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MULTIPLE SOLUTIONS FOR A CLASS OF
(P1(X), P2(X))-LAPLACIAN PROBLEMS WITH NEUMANN

BOUNDARY CONDITIONS

N. Thanh Chung

Abstract. In this paper, we study the existence of solutions for a class of
nonlinear Neumann problems with variable exponents of the form

−div
(
(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u

)
+ |u|pmax(x)−2u

= λf(x, u) + µg(x, u) in Ω,
∂u
∂ν = 0 on ∂Ω,

where Ω ⊂ RN , N ≥ 3 is a smooth bounded domain, ν is the outward unit normal
to ∂Ω, λ, µ are positive parameters, pi ∈ C+(Ω), infx∈Ω pmax(x) > N , pmax(x) =

max{p1(x), p2(x)} for all x ∈ Ω, f, g : Ω× R→ R are Carathéodory functions. Our
proofs are essentially based on the three critical points theorem due to Ricceri [18].
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1. Introduction

In this paper, we are concerned with a class of nonlinear Neumann problems with
variable exponents of the form

−div
(
(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u

)
+ |u|pmax(x)−2u

= λf(x, u) + µg(x, u) in Ω,
∂u
∂ν = 0 on ∂Ω,

(1)

where Ω ⊂ RN , N ≥ 3 is a smooth bounded domain, ν is the outward unit normal
to ∂Ω, λ, µ are positive parameters, pi ∈ C+(Ω), infx∈Ω pmax(x) > N , pmax(x) =

max{p1(x), p2(x)} for all x ∈ Ω, f, g : Ω× R→ R are two Carathéodory functions.
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If p1(.) and p2(.) are two constants then problem (1) has been studied in some
papers, we refer the readers to [6, 12, 13]. Problems of this type has evoked notable
interest in the lastest years as they arise in several fields of physics and around, such
as biophysics [10], plasma physics [21] and chemical reaction design [3]. In these
applications, the problem is modeled as a general reaction-diffusion system

− ut = div
(
(|∇u|p1−2 + |∇u|p2−2)∇u

)
+ r(x, u), (2)

where u describes a concentration, the first term on the right-hand side corresponds
to diffusion with a diffusion coefficient H(u) = |∇u|p1−2 + |∇u|p2−2, while r repre-
sents reaction and is related to processes of source and loss; typically in chemical
and biological applications r has a polynomial form with respect to u. Boundary
conditions are usually taken as zero flux i.e. the boundary of the domain is assumed
impermeable to chemical species.

It should be noticed that in the case when p1(x) = p2(x) = p(x) is a continu-
ous function for all x ∈ Ω, problem (1) becomes the usual p(x)-Laplacian problem
with Neumann boundary condition. In recent years, the study of differential equa-
tions and variational problems involving variable exponent conditions has been an
interesting topic. The interest in studying such problems was stimulated by their
applications in elastic mechanics, fluid dynamics and the mathematical models of
stationary thermo-rheological viscous flows of non- Newtonian fluids. For more
information on modeling physical phenomena by equations involving p(x)-growth
condition we refer to [1]. p(x)-Laplacian problems have intensively studied in many
papers, we refer to some interesting papers [5, 8, 11, 19, 22] in which the nonlinear
terms f(x, t) and g(x, t) are subcritical and sublinear (or superlinear) at infinity
with respect to the second variable t ∈ R.

