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Abstract. In this paper, we establish four theorems in order to evaluate in-
tegrals of special or generalized functions and polynomials. The generality of these
integrals yields many new and known formulas of a number of special functions. The
examples involving Wright function,Mittag-Leffler function,zeta function,Hermite
and Bernoulli polynomials given in this paper show the potential of the newly de-
fined theorems which can help to find a large number of integrals involving various
types of special functions.
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1. Introduction and Preliminaries

The generalization of the generalized hypergeometric series pFq due to Wright [13,
14, 15] who defined and studied the generalized Wright Hypergeometric function
given by (see[1],p.21 and [6])

pΨq [z] = pΨq

 (α1, A1) , · · · , (αp, Ap) ;

(β1, B1) , · · · , (βq, Bq) ;
z

 =

∞∑
k=0

p∏
j=1

Γ (αj +Ajk)

q∏
j=1

Γ (βj +Bjk)

zk

k!
, (1)

where the coefficients A1, ..., Ap and B1, ..., Bq are positive real numbers such that

1 +

q∑
j=1

Bj −
p∑
j=1

Aj = 0.
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A special case of (1) is

pΨq

[
(α1, 1) , . . . , (αp, 1) ;
(β1, 1) , . . . , (βq, 1) ;

z

]
=

p∏
j=1

Γ(αj)

q∏
j=1

Γ(βj)
pFq

[
α1, . . . , αp;
β1, . . . , βq;

z

]
. (2)

where pFq is the generalized hypergeometric series (see [12]) and (a)n = Γ(a +
n)/Γ(a).

Kiryakova [8] defined the multiple (multiindex) Mittag-Leffler function as follows.
Let m > 1 be an integer, ρ1, ρ2, ..., ρm > 0 and µ1, µ2, ..., µm be arbitrary real
numbers. By means of ”multiindices”, (ρi) , (µi) , i = 1, ....,m, we introduce the
so-called multiindex (m-tuple,multiple) Mittag-Leffler functions

E(
1
ρi

)
,(µi)

(z) =
∞∑
k=0

zk

Γ
(
µ1 + k

ρ1

)
...Γ

(
µm + k

ρm

) . (3)

The following are interesting relation of this function to other special functions
(i) For m = 2, if we put 1

ρ1
= α, 1

ρ2
= 0 and µ1 = 1, µ2 = 1 in (3) we have

Eα (z) =
∞∑
k=0

zk

Γ (1 + αk)
. (4)

(ii) For m = 2, if we put 1
ρ1

= α, 1
ρ2

= 0 and µ1 = β, µ2 = 1 in (3) we have

Eα,β (z) =
∞∑
k=0

zk

Γ (β + αk)
. (5)

(iii) For m = 2, if we put 1
ρ1

= 1, 1
ρ2

= 1 and µ1 = v + 1, µ2 = 1, and replacing z

by −z
2

4 in (3) we have (see [8])

E(1,1),(1+v,1)

(
−z2

4

)
=

(
2

z

)v
Jv (z) . (6)

where Jv (z) is a Bessel function of first kind (see [12, 2]).
(iv) For m = 2, if we put 1

ρ1
= 1, 1

ρ2
= 1 and µ1 = 3−v+µ

2 , µ2 = 3+v+µ
2 , and

replacing z by −z
2

4 in (3) we have (see [8])

E(1,1),( 3−v+µ
2

, 3+v+µ
2 )

(
−z2

4

)
=

4

zµ+1
Sµ,v (z) . (7)
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where Sµ,v (z) is the Lommel function (see [12, 2]).
(v) For m = 2, if we put 1

ρ1
= 1, 1

ρ2
= 1 and µ1 = 3

2 , µ2 = 3+2v
2 , and replacing z

by −z
2

4 in (3) we have (see [8])

E(1,1),( 3
2
, 3+2v

2 )

(
−z2

4

)
=

4

zµ+1
Hv (z) . (8)

where Hv (z) is the Struve function (see [12, 2]).
The Hurwitz ( or generalized) zeta function ζ(s, a) is defined by [2]and [7]

