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1. Introduction

Let A denote the class of functions f of the form

f(z) = z +

∞∑
n=2

anz
n, (1)

which are analytic in the open unit disc U = {z : z∈C and |z| < 1} and satisfy the
normalization condition f(0) = f ′(0)− 1 = 0. Further, we denote by S the subclass
of A consisting of functions of the form (1) which are also univalent in U .

A function f∈A is said to be in the class Rτ (A,B), if∣∣∣∣ f ′(z)− 1

τ(A−B)−B(f ′(z)− 1)

∣∣∣∣ < 1, (−1≤B < A ≤ 1; τ∈C/ {0} ; z∈U) , (2)

clearly, a function f belong to Rτ (A,B), if and only if there exist a function ω
regular in U satisfying ω(0) = 0 and

|ω(z)| < 1, (z∈U) such that

69

http://www.uab.ro/auajournal/


S. Porwal, A. Gupta – Some properties of convolution for hypergeometric . . .

1 +
1

τ
(f ′(z)− 1) =

1 +Aω(z)

1 +Bω(z)
, (z∈U), (3)

the class Rτ (A,B) was introduced by Dixit and Pal [3].

A function f of the form (1) is said to be starlike of order α if it satisfies the
following condition

<
{
zf ′(z)

f(z)

}
> α, z∈U,

the classes of all starlike functions are denoted by S∗(α), studied by Robertson [14]
and Silverman [15].

For λ > 0, Ponnusamy and Rønning [10] introduced the classes S∗λ and Cλ
consisting of functions of the form (1) as follows

S∗λ =

{
f∈A :

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < λ, z∈U
}
,

and
Cλ =

{
f∈A : zf ′(z)∈S∗λ

}
.

It is obvious that f∈Cλ if and only if zf ′(z)∈S∗λ.
Recently, Porwal [11] gives a beautiful application of Poission distribution series

on these subclasses. They establishes a connection between probability distribu-
tion and complex analysis and opened up a new direction of research in Geometric
Function Theory. After the appearence of this paper many researchers e.g. (Muru-
gusundaramoorthy [8], Murugusundaramoorthy et al. [9], Porwal and Kumar [12],
[13] etc.) obtained certain necessary and sufficient conditions for Poisson distribu-
tion series, confluent hypergeometric distribution series, hypergeometric distribution
type series etc. belonging to the various subclasses of univalent functions. Motivat-
ing with the above mentioned work, we obtain neccessary and sufficient conditions
for hypergeometric distribution type series belonging to the classes Rτ (A,B), S∗λ,
Cλ, UCV , UST and k − UCV (α).

Very recently, Ahmad [1] introduce hypergeometric type distribution as follows,
for this purpose we recall the definition of hypergeometric series. The power series

∞∑
n=0

(a)n(b)n
(c)n(1)n

zn,
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where a, b, c are complex numbers such that c6=0, -1, -2,...... and (a)n is the
Pochhammer symbol defined in terms of the Gamma function by,

(a)n =
Γ(a+ n)

Γ(a)

=

{
1, if n = 0

a(a+ 1) . . . (a+ n− 1), if n ∈ N = {1, 2, 3, . . .}

is convergent for all finite value of z. is called the Hypergeometric series. The series
converges absolutly if |z| < 1 and diverges if |z| > 1 and for |z| = 1 the series is
absolutly convergent if <(c− a− b) > 0. It is denoted by F (a, b; c; z).

Now we define for a, b, c,m > 0 such that the series,

F (a, b; c;m) =
∞∑
n=0

(a)n(b)n
(c)n(1)n

mn,

is convergent.
Now we introduce hypergeometric type distribution whose probability mass func-

tion is,
(a)n(b)n

(c)nn!F (a, b; c;m)
mn.