In [15], Mihăilescu firstly studied the existence and multiplicity of weak solutions
for a class of nonlinear problems with Dirichlet boundary condition of the form{

−div
(
(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u

)
= f(x, u) in Ω,

u = 0 on ∂Ω,
(3)

where the nonlinearity is given by

f(x, u) = ±
(
−λ|u|pmax(x)−2u+ |u|q(x)−2u

)
, pmax(x) < q(x) <

Npmax(x)

N − pmax(x)

for any x ∈ Ω and λ > 0 is a parameter. His proofs are essentially based on the
minimum principle and the Z2 version for even functionals of the mountain pass
theorem. By the presence of two variable exponents p1(x) and p2(x), problem (3)
are more complicated. Some extensions of [15] can be found in [7, 16, 20, 23].
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There, the authors studied the existence and multiplicity of solutions for Dirichlet
problem (3) in the special cases involving indefinite weights. In [4], Avci et al.
considered problem (3) with general nonlinearities satisfying Ambrosetti-Rabinowitz
type conditions, that is, there exists µ > 0 such that

µF (x, t) := µ

∫ t

0
f(x, s) ds ≤ f(x, t)t, ∀x ∈ Ω, t ∈ R\{0}. (4)

Very recently, Allaoui et al. [2] have studied a class of nonlocal problems involv-
ing this type of operators. Motivated by the papers mentioned above, we study the
existence of mutiple solutions for Neumann nonlinear problem (1) by using varia-
tional methods. We do not assume the Ambrosetti-Rabinowitz type conditions as
in [4], see condition (F0). To the best of our knowledge, there has been no paper
concering problem (1). Our proofs are essentially based on a variational principle
due to Ricceri [18] involving the existence of at least three critical points.

In order to state the main result of this paper let us assume that the following
conditions hold:

(F0) There exist C > 0 and a function q ∈ C+(Ω), q+ < p−max such that

|f(x, t)| ≤ C(1 + |t|q(x)−1), ∀(x, t) ∈ Ω× R;

(F1) There exist t0 > 1 and R > 0 such that f(x, t) < 0 when |t| ∈ (0, 1) and
f(x, t) ≥ R when |t| ∈ (t0,+∞).

(G0) g : Ω× R→ R satisfies
sup
|t|≤k
|g(x, t)| ≤ hk(x),

for all k > 0 and almost every x ∈ Ω and G(., 0) ∈ L1(Ω), where hk ∈ L1(Ω)
and G(x, t) =

∫ t
0 g(x, s) ds.

The condition (F0) means that f(x, t) is sublinear at infinity with respect to
t ∈ R. There are many functions f satisfying the conditions (F0) and (F1), for
example,

f(x, t) = |t|α(x)−2t− |t|β(x)−2t, t ∈ R,
where α, β ∈ C+(Ω) satisfy β− ≤ β+ < α− ≤ α+ < p−max. It is worth mentioning
that the nonlinear term in this paper may change sign in Ω.

Definition 1. We say that u ∈ X = W 1,pmax(x)(Ω) is a weak solution of problem
(1) if ∫

Ω

(
|∇u|p1(x)−2 + |∇u|p2(x)−2

)
(∇u,∇v)RN dx+

∫
Ω
|u|pmax(x)−2uv dx

−λ
∫

Ω
f(x, u)v dx− µ

∫
Ω
g(x, u)v dx = 0
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for all v ∈ X.

The result of this paper is formulated in the following theorem.

Theorem 1. Assume that p−i = infx∈Ω pi(x) ≥ 2, i = 1, 2, p−max = infx∈Ω pmax(x) >
N and the conditions (F0)-(F1) hold. Then there exist an open interval Λ ⊂ (0,∞)
and a positive real number δ > 0 such that, for each λ ∈ Λ and every Carathéodory
function g : Ω×R→ R satisfying the condition (G0), there exists a positive constant
µ∗ > 0 such that for each µ ∈ [0, µ∗], problem (1) has at least three solutions whose
norms are less than δ.

2. Preliminaries

We recall in what follows some definitions and basic properties of the generalized
Lebesgue-Sobolev spaces Lp(x) (Ω) and W 1,p(x) (Ω) where Ω is an open subset of RN .
In that context, we refer to the book of Musielak [17] and the papers of Fan et al.
[9], Mihăilescu and Rădulescu [16]. Set

C+(Ω) := {h : h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p(x) ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{
u : a measurable real-valued function such that

∫
Ω
|u(x)|p(x) dx <∞

}
.