ζ(s, a) =
∞∑
m=0

1

(a+m)s
, R(s) > 1, a 6= {0,−1,−2, ...}

which,just as Riemann zeta function ζ(s) can be continued meromorphically every-
where in the complex s plane except for a simple pole (with residue 1). From this
definition, we have

ζ(s, 1) = ζ(s) =
1

2s−1
ζ(s,

1

2
)

for the Riemann zeta function ζ(s). A generalization of Hurwitz ( or generalized)
zeta function ζ(s, a) is given by Goyal and Laddha [7] in the form

φ∗µ(z, s, a) =
∞∑
m=0

(µ)mz
m

(a+m)sm!
(9)

where a 6= {0,−1,−2, ...}, µ ≥ 1 and either |z| < 1,R(s) > 0, or z = 1 and R(s) > µ.
The 2-variable Kampé de Fériet generalization of the Hermite polynomials (see

[5]) are defined as

Hn(x, y) = n!

[n
2

]∑
r=0

yrxn−2r

r!(n− 2r)!

These polynomials are usually defined by the generating function

ext+yt
2

=

∞∑
n=0

Hn(x, y)
tn

n!
(10)

and reduce to the ordinary Hermite polynomials Hn(x) [12] when y = −1 and x is
replaced by 2x.
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The generalized Hermite-Bernoulli polynomials HB
[α,m−1]
n (x, y), m ≥ 1 for a real

or complex parameter α defined by Pathan and Waseem A Khan [11] by means of
the generating function defined in a suitable neighborhood of t = 0

G[α,m−1](x, y, t) = eyt
2
G[α,m−1](x, t) =

 tm

et −
m−1∑
h=0

th

h!


α

ext+yt
2

= G[α,m−1](t)ext+yt
2

=
∞∑
n=0

HB
[α,m−1]
n (x, y)

tn

n!
,

(11)

contain as its special cases not only generalized Bernoulli polynomials B
[α,m−1]
n (x)

G[α,m−1](x, t) = G[α,m−1](t)ext =
∞∑
n=0

B[α,m−1]
n (x)

tn

n!
(12)

but also Kampe de Feriet generalization of the Hn(x, y) (c.f.Eq.(10)). For α = 1,
(12) reduces to a known result of Pathan [10].

For m = 1, we obtain from (11)(
t

et − 1

)α
ext+yt

2
=
∞∑
n=0

HB
(α)
n (x, y)

tn

n!
(13)

which is a generalization of the generating function (1.6) of Dattoli et al [4] in the
form (

t

et − 1

)
ext+yt

2
=

∞∑
n=0

HBn(x, y)
tn

n!
(14)

In view of (13),the special case m=1 of (11) may be written in the form

HB
(α)
n (x, y) =

n∑
s=0

(
n
s

)
B

(α)
n−sHs(x, y) (15)

where HB
(α)
n (x, y) are generalized Hermite- Bernoulli polynomials and B

(α)
n are gen-

eralized Bernoulli numbers.
It is possible to define generalized Hermite-Bernoulli numbers HB

[α,m−1]
n assum-

ing that

HB
[α,m−1]
n (0, 0) = HB

[α,m−1]
n (16)
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For the present investigation, we also need the following two integral formulae
(see [9]): ∫ 1

0

tµ−1[
t+ a+

√
t2 + 2at

]λdt = 2λa−λ
(a

2

)µ Γ (2µ) Γ (λ− µ)

Γ (1 + λ+ µ)
, (17)

provided 0 < < (µ) < < (λ) < 0.∫ ∞
0

tλe−at
2

ln(bt)dt =
Γ(λ+1

2 )

4a
λ+1
2

[ln
b2

a
+ Ψ(

λ+ 1

2
)], (18)

where 0 < <(λ), 0 < <(a) and Ψ function is the logarithmic derivative of the Gamma
function (see [12]).

2. Main Theorems

Consider a two variable generating function F (x, y, t) which possesses a formal (not
necessarily convergent for t not equal to zero) power series expansion in t such that

F (x, y, t) =
∞∑
n=0

Cnfn (x, y) tn, (19)

where each member of the generalized set fn (x, y) is independent of t,and the coef-
ficient set Cn may contain the parameters of the set fn (x, y)but is independent of
t, x and y.