Now we introduce a new series I(a, b; c;m; z) in the following way,

I(a, b; c;m; z) = z +
∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!F (a, b; c;m)
zn,

where a, b, c,m > 0. The series I(a, b; c;m; z) is absolutly convergent for |z| < 1.
The convolution (or Hadamard product) of two series

f(z) =
∞∑
n=0

anz
n,

and

g(z) =

∞∑
n=0

bnz
n,

is defined as the power series,

(f ∗ g)(z) =

∞∑
n=0

anbnz
n.
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Now we consider a linear operator,

K(a, b; c;m; z)f(z) = z +
∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!F (a, b; c;m)
anz

n.

Bharti et al. [2] introduced the subclass of k-uniformly convex functions of order α
and corressponding class of starlike functions as follows-

If f∈A, 0≤k <∞ and 0≤α < 1 then f∈k − UCV (α), if and only if

<
{

1 +
zf ′′(z)

f ′(z)

}
≥k
∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣+ α. (4)

For α = 0 the class k−UCV (α) reduce to the class k−UCV introduced and studied
by Kanas and Wisniowska [6] and for k = 1, α = 0 it reduce to the class uniformly
convex function UCV studied by Goodman [5], (see also [4], [7] and [16]).
To prove our main results we shall require the following lemmas.

Lemma 1. ([3]) Let a function f of the form (1) be in Rτ (A,B). Then,

|an|≤
(A−B)|τ |

n
.

The result is sharp for the function

f(z) =

∫ z

0

(
1 +

(A−B)τzn−1

1 +Bzn−1

)
dz, (n≥2; z∈U). (5)

Lemma 2. ([3]) Let a function f of the form (1) be in A. If

∞∑
n=2

(1 + |B|)n|an|≤(A−B)|τ |, (−1≤B < A≤1; τ∈C).

Then f∈Rτ (A,B).
The result is sharp for the function

f(z) = z +
(A−B)τ

(1 + |B|)n
zn, (n≥2; z∈U). (6)

Lemma 3. ([10]) Let f ∈ A be of the form (1). If

∞∑
n=2

(λ+ n− 1)|an| ≤ λ, (λ > 0), (7)

then f ∈ S∗λ.
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Lemma 4. [10] Let f ∈ A be of the form (1). If

∞∑
n=2

n(λ+ n− 1)|an| ≤ λ, (λ > 0), (8)

then f ∈ Cλ.

Lemma 5. ([5]) A function f of the form (1) is in UCV if

∞∑
n=2

n(2n− 1)|an| ≤ 1.

Lemma 6. ([5]) A function f of the form (1) is in UST if

∞∑
n=2

(3n− 2)|an| ≤ 1.

Lemma 7. ([2]) A function f∈A is in k−UCV (α) if it satisfies the following con-
dition

∞∑
n=2

n[n(1 + k)− (k + α)]|an| ≤ 1− α. (9)

2. Main Results

Theorem 8. Let a, b, c > 0 and c > a+ b, m∈(0, 1). Suppose that f∈Rτ (A,B) and
satisfy the condition

F (a, b; c;m)≤1 +
1

|B|
,

then the operator K(a, b; c;m; z) maps Rτ (A,B) into Rτ (A,B).

Proof. Let a, b, c > 0 and m∈(0, 1).
Suppose that f(z) = z +

∑∞
n=2 anz

n∈Rτ (A,B).
Then by Lemma 2, it sufficeint to show that,

T1 =

∞∑
n=2

(1 + |B|)n|An|≤(A−B)|τ |,
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where

An =
(a)n−1(b)n−1

(c)n−1(n− 1)!

mn−1

F (a, b; c;m)
an.

T1 =

∞∑
n=2

(1 + |B|)n (a)n−1(b)n−1
(c)n−1(n− 1)!

mn−1

F (a, b; c;m)
|an|

≤ (1 + |B|)
∞∑
n=2

n(a)n−1(b)n−1
(c)n−1(n− 1)!

mn−1

F (a, b; c;m)

(A−B)|τ |
n

=
(A−B)|τ |(1 + |B|)

F (a, b; c;m)

∞∑
n=2

(a)n−1(b)n−1
(c)n−1(n− 1)!

mn−1

=
(A−B)|τ |(1 + |B|)

F (a, b; c;m)
(F (a, b; c;m)− 1)

≤ (A−B)|τ |,

by the given hypothesis.
Thus the operator K(a, b; c;m; z) maps Rτ (A,B) into Rτ (A,B).