We recall the following so-called Luxemburg norm on this space defined by the for-
mula

|u|p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many re-
spects: they are Banach spaces, the Hölder inequality holds, they are reflexive if
and only if 1 < p− ≤ p+ < ∞ and continuous functions are dense if p+ < ∞. The
inclusion between Lebesgue spaces also generalizes naturally: if 0 < |Ω| < ∞ and
p1, p2 are variable exponents so that p1(x) ≤ p2(x) a.e. x ∈ Ω then there exists a
continuous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω). We denote by Lp

′(x)(Ω) the conjugate
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space of Lp(x)(Ω), where 1
p(x) + 1

p′(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω)
the Hölder inequality∣∣∣∣∫

Ω
uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

(p′)−

)
|u|p(x)|v|p′(x)

holds true.
An important role in manipulating the generalized Lebesgue-Sobolev spaces is

played by the modular of the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω)→
R defined by

ρp(x)(u) =

∫
Ω
|u|p(x) dx.

Proposition 1 (see [9]). If u ∈ Lp(x)(Ω) and p+ < ∞ then the following relations
hold

|u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x) (5)

provided |u|p(x) > 1 while

|u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x) (6)

provided |u|p(x) < 1 and

|un − u|p(x) → 0 ⇔ ρp(x)(un − u)→ 0. (7)

Next, we define the Sobolev space with variable exponent

W 1,p(x)(Ω) :=
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
with the norm

‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω),

which is a separable and reflexive Banach space. It has the following equivalent
norm

‖u‖p(x) = inf

{
µ > 0 :

∫
Ω

(∣∣∣∣u(x)

µ

∣∣∣∣p(x)

+

∣∣∣∣∇u(x)

µ

∣∣∣∣p(x)
)
dx ≤ 1

}
.

Let

Ip(x)(u) =

∫
Ω

(
|u|p(x) + |∇u|p(x)

)
dx,
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then there are the following relations

‖u‖p(x) < 1(= 1, > 1)⇔ Ip(x)(u) < 1(= 1, > 1), (8)

‖u‖p(x) > 1⇒ ‖u‖p
−

p(x) ≤ Ip(x)(u) ≤ ‖u‖p
+

p(x), (9)

‖u‖p(x) < 1⇒ ‖u‖p
+

p(x) ≤ Ip(x)(u) ≤ ‖u‖p
−

p(x). (10)

Remark 1. If N < p− ≤ pmax(x) for any x ∈ Ω, by Theorem 2.2 in [9], we

deduce that W 1,pmax(x)(Ω) is continuously embedded in W 1,p−max(Ω). Since N < p−max

it follows that W 1,p−max(Ω) is compactly embedded into C(Ω). Thus, we deduce that
W 1,pmax(x)(Ω) is compactly embedded in C(Ω). Defining |u|∞ = supx∈Ω |u(x)|, we
find that there exists a positive constant c > 0 such that

|u|∞ ≤ c‖u‖pmax(x), ∀u ∈W 1,pmax(x)(Ω). (11)

Since pmax(x) = max {p1(x), p2(x)} for any x ∈ Ω, the space W 1,pmax(x)(Ω) is con-
tinuously embedded into W 1,p1(x)(Ω) and W 1,p2(x)(Ω).

Finally, for proving our result in the next section, we introduce the following
proposition.

Proposition 2. Let (X, ‖.‖) be a separable and reflexive real Banach space; Φ :
X → R a continuously Gâteaux differentiable and sequentially weakly lower semi-
continuous fucntional whose Gâteaux derivative admits a continuous inverse on X∗;
Ψ : X → R a continuously Gâteaux differentiable functional whose Gâteaux deriva-
tive is compact. Assume that

(i) lim‖u‖→+∞(Φ(u) + λΨ(u)) = +∞ for all λ > 0;

(ii) There are r ∈ R and u0, u1 ∈ X such that Φ(u0) < r < Φ(u1);

(iii) infu∈Φ−1((−∞,r]) Ψ(u) > (Φ(u1)−r)Ψ(u0)+(r−Φ(u0))Ψ(u1)
Φ(u1)−Φ(u0) .