Theorem 1. Let the generating function F (x, y, t) defined by (19)be such that

F

x, y, t[
t+ a+

√
t2 + 2at

]


remains uniformly convergent for t ∈ (0, 1) and 0 < < (α) < < (β) .Then

∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]βF
x, y, t[

t+ a+
√
t2 + 2at

]
 dt

= 2aα−βΓ (β − α)

∞∑
n=0

Cnfn (x, y)
Γ (1 + n+ β)

Γ (n+ β)

Γ (2α+ 2n)

Γ (1 + α+ β + 2n)
. (20)
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Proof. Replace t by t

[t+a+
√
t2+2at]

in (19) to get

F

x, y, t[
t+ a+

√
t2 + 2at

]
 =

∞∑
n=0

Cnfn (x, y)

 t[
t+ a+

√
t2 + 2at

]
n

. (21)

Now multiplying both the sides of (21) by

tα−1[
t+ a+

√
t2 + 2at

]β ,
integrating with respect to t between the limits 0 and 1 and using the integral (17)
and

(n+ β) =
Γ (1 + n+ β)

Γ (n+ β)
, (22)

we get the required result.

The next theorem gives a further interesting consequences of the generating
function (19). Theorem 1 will play an essential role in the derivation of our later
results.

Theorem 2. Let the generating function F (x, y, t) defined by (19) be such that

F

x, y, xt[
t+ a+

√
t2 + 2at

]


remains uniformly convergent for t ∈ (0, 1) and 0 < < (α) < < (β) . Then∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]βF
x, y, xt[

t+ a+
√
t2 + 2at

]
 dt

= 2aα−βΓ (β − α)
∞∑
n=0

Cnx
nfn (x, y)

Γ (1 + n+ β)

Γ (n+ β)

Γ (2α+ 2n)

Γ (1 + α+ β + 2n)
. (23)

Proof. First replace t by tx in (19) and then replace t by t

[t+a+
√
t2+2at]

to get

F

x, y, tx[
t+ a+

√
t2 + 2at

]
 =

∞∑
n=0

Cnx
nfn (x, y)

 t[
t+ a+

√
t2 + 2at

]
n

.

(24)
The proof now parallels the above theorem 1.
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Theorem 3. Let the generating function F (x, y, t) defined by (19) be such that
F (x, y, t) remains uniformly convergent for t ∈ (0,∞), 0 < <(ν) and 0 < <(a).
Then∫ ∞

0
tλe−at

2
ln(bt)F (x, y, t) dt =

∞∑
n=0

Cnfn (x, y)
Γ(λ+n+1

2 )

4a
λ+n+1

2

[ln
b2

a
+ Ψ(

λ+ n+ 1

2
)]

(25)
where Ψ function is the logarithmic derivative of the Gamma function (see [12]).

Proof. The proof of this theorem is based on (11) and runs parallel to that of theorem
2 as given above.The assertion (25) follows readily from (19) and we omit the details
involved.

Now we consider more briefly a different type of approach to special functions
for the function F (t, s, b) which possesses a formal (not necessarily convergent for t
not equal to zero) power series expansion in t such that

F (t, s, b) =
∞∑
n=0

Cnfn (s, b) tn, (26)

where R(s) > 1, b 6= {0,−1,−2, ...}, each member of the generalized set fn (s, b) is
independent of t,and the coefficient set Cn may contain the parameters of the set
fn (s, b) but is independent of t,s and b.

Theorem 4. Let the function F (t, s, b) defined by (eqn-int1b) be such that

F

 t[
t+ a+

√
t2 + 2at

] , s, b


remains uniformly convergent for t ∈ (0, 1) , R(s) > 1, b 6= {0,−1,−2, ...} and
0 < < (α) < < (β) . Then

∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]βF
 t[

t+ a+
√
t2 + 2at

] , s, b
 dt

= 2aα−βΓ (β − α)

∞∑
n=0

Cnfn (s, b)
Γ (1 + n+ β)

Γ (n+ β)

Γ (2α+ 2n)

Γ (1 + α+ β + 2n)
. (27)