Theorem 9. Let a, b, c > 1 and c > a+ b, m∈(0, 1). Suppose that f∈Rτ (A,B) and
satisfy the condition

|A−B||τ |
F (a, b; c;m)

{F (a, b; c;m)− 1}+ (λ− 1)(c− 1)

(a− 1)(b− 1)m

{
F (a− 1, b− 1; c− 1;m)− 1− (a− 1)(b− 1)

(c− 1)
m

}
≤λ,

then the operator K(a, b; c;m; z) maps Rτ (A,B) into S∗λ.

Proof. Let a, b, c > 1 and m∈(0, 1). Suppose that f(z) = z+
∑∞

n=2 anz
n∈Rτ (A,B).

Then by Lemma 3 it is sufficient to show that

T2 =
∞∑
n=2

(n+ λ− 1)|An| ≤ λ

=
∞∑
n=2

(n+ λ− 1)
(a)n−1(b)n−1

(c)n−1(n− 1)!

mn−1

F (a, b; c;m)
|An|

=

∞∑
n=2

(n+ λ− 1)

∣∣∣∣ (a)n−1(b)n−1
(c)n−1(n− 1)!

mn−1
∣∣∣∣ |A−B||τ |nF (a, b; c;m)

=
(A−B)|τ |
F (a, b; c;m)

{ ∞∑
n=2

(a)n−1(b)n−1
(c)n−1(n− 1)!

mn−1 + (λ− 1)

∞∑
n=2

(a)n−1(b)n−1
(c)n−1(n)!

mn−1

}
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=
|A−B||τ |
F (a, b; c;m)

{ ∞∑
n=1

(a)n(b)n
(c)n(n)!

mn + (λ− 1)
∞∑
n=2

(a)n−1(b)n−1
(c)n−1(n)!

mn−1

}

=
|A−B||τ |
F (a, b; c;m)

{ ∞∑
n=1

(a)n(b)n
(c)n(n)!

mn +
(λ− 1)(c− 1)

(a− 1)(b− 1)m

∞∑
n=2

(a− 1)n(b− 1)n
(c− 1)n(n)!

mn

}

=
|A−B||τ |
F (a, b; c;m)

{F (a, b; c;m)− 1}+
(λ− 1)(c− 1)

(a− 1)(b− 1)m{
F (a− 1, b− 1; c− 1;m)− 1− (a− 1)(b− 1)

(c− 1)
m

}
≤ λ,

by the given hypothesis.
Thus the operator K(a, b; c;m; z) maps Rτ (A,B) into S∗λ.

Theorem 10. Let a, b, c > 0 and c > a + b, m∈(0, 1). Suppose that f∈Rτ (A,B)
and satisfy the condition

(A−B)|τ |
{
ab

c
mF (a+ 1, b+ 1; c+ 1;m) + λ {F (a, b; c;m)− 1}

}
≤λF (a, b; c;m),

then the operator K(a, b; c;m; z) maps Rτ (A,B) into Cλ.

Proof. Let a, b, c > 0 and m∈(0, 1). Suppose that f(z) = z+
∑∞

n=2 anz
n∈Rτ (A,B).

Then by Lemma 4. It is sufficient to show that

T3 =
∞∑
n=2

n(n+ λ− 1)|An|≤λ.