Then there exist an open interval Λ ⊂ (0,∞) and a positive real number δ such that
each λ ∈ Λ, and every continuously Gâteaux differentiable functional J : X → R
with compact derivative, there exists µ∗ > 0 such that for each µ ∈ [0, µ∗], the
equation

Φ′(u) + λΨ′(u) + µJ ′(u) = 0

has at least three solutions in X whose norms are less than δ.
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3. Proof of the main result

In this section, we will prove Theorem 1 in details by using Proposition 2. We use
the letter ci to denote a general positive constant whose value may change from line
to line.

Let us define the functionals Φ,Ψ : X := W 1,pmax(x)(Ω)→ R by

Φ(u) =

∫
Ω

(
1

p1(x)
|∇u|p1(x) +

1

p2(x)
|∇u|p2(x)

)
dx+

∫
Ω

1

pmax(x)
|u|pmax(x) dx,

Ψ(u) = −
∫

Ω
F (x, u) dx,

(12)

where F (x, t) =
∫ t

0 f(x, s) ds. It is easy to see that Φ,Ψ ∈ C1(X,R) with the
derivatives given by

Φ′(u)(v) =

∫
Ω

(
|∇u|p1(x)−2 + |∇u|p2(x)−2

)
(∇u,∇v)RN dx+

∫
Ω
|u|pmax(x)−2uv dx

and

Ψ′(u)(v) = −
∫

Ω
f(x, u)v dx

for any u, v ∈ X.

Lemma 2. The functional Φ is sequentially weakly lower semicontinuous, bounded
on each bounded subset of X. Moreover, Φ′ admits a continuous inverse on the dual
space X∗ of X.

Proof. We first prove that Φ is convex. Indeed, since the function t ∈ [0,+∞) 7→ tθ

for any θ > 1, we deduce that for each x ∈ Ω fixed the following inequalities hold∣∣∣∣ξ1 + ξ2

2

∣∣∣∣pi(x)

≤
∣∣∣∣ |ξ1|+ |ξ2|

2

∣∣∣∣pi(x)

≤ 1

2
|ξ1|pi(x) +

1

2
|ξ2|pi(x), ∀ξ1, ξ2 ∈ RN , i = 1, 2.

Using the above inequality we deduce that∣∣∣∣∇u+∇v
2

∣∣∣∣pi(x)

≤ 1

2
|∇u|pi(x) +

1

2
|∇v|pi(x) (13)

and∣∣∣∣u+ v

2

∣∣∣∣pmax(x)

≤ 1

2
|u|pmax(x) +

1

2
|v|pmax(x), ∀u, v ∈ X, ∀x ∈ Ω, i = 1, 2. (14)
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From (13) and (14) we can obtain the following inequality

Φ

(
u+ v

2

)
≤ 1

2
Φ(u) +

1

2
Φ(v), ∀u, v ∈ X,

which means that Φ is convex. From this, by Corollary III.8 of [24], in order to show
the weak lower semicontinuity of Φ, it is enough to show that Φ is strongly lower
semicontinuous on X. For this purpose, let us fix u ∈ E and ε > 0. Let v ∈ X be
arbitrary. Since Φ is convex, applying the Hölder inequality, we deduce that

Φ(v) ≥ Φ(u) + Φ′(u)(v − u)

= Φ(u)−
∫

Ω
|∇u|p1(x)−1|∇v −∇u| dx−

∫
Ω
|∇u|p2(x)−1|∇v −∇u| dx

−
∫

Ω
|u|pmax(x)−1|v − u| dx

≥ Φ(u)− 2
∣∣∣|∇u|p1(x)−1

∣∣∣ p1(x)
p1(x)−1

|∇v −∇u|p1(x) − 2
∣∣∣|∇u|p2(x)−1

∣∣∣ p2(x)
p2(x)−1

|∇v −∇u|p2(x)