Proof. The proof of this theorem is based on (26) and runs parallel to that of theorem
1 as given above.
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3. EXAMPLES

Example 1. If we take fn (x, y) = Hn (x, y), Cn = 1
n! then

F (x, y, t) =

∞∑
n=0

Hn (x, y)
tn

n!
= ext+yt

2
. (28)

where Hn (x, y) is 2-variable Kampé de Fériet generalization of the Hermite polyno-
mials (see [5]).
On the other hand,by choosing the following bilinear generating function which is
known as Mehler’s formula (see [12])

F (x, y, t) =
∞∑
n=0

Hn(x)Hn(y)
tn

n!
= (1− 4t2)−1/2exp(

4xyt− 4(x2 + y2)t2

1− 4t2
. (29)

we get Cn = 1
n! and fn (x, y) = Hn(x)Hn(y).

Corollary 5. By considering the generating functions defined in (28), (29) and
theorem 1, we have the following integral formulae:∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]β exT+yT 2
dt

= 21−αΓ (β − α) aα−β
∞∑
n=0

Hn(x, y)

n!

Γ(1 + n+ β)Γ(2α+ 2n)

Γ(n+ β)Γ(1 + α+ β + 2n)
. (30)

where T = t
t+a+

√
t2+2at

and Hn (x, y) is 2-variable Kampé de Fériet generalization

of the Hermite polynomials (see [5]).

∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]β (1− 4T 2)−1/2exp(
4xyT − 4(x2 + y2)T 2

1− 4T 2
)dt

= 21−αΓ (β − α) aα−β
∞∑
n=0

Hn(x)Hn(y)

n!

Γ(1 + n+ β)Γ(2α+ 2n)

Γ(n+ β)Γ(1 + α+ β + 2n)
. (31)

where T = t
t+a+

√
t2+2at

and Hn(x) is Hermite polynomial [12].

8
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Corollary 6. By considering the generating function defined in (28) when x is
replaced by 2x and y=-1, we have the following integral formula:∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]β e2xT−T 2
dt

= 21−αΓ (β − α) aα−β
∞∑
n=0

Hn(x)

n!

Γ(1 + n+ β)Γ(2α+ 2n)

Γ(n+ β)Γ(1 + α+ β + 2n)
. (32)

where T = t
t+a+

√
t2+2at

and Hn (x) is the Hermite polynomial [12].

As can be seen from the above equation and the reduction H2n(0) = (−1)n (2n)!
n! ,the

result (30) for x = 0 yields∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]β e−T 2
dt = 21−αΓ (β − α) aα−β

× 2Ψ2

[
(1 + β, 2) , (2α, 4) ;

(β, 2) , (α+ β + 1, 4) ;

−1

4

]
. (33)

where T = t
t+a+

√
t2+2at

.

It follows easily from theorem 2 and (28) that∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]β ex2(T+yT 2)dt

= 21−αΓ (β − α) aα−β
∞∑
n=0

xnHn(x, y)

n!

Γ(1 + n+ β)Γ(2α+ 2n)

Γ(n+ β)Γ(1 + α+ β + 2n)
. (34)

where T = t
t+a+

√
t2+2at

and Hn (x, y) is 2-variable Kampé de Fériet generalization

of the Hermite polynomials (see [5]). Note that (30) is not a consequence of (32).

Corollary 7. Consider the generating functions defined in (28) and (29) together
with theorem 3.Then for 0 < <(λ) and 0 < <(a) we have∫ ∞

0
tλexp(xt+ (y − a)t2) ln(bt)dt =

∞∑
n=0

Hn(x, y)

n!

Γ(λ+n+1
2 )

4a
λ+n+1

2

[ln
b2

a
+ Ψ(

λ+ n+ 1

2
)]

(35)
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where Ψ function is the logarithmic derivative of the Gamma function (see [12]) and
Hn (x, y) is 2-variable Kampé de Fériet generalization of the Hermite polynomials
(see [5]). ∫ ∞

0
tλ(1− 4t2)−1/2exp(−at2 +

4xyt− 4(x2 + y2)t2

1− 4t2
) ln(bt)dt

=

∞∑
n=0

Hn(x)Hn(y)

n!