Now

T3 =

∞∑
n=2

n(n+ λ− 1)

∣∣∣∣ (a)n−1(b)n−1
(c)n−1(n− 1)!

mn−1 an
F (a, b; c;m)

∣∣∣∣
≤
∞∑
n=2

n(n+ λ− 1)
(a)n−1(b)n−1

(c)n−1(n− 1)!

mn−1

F (a, b; c;m)

(A−B)|τ |
n

=
(A−B)|τ |
F (a, b; c;m)

{ ∞∑
n=2

{(n− 1) + λ} (a)n−1(b)n−1
(c)n−1(n− 1)!

m(n−1)

}

=
(A−B)|τ |
F (a, b; c;m)

{ ∞∑
n=2

(n− 1)
(a)n−1(b)n−1

(c)n−1(n− 1)!
mn−1 + λ

∞∑
n=2

(a)n−1(b)n−1
(c)n−1(n− 1)!

mn−1

}
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=
(A−B)|τ |
F (a, b; c;m)

{ ∞∑
n=2

(a)n−1(b)n−1
(c)n−1(n− 2)!

mn−1 + λ
∞∑
n=1

(a)n(b)n
(c)n(n)!

mn

}

=
(A−B)|τ |
F (a, b; c;m)

{
ab

c
m

∞∑
n=2

(a+ 1)n−2(b+ 1)n−2
(c+ 1)n−2(n− 2)!

mn−2 + λ {F (a, b; c;m)− 1}

}

=
(A−B)|τ |
F (a, b; c;m)

{
ab

c
mF (a+ 1, b+ 1; c+ 1;m) + λ {F (a, b; c;m)− 1}

}
≤ λ,

by the given hypothesis.
Thus the operator K(a, b; c;m; z) maps Rτ (A,B) into Cλ.

Theorem 11. Let a, b, c > 0 and c > a + b, m∈(0, 1). Suppose that f∈Rτ (A,B)
and satisfy the condition

(A−B)|τ |
{

2
ab

c
mF (a+ 1, b+ 1; c+ 1;m) + F (a, b; c;m)− 1

}
≤F (a, b; c;m),

then the operator K(a, b; c;m; z) maps Rτ (A,B) into UCV .

Proof. Let a, b, c > 0 and m∈(0, 1). Suppose that f(z) = z+
∑∞

n=2 anz
n∈Rτ (A,B).

Then by Lemma 5, we have

T4 =
∞∑
n=2

n(2n− 1)
(a)n−1(b)n−1

(c)n−1(n− 1)!

mn−1

F (a, b; c;m)
|an|

≤
∞∑
n=2

n(2n− 1)
(a)n−1(b)n−1

(c)n−1(n− 1)!
mn−1 (A−B)|τ |

nF (a, b; c;m)

=
(A−B)|τ |
F (a, b; c;m)

∞∑
n=2

{2(n− 1) + 1} (a)n−1(b)n−1
(c)n−1(n− 1)!

mn−1

=
(A−B)|τ |
F (a, b; c;m)

{
2
∞∑
n=2

(n− 1)
(a)n−1(b)n−1

(c)n−1(n− 1)!
mn−1 +

∞∑
n=2

(a)n−1(b)n−1
(c)n−1(n− 1)!

mn−1

}

=
(A−B)|τ |
F (a, b; c;m)

{
2
∞∑
n=2

(a)n−1(b)n−1
(c)n−1(n− 2)

mn−1 +
∞∑
n=1

(a)n(b)n
(c)n(n)!

mn

}

=
(A−B)|τ |
F (a, b; c;m)

{
2
ab

c
m
∞∑
n=0

(a+ 1)n(b+ 1)n
(c+ 1)n(n)!

mn + F (a, b; c;m)− 1

}
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=
(A−B)|τ |
F (a, b; c;m)

{
2
ab

c
mF (a+ 1, b+ 1; c+ 1;m) + F (a, b; c;m)− 1

}
≤ 1,

by the given hypothesis.
Thus the operator K(a, b; c;m; z) maps Rτ (A,B) into UCV .

Theorem 12. Let a, b, c > 1 and c > a + b, m∈(0, 1). Suppose that f∈Rτ (A,B)
and satisfy the condition ,

(A−B)|τ |
{
3F (a, b; c;m)− 1 +

(c− 1)m

(a− 1)(b− 1)
2F (a− 1, b− 1; c− 1;m)− 1− (a− 1)(b− 1)

(c− 1)

}
≤F (a, b; c;m),

then the operator K(a, b; c;m; z) maps Rτ (A,B) into UST .