− 2
∣∣∣|u|pmax(x)−1

∣∣∣
pmax(x)

pmax(x)−1

|v − u|pmax(x)

≥ Φ(u)− 2c1

(∣∣∣|∇u|p1(x)−1
∣∣∣ p1(x)
p1(x)−1

+
∣∣∣|∇u|p2(x)−1

∣∣∣ p2(x)
p2(x)−1

)
|∇v −∇u|pmax(x)

− 2
∣∣∣|u|pmax(x)−1

∣∣∣
pmax(x)

pmax(x)−1

|v − u|pmax(x)

≥ Φ(u)− c2‖v − u‖pmax(x),

(15)

where c1, c2 are positive constants. This implies that

Φ(v) ≥ Φ(u)− ε, ∀v ∈ X with ‖v − u‖pmax(x) < δ =
ε

c2
(16)

we thus have that Φ is strongly lower semicontinuous. Since Φ is convex, it follows
that Φ is sequentially weakly lower semicontinuous on X.

Let us proceed for the boundedness of Φ on each bounded subset of X. Let
X0 be a bounded subset of X. By (5) and (6), and the continuous embeddings
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X ↪→W 1,p1(x)(Ω), X ↪→W 1,p2(x)(Ω) we deduce that for any u ∈ X,∫
Ω

1

p1(x)
|∇u|p1(x) dx ≤ 1

p−1

(
|∇u|p

+
1

p1(x) + |∇u|p
−
1

p1(x)

)
≤ 1

p−1

(
‖u‖p

+
1

p1(x) + ‖u‖p
−
1

p1(x)

)
≤ c3

p−1

(
‖u‖p

+
1

pmax(x) + ‖u‖p
−
1

pmax(x)

) (17)

and ∫
Ω

1

p2(x)
|∇u|p2(x) dx ≤ 1

p−2

(
|∇u|p

+
2

p2(x) + |∇u|p
−
2

p2(x)

)
≤ 1

p−2

(
‖u‖p

+
2

p2(x) + ‖u‖p
−
2

p2(x)

)
≤ c4

p−2

(
‖u‖p

+
2

pmax(x) + ‖u‖p
−
2

pmax(x)

)
.

(18)

From (5) and (6) and the continuous embedding X ↪→ Lpmax(Ω) we also have∫
Ω

1

pmax(x)
|u|pmax(x) dx ≤ 1

p−max

(
|u|p

+
max

pmax(x) + |u|p
−
max

pmax(x)

)
≤ c5

p−max

(
‖u‖p

+
max

pmax(x) + ‖u‖p
−
max

pmax(x)

)
.

(19)

From (17)-(19), we obtain

Φ(u) =

∫
Ω

(
1

p1(x)
|∇u|p1(x) +

1

p2(x)
|∇u|p2(x)

)
dx+

∫
Ω

1

pmax(x)
|u|pmax(x) dx

≤ c3

p−1

(
‖u‖p

+
1

pmax(x) + ‖u‖p
−
1

pmax(x)

)
+
c4

p−2

(
‖u‖p

+
2

pmax(x) + ‖u‖p
−
2

pmax(x)

)
+

c5

p−max

(
‖u‖p

+
max

pmax(x) + ‖u‖p
−
max

pmax(x)

)
.

(20)

From (20), Φ is bounded on each bounded subset of X.
We continue to show the existence of the inverse function (Φ′)−1 : X∗ → X. To
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this end, let us show the strict monotonicity of Φ′. For all u1, u2 ∈ X, we have

(Φ′(u1)− Φ′(u2))(u1 − u2)

=

∫
Ω

(
|∇u|p1(x)−2∇u1 − |∇u2|p1(x)−2∇u2

)
(∇u1 −∇u2) dx

+

∫
Ω

(
|∇u|p2(x)−2∇u1 − |∇u2|p2(x)−2∇u2

)
(∇u1 −∇u2) dx

+

∫
Ω

(
|u|pmax(x)−2∇u1 − |u2|pmax(x)−2u2

)
(u1 − u2) dx.