Γ(λ+n+1
2 )

4a
λ+n+1

2

[ln
b2

a
+ Ψ(

λ+ n+ 1

2
)] (36)

where Ψ function is the logarithmic derivative of the Gamma function (see [12]) and
Hn (x, y) is 2-variable Kampé de Fériet generalization of the Hermite polynomials
(see [5]).

Example 2. Making use of (11) and taking F (x, y, t) = G[α,m−1](x, y, t) = eyt
2
G[α,m−1](x, t)

and Cn = 1
n! , we can write fn(x, y) = HB

[α,m−1]
n (x, y) where HB

[α,m−1]
n (x, y) are

generalized Hermite-Bernoulli polynomials.

Corollary 8. By considering the generating function defined in (11) and theorem
1, we have the following integral formula:∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]βG[α,m−1](T )exT+yT 2
dt

= 21−αΓ (β − α) aα−β
∞∑
n=0

HB
[α,m−1]
n (x, y)

n!

Γ(1 + n+ β)Γ(2α+ 2n)

Γ(n+ β)Γ(1 + α+ β + 2n)
. (37)

where T = t
t+a+

√
t2+2at

,HB
[α,m−1]
n (x, y) are generalized Hermite-Bernoulli polyno-

mials and Hn (x, y) is 2-variable Kampé de Fériet generalization of the Hermite
polynomials (see [5]).

First we observe that for α = 0, (34) reduces to (29). In case x = y = 0,we use
(16) to get the following interesting result involving Hermite-Bernoulli numbers∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]βG[α,m−1](T )dt

= 21−αΓ (β − α) aα−β
∞∑
n=0

HB
[α,m−1]
n

n!

Γ(1 + n+ β)Γ(2α+ 2n)

Γ(n+ β)Γ(1 + α+ β + 2n)
. (38)

where T = t
t+a+

√
t2+2at

and HB
[α,m−1]
n are generalized Hermite-Bernoulli numbers.

10
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Corollary 9. By considering the generating function defined in (1.11) and theorem
2, we have the following integral formula:∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]βG[α,m−1](T )ex
2(T+yT 2)dt

= 21−αΓ (β − α) aα−β
∞∑
n=0

xn
HB

[α,m−1]
n (x, y)

n!

Γ(1 + n+ β)Γ(2α+ 2n)

Γ(n+ β)Γ(1 + α+ β + 2n)
.(39)

where T = t
t+a+

√
t2+2at

,HB
[α,m−1]
n (x, y) are generalized Hermite-Bernoulli polyno-

mials and Hn (x, y) is 2-variable Kampé de Fériet generalization of the Hermite
polynomials (see [5]).

Note that for α = 0, (36) reduces to (32) and for m=1,we can use (13) to get∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]β Tαe−αT+x2(T+yT 2)dt

= 21−αΓ (β − α) aα−β
∞∑
n=0

xn
HB

(α)
n (x, y)

n!

Γ(1 + n+ β)Γ(2α+ 2n)

Γ(n+ β)Γ(1 + α+ β + 2n)
. (40)

where T = t
t+a+

√
t2+2at

and HB
(α)
n (x, y) is given by (13).

Corollary 10. Consider the generating function defined in (11) together with the-
orem 3. Then for 0 < <(λ) and 0 < <(a) we have

∫ ∞
0

T λe−aT
2+xT+yT 2

ln(bT )G[α,m−1](T )dt

=
∞∑
n=0

HB
[α,m−1]
n (x, y)

n!

Γ(λ+n+1
2 )

4a
λ+n+1

2

[ln
b2

a
+ Ψ(

λ+ n+ 1

2
)] (41)

where G[α,m−1](t) is given by (1.11),Ψ function is the logarithmic derivative of the

Gamma function (see [12]),T = t
t+a+

√
t2+2at

and HB
[α,m−1]
n (x, y) are generalized

Hermite-Bernoulli polynomials.