Proof. Let a, b, c > 0 and m∈(0, 1).
Suppose that f(z) = z +

∑∞
n=2 anz

n∈Rτ (A,B).
Then by Lemma 6, it is sufficient to show that

T5 =

∞∑
n=2

(3n− 2)

∣∣∣∣ (a)n−1(b)n−1
(c)n−1(n− 1)!

mn−1

F (a, b; c;m)
|an|

∣∣∣∣
=
∞∑
n=2

(3n− 2)
(a)n−1(b)n−1

(c)n−1(n− 1)!

mn−1

F (a, b; c;m)
|an|

≤
∞∑
n=2

(3n− 2)
(a)n−1(b)n−1

(c)n−1(n− 1)!

mn−1

F (a, b; c;m)

|A−B||τ |
n

=
|A−B||τ |
F (a, b; c;m)

{ ∞∑
n=2

3n
(a)n−1(b)n−1

(c)n−1(n)!
mn−1 − 2

∞∑
n=2

(a)n−1(b)n−1
(c)n−1(n)!

mn−1

}

=
|A−B||τ |
F (a, b; c;m)

{ ∞∑
n=2

3
(a)n−1(b)n−1

(c)n−1(n− 1)!
mn−1 − 2

∞∑
n=2

(a)n−1(b)n−1
(c)n−1n!

mn−1

}

=
(A−B)|τ |
F (a, b; c;m)

{
3

∞∑
n=1

(a)n(b)n
(c)nn!

mn − 2
(c− 1)

(a− 1)(b− 1)
m

∞∑
n=2

(a− 1)n(b− 1)n
(c− 1)(n)n!

mn

}

=
(A−B)|τ |
F (a, b; c;m)

{
3(F (a, b; c;m)− 1) +

(c− 1)

(a− 1)(b− 1)m
2(

F (a− 1, b− 1; c− 1;m)− 1− (a− 1)(b− 1)

(c− 1)
m

)}
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≤ 1,

by the given hypothesis.
Thus the operator K(a, b; c;m; z) maps Rτ (A,B) into UST .

Theorem 13. Let a, b, c > 0 and c > a+b, m∈(0, 1). Suppose a function f∈Rτ (A,B)
is in k − UCV (α) if it satisfies the following condition

(A−B)|τ |
F (a, b; c;m)

[(k + 1)
ab

c
mF (a+ 1, b+ 1; c+ 1;m) + (1− α)[F (a, b; c;m)− 1]]≤(1− α).

Then the operator K(a, b; c;m; z) maps k − UCV (α).

Proof. Let a, b, c > 0 and c > a + b. Suppose a function f∈Rτ (A,B) is in k −
UCV (α),then by Lemma 7, it is sufficient to show that

T6 =

∞∑
n=2

n[n(1 + k)− (k + α)]|An|≤1− α

Now

T6 =

∞∑
n=2

n[n(1 + k)− (k + α)]
(a)n−1(b)n−1

(c)n−1(n− 1)!

mn−1

F (a, b; c;m)
(|an|)

≤ (A−B)|τ |
F (a, b; c;m)

∞∑
n=2

n[n(k + 1)− (k + α)]
(a)n−1(b)n−1

(c)n−1(n− 1)!

mn−1

n

=
(A−B)|τ |
F (a, b; c;m)

∞∑
n=2

[(k + 1)(n− 1) + (1− α)]
(a)n−1(b)n−1

(c)n−1(n− 1)!
mn−1]

=
(A−B)|τ |
F (a, b; c;m)

[(k + 1)

∞∑
n=2

(a)n−1(b)n−1
(c)n−1(n− 2)!

mn−1 + (1− α)

∞∑
n=2

(a)n−1(b)n−1
(c)n−1(n− 1)!

mn−1]

=
(A−B)|τ |
F (a, b; c;m)

[(k + 1)
ab

c
mF (a+ 1, b+ 1; c+ 1;m) + (1− α)[F (a, b; c;m)− 1]]

≤(1− α),

by the given hypothesis.
Thus the operator K(a, b; c;m; z) maps k − UCV (α).
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