(21)

It is known that

(|ξ1|r−2ξ1 − |ξ2|r−2ξ2) ≥ 1

2r
|ξ1 − ξ2|r, r ≥ 2, ∀ξ1, ξ2 ∈ RN . (22)

From (21) and (22) we have

(Φ′(u1)− Φ′(u2))(u1 − u2)

≥ c6

∫
Ω
|∇u1 −∇u2|p1(x) dx+ c7

∫
Ω
|∇u1 −∇u2|p2(x) dx

+ c8

∫
Ω
|u1 − u2|pmax(x) dx

≥ min{c6, c7}
∫

Ω

(
|∇u1 −∇u2|p1(x) + |∇u1 −∇u2|p2(x)

)
dx

+ c8

∫
Ω
|u1 − u2|pmax(x) dx

≥ min{c6, c7}
∫

Ω
|∇u1 −∇u2|pmax(x) dx+ c8

∫
Ω
|u1 − u2|pmax(x) dx

(23)

From (23), Φ′ is strictly monotone.
For any u ∈ X with ‖u‖pmax(x) > 1, we have

Φ′(u)(u)

‖u‖pmax(x)
=

1

‖u‖pmax(x)

(∫
Ω

(
|∇u|p1(x) + |∇u|p2(x)

)
dx+

∫
Ω
|u|pmax(x) dx

)
≥ 1

‖u‖pmax(x)

(∫
Ω
|∇u|pmax(x) + |u|pmax(x) dx

)
≥ ‖u‖p

−
max−1
pmax(x),

(24)

from which we have the coercivity of Φ′. Standard arguments ensure that Φ′ is
hemicontinuous. Thus, in view of Theorem 26.A(d) of [24] there exists Φ′−1 : X∗ →
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X and it is bounded. Let us prove that Φ′−1 is continuous by showing that it
is sequentially continuous. Let {wm} ⊂ X∗ be a sequence strongly converging to
w ∈ X∗ and let um = Φ′−1(wm), m = 1, 2, ..., and u = Φ′−1(w). Then, {um} is
bounded in X and without loss of generality, we can assume that it converges weakly
to a certain u0 ∈ X. Since {wm} converges strongly to w, it is easy to see that

lim
m→∞

Φ′(um)(um − u0) = lim
m→∞

wm(um − u0) = 0

or ∫
Ω
|∇um|p1(x)−2∇um(∇um −∇u0) dx+

∫
Ω
|∇um|p2(x)−2∇um(∇um −∇u0) dx

+

∫
Ω
|um|pmax(x)−2um(um − u0) dx = 0m(1).

(25)

On the other hand, since {un} converges weakly to a certain u0 in X, and X is con-
tinuously embedded into W 1,pi(x)(Ω) and Lpmax(x)(Ω) we deduce that {un} converges
weakly to a certain u0 in W 1,pi(x)(Ω), Lpi(x)(Ω) and Lpmax(x)(Ω), so we have∫

Ω
|∇u|p1(x)−2∇u(∇um −∇u0) dx+

∫
Ω
|∇u|p2(x)−2∇u(∇um −∇u0) dx

+

∫
Ω
|u|pmax(x)−2u(um − u0) dx = 0m(1).

(26)

From (25), (26) we can use (22) in order to get {um} converges strongly to u0 in
X. The continuity and injectivity of Φ′ imply that {um} converges strongly to u, so
Φ′−1 is continuous. The proof of Lemma 2 is completed.

Proof of Theorem 1. By Lemma 2, Φ is sequentially weakly lower semicontinuous,
bounded on each bounded subset of X, and Φ′ admits a continuous inverse on the
dual space X∗ of X. Moreover, by the hypothesis (F0), Ψ′ is compact.