Example 3. In (19),we choose y = 0 and take fn (x) = xn, Cn = 1

Γ
(
µ1+ n

ρ1

)
Γ
(
µ2+ n

ρ2

)
so that

F (x, t) =

∞∑
n=0

xntn

Γ
(
µ1 + n

ρ1

)
Γ
(
µ2 + n

ρ2

) = E(
1
ρ1
, 1
ρ2

)
,(µ1,µ2)

(xt) . (42)

11
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where E(
1
ρ1
, 1
ρ2

)
,(µ1,µ2)

(x) is multi-index Mittag-Leffler function, in (3) .

Corollary 11. Let the conditions of theorem 1 satisfies, then the following integral
formula holds true∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]βE(
1
ρ1
, 1
ρ2

)
,(µ1,µ2)

(
xt

t+ a+
√
t2 + 2at

)
dt

= 21−αΓ (β − α) aα−β 3Ψ4

[
(1 + β, 1) , (2α, 2) , (1, 1) ;(

µ1,
1
ρ1

)
,
(
µ2,

1
ρ2

)
, (β 1, 1) , (α+ β + 1, 2) ;

x

2

]
.(43)

Proof. Consider the generating function F (x, t) defined in (42) and integrating with
respect to t between the limits 0 to 1, we have

L1=

∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]βE(
1
ρ1
, 1
ρ2

)
,(µ1,µ2)

(
xt

t+ a+
√
t2 + 2at

)
dt

=

∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]β ∞∑
n=0

(xt)n

Γ
(
µ1 + n

ρ1

)
Γ
(
µ2 + n

ρ2

)(
t+ a+

√
t2 + 2at

)ndt
Interchanging the integration and summation, we get

L1 =

∞∑
n=0

xn

Γ
(
µ1 + n

ρ1

)
Γ
(
µ2 + n

ρ2

) ∫ 1

0

tα+n−1[
t+ a+

√
t2 + 2at

]β+n
dt,

Solving the inner integral using (17)

L1 =
∞∑
n=0

xn

Γ
(
µ1 + n

ρ1

)
Γ
(
µ2 + n

ρ2

) 2 (β + n)
(
a
2

)α+n
Γ (2α+ 2n) Γ (β − α)

2nΓ (1 + α+ β + 2n)
,

The use of (22) gives

L1 = 21−αΓ (β − α) aα−β
∞∑
n=0

Γ (1 + n+ β) Γ (2α+ 2n)

Γ
(
µ1 + n

ρ1

)
Γ
(
µ2 + n

ρ2

)
Γ (n+ β) Γ (1 + α+ β + 2n)

(x
2

)n
.

In view of (1) , we obtain the desired result.

Example 4. Take fn (x) = xn, Cn = 1

Γ
(
µ+n

ρ

) so that

F (x, t) =

∞∑
n=0

xntn

Γ
(
µ+ n

ρ

) = E(
1
ρ

)
,(µ)

(xt) . (44)

12
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Corollary 12. Consider the generating function defined in (44), equations (1) , (22)
and integrating with respect to t between the limits 0 to 1 together with theorem 1,
we get ∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]βE(
1
ρ

)
,(µ)

(
xt

t+ a+
√
t2 + 2at

)
dt

= 21−αaα−βΓ (β − α) 3Ψ3

[
(1 + β, 1) , (2α, 2) , (1, 1) ;(
µ, 1

ρ

)
, (β 1) , (α+ β + 1, 2) ;

x

2

]
. (45)

Example 5. Take fn (x) =
(
−x2

4

)n
, Cn = 1

n!Γ(ρ+n+1) so that

F (x, t) =

∞∑
n=0

(
−x2

4

)n
tn

n!Γ (ρ+ n+ 1)
= E(1,1),(1+ρ,1)

(
−x2t

4

)
. (46)

Corollary 13. The following integral formula holds:

∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]βE(1,1),(1+ρ,1)

 −x2t

4
[
t+ a+

√
t2 + 2at

]
 dt

= 21−αΓ (β − α) aα−β 2Ψ3

[
(1 + β, 1) , (2α, 2) ;

(ρ+ 1, 1) , (β , 1) , (α+ β + 1, 2) ;

x

2

]
. (47)

