec \left(\frac{1+z}{1-z}\right)^{\eta}, \ z \in \mathbb{E}, where \ 0 < \eta \leq 1$$

Theorem 30. Let α be a positive real number. If $f \in A$ satisfies

$$\begin{aligned} \frac{zf'(z)}{f(z)} + \alpha \left(\frac{zf'(z)}{f(z)}\right) \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right) \\ \prec \left(\frac{1+z}{1-z}\right)^{\eta} \left[1 + \frac{2\alpha\eta z}{1-z^2}\right],\end{aligned}$$

then

$$\frac{zf'(z)}{f(z)} \prec \left(\frac{1+z}{1-z}\right)^{\eta}, \quad z \in \mathbb{E}, where \ 0 < \eta \le 1.$$

References

[1] L. Brickman, ϕ -like analytic functions, I, Bull. Amer. Math. Soc., 79 (1973), 555-558.

[2] W. C. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57, 2 (1992), 165-175.

[3] S. S. Miller and P. T. Mocanu, *Differential subordination Theory and applications*, Marcel Dekker New York and Basel. (2000).

[4] V. Ravichandran, N. Magesh and R. Rajalakshmi, On certain applications of differential subordinations for ϕ -like functions, Tamkang J. Math., 36, 2 (2005), 137-142.

[5] F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118, 1 (1993), 189-196.

[6] St. Ruscheweyh, A subordination theorem for ϕ -like functions, J. London Math. Soc., 2, 13 (1976), 275-280.

[7] T. N. Shanmugam, S. Sivasubramanian and Maslina Darus, Subordination and superordination results for ϕ -like functions, J. Inq. Pure and App. Math., 8, 1 (2007), Art. 20, 6pp.

Richa Brar

Department of Mathematics, Sri Guru Granth sahib World University, Fatehgarh Sahib - 140407, Punjab email: *richabrar4@gmail.com*

S. S. Billing Department of Mathematics, Sri Guru Granth sahib World University, Fatehgarh Sahib - 140407, Punjab email: ssbilling@gmail.com