Next, we will verify that the condition (i) of Proposition 2 is fulfilled. In fact,
by relation (9), we have

Φ(u) =

∫
Ω

(
1

p1(x)
|∇u|p1(x) +

1

p2(x)
|∇u|p2(x)

)
dx+

∫
Ω

1

pmax(x)
|u|pmax(x) dx

≥ 1

p+
max

∫
Ω

(
|∇u|p1(x) + |∇u|p2(x)

)
dx+

1

p+
max

∫
Ω
|u|pmax(x) dx

≥ 1

p+
max

∫
Ω

(
|∇u|pmax(x) + |u|pmax(x)

)
dx

≥ 1

p+
max
‖u‖p

−
max

pmax(x)

(27)

135



N. Thanh Chung – Multiple solutions for a class of (p1(x), p2(x))-Laplacian . . .

for all u ∈ X with ‖u‖pmax(x) > 1.
On the other hand,

Ψ(u) = −
∫

Ω
F (x, u) dx =

∫
Ω
−F (x, u) dx

and due to the assumption (F0),

|F (x, t)| ≤ C
(
|t|+ 1

q(x)
|t|q(x)

)
, ∀(x, t) ∈ Ω× R.

Therefore,

Ψ(u) ≥ −C
∫

Ω
|u| dx− C

∫
Ω

1

q(x)
|u|q(x) dx

≥ −c9‖u‖pmax(x) −
C

q−

∫
Ω

(|u|q+ + |u|q−) dx

= −c9‖u‖pmax(x) −
C

q−

(
|u|q

+

q+
+ |u|q

−

q−

)
.

(28)

We know that X is continuously embedded into Lq
±

(Ω). Furthermore, we can find
two positive constants c10 > 0 such that

|u|q+ ≤ c10‖u‖pmax(x), |u|q− ≤ c10‖u‖pmax(x), ∀u ∈ X. (29)

From (28) and (29), we have

Ψ(u) ≥ −c9‖u‖pmax(x) − c10‖u‖q
+

pmax(x) − c10‖u‖q
−

pmax(x). (30)

Combining (27) and (30), it follows that for all u ∈ X with ‖u‖pmax(x) > 1,

Φ(u) + λΨ(u) =

∫
Ω

(
1

p1(x)
|∇u|p1(x) +

1

p2(x)
|∇u|p2(x)

)
dx

+

∫
Ω

1

pmax(x)
|u|pmax(x) dx− λ

∫
Ω
F (x.u) dx

≥ 1

p+
max
‖u‖p

−
max

pmax(x) − λ
(
c9‖u‖pmax(x) + c10‖u‖q

+

pmax(x) + c10‖u‖q
−

pmax(x)

)
.

(31)

Since 1 < q− ≤ q+ < p−max, for any λ > 0 we have lim‖u‖pmax(x)→+∞(Φ(u)+λΨ(u)) =

+∞ and (i) is verified.
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In the sequel, we will verify the conditions (ii) and (iii) in Proposition 2. Indeed,
it follows from the assumptions (F0) and (F1) that F (x, t) is increasing for t ∈
(1,+∞) and decreasing for t ∈ (0, 1), uniformly with respect to x ∈ Ω.

It is clear that F (x, 0) = 0 and F (x, t) → ∞ when t → ∞, because of the
definition of F (x, t) and the assumption (F1). Then there exists a real number
δ > t0 such that

F (x, t) ≥ 0 = F (x, 0) ≥ F (x, τ), ∀x ∈ X, t > δ, τ ∈ (0, 1).

Let a, b be two real numbers such that

0 < a < min {1, c} , (32)

where c is given in (11) and b > δ satisfies

bp
−
max |Ω| > 1. (33)

From (F1) we have F (x, t) ≤ F (x, 0) for all t ∈ [0, a], which implies that∫
Ω

sup
0≤t≤a

F (x, t) dx ≤
∫

Ω
F (x, 0) dx = 0.

Furthermore, since b > δ we get
∫

Ω F (x, b) dx > 0 and thus,∫
Ω

sup
0≤t≤a

F (x, t) dx ≤ 0 < r.

∫
Ω F (x, b) dx∫

Ω
1

pmax(x)b
pmax(x) dx

. (34)

Consider u0, u1 ∈ X, u0(x) = 0 and u1(x) = b for any x ∈ Ω, we define

r =
1

p+
max

(a
c

)p+max

. (35)

From (32), we have r ∈ (0, 1). A simple computation implies Φ(u0) = Ψ(u0) = 0
and

Φ(u1) =

∫
Ω

(
1

p1(x)
|∇u1|p1(x) +

1

p2(x)
|∇u1|p2(x)

)
dx+

∫
Ω

1

pmax(x)
|u1|pmax(x) dx

≥ 1

p+
max

bp
−
max |Ω|

>
1

p+
max

.1

>
1

p+
max

(a
c

)p+max

= r

(36)
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and

Ψ(u1) = −
∫

Ω
F (x, u1(x)) dx = −

∫
Ω
F (x, b) dx. (37)

Thus, we obtain
Φ(u0) < r < Φ(u1)

and the condition (ii) in Proposition 2 is verified.
On the other hand, we have

−(Φ(u1)− r)Ψ(u0) + (r − Φ(u0))Ψ(u1)

Φ(u1)− Φ(u0)
= −r.Ψ(u1)

Φ(u1)

= r.

∫
Ω F (x, b) dx∫

Ω
1

pmax(x)b
pmax(x) dx

> 0.
(38)

Next, we consider the case u ∈ X with Φ(u) ≤ r < 1. Since

r ≥ Φ(u) ≥ 1

p+
max

Ipmax(x)(u)

we obtain

Ipmax(x)(u) ≤ r.p+
max =

(a
c

)p+max

< 1,

which shows that ‖u‖pmax(x) < 1 by (8). Furthermore, by (10), it is clear that

1

p+
max
‖u‖p

+
max

pmax(x) ≤
1

p+
max

Ipmax(x)(u)

≤ Φ(u)

≤ r.

Thus, using Remark 1, for all u ∈ X with Φ(u) ≤ r, we have

|u(x)| ≤ c‖u‖pmax(x)

≤ c
(
r.p+

max

) 1

p+max

= a, ∀x ∈ Ω.

(39)

The above inequality shows that

− inf
u∈Φ−1(−∞,r]

Ψ(u) = sup
u∈Φ−1(−∞,r]

−Ψ(u)

≤
∫

Ω
sup

0≤t≤a
F (x, t) dx

≤ 0.

(40)
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It follows from (38) and (40) that

− inf
u∈Φ−1(−∞,r]

Ψ(u) < r.

∫
Ω F (x, b) dx∫

Ω
1

pmax(x)b
pmax(x) dx

.

That is,

inf
u∈Φ−1(−∞,r]

Ψ(u) >
(Φ(u1)− r)Ψ(u0) + (r − Φ(u0))Ψ(u1)

Φ(u1)− Φ(u0)
,

which means that the condition (iii) in Proposition 2 is verified.
Since the function g : Ω × R → R is a Carathéodory function satisfying the

condition (G0), the functional

J(u) = −
∫

Ω
G(x, u) dx

is well defined and continuously Gâteaux differentiable on X, with compact deriva-
tive, and one has

J ′(u)(v) = −
∫

Ω
g(x, u)v dx for all u, v ∈ X.

So, according to Proposition 2, there exist an open interval Λ ⊂ (0,∞) and a
positive real number δ such that for each λ ∈ Λ, and every continuously Gâteaux
differentiable functional J : X → R with compact derivative, there exists µ∗ > 0
such that for each µ ∈ [0, µ∗], the equation

Φ′(u) + λΨ′(u) + µJ ′(u) = 0

has at least three solutions in X whose norms are less than δ. It follows that Theorem
1 holds.
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