Example 6. If we take fn (x) =
(
−x2

4

)n
, Cn = 1

Γ(n+ 3
2)Γ(n+ρ+ 3

2)
then

F (x, t) =

∞∑
n=0

(
−x2

4

)n
tn

Γ
(
n+ 3

2

)
Γ
(
n+ ρ+ 3

2

) = E(1,1),( 3
2
, 3
2

+ρ)

(
−x2t

4

)
. (48)

Corollary 14. By considering (48) and theorem 1, we have the following formula

∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]βE(1,1),( 3
2
, 3
2

+ρ)

 −x2t

4
[
t+ a+

√
t2 + 2at

]
 dt

= 21−αaα−βΓ (β − α)

× 3Ψ4

[
(1 + β, 1) , (2α, 2) , (1, 1) ;(

3
2 , 1
)
,
(
ρ+ 3

2 , 1
)
, (β , 1) , (α+ β + 1, 2) ;

−x2

8

]
. (49)

13
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Example 7. If we take fn (x) =
(
−x2

4

)n
, Cn = 1

Γ( 3−v+µ
2

+n)Γ( 3+v+µ
2

+n)
then

F (x, t) =

∞∑
n=0

(
−x2

4

)n
tn

Γ
(

3−v+µ
2 + n

)
Γ
(

3+v+µ
2 + n

) = E(1,1),( 3−v+µ
2

, 3+v+µ
2 )

(
−x2t

4

)
. (50)

Corollary 15. By considering the generating function defined in (50), we have the
following integral formula:

∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]βE(1,1),( 3−v+µ
2

, 3+v+µ
2 )

 −x2t

4
[
t+ a+

√
t2 + 2at

]
 dt

= 21−αΓ (β − α) aα−β

× 3Ψ4

[
(1 + β, 1) , (2α, 2) , (1, 1) ;(

3−v+µ
2 , 1

)
,
(

3+v+µ
2 , 1

)
, (β , 1) , (α+ β + 1, 2) ;

−x2

8

]
. (51)

Corollary 16. If we take fn (x) =
(
x
2

)2n+v+1
, Cn = (−1)n

Γ(n+ 3
2)Γ(n+v+ 1

2)
, α = µ−n and

β = λ+v+1+n in theorem 1, then we obtain the integrals involving Struve function
as: ∫ 1

0

tµ−1[
t+ a+

√
t2 + 2at

]λHv ( x

t+ a+
√
t2 + 2at

)
dt

= 2−v−µxv+1a−(λ+v+1−µ)Γ (2µ)

×3Ψ4

[
(v + λ, 2) , (λ+ v − µ+ 1, 2) , (1, 1) ;(

3
2 , 1
)
, (v + λ+ 1, 2) ,

(
v + 1

2 , 1
)
, (λ+ v + µ+ 2, 2) ;

− x2

4a2

]
.(52)

Corollary 17. If we take fn (x) =
(
x
2

)2n+v+1
, Cn = (−1)n

Γ(n+ 3
2)Γ(n+v+ 1

2)
, α = µ + v +

n+ 1 and β = λ+ v + 1 + n in theorem 2 , then we have:∫ 1

0

tµ−1[
t+ a+

√
t2 + 2at

]λHv ( xt

t+ a+
√
t2 + 2at

)
dt

= 2−2v−µ−1xv+1aµ−vΓ (λ− µ)

×3Ψ4

[
(v + λ+ 2, 2) , (2µ+ 2v, 4) , (1, 1) ;(

3
2 , 1
)
, (v + λ+ 1, 2) ,

(
v + 1

2 , 1
)
, (λ+ µ+ 2v + 2, 4) ;

− x2

16

]
.(53)

14
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Corollary 18. Notice that a substitution ν = 1
2 in (52) and (53) yields the following

results ∫ 1

0

tµ−1[
t+ a+

√
t2 + 2at

]λH 1
2

(
x

t+ a+
√
t2 + 2at

)
dt

= 2−µ−
1
2x

3
2aµ−λ−

3
2 Γ (2µ)

×2Ψ3

[ (
λ+ 5

2 , 2
)
,
(
λ− µ+ 3

2 , 2
)

;(
3
2 , 1
)
,
(
λ+ 3

2 , 2
)
,
(
λ+ µ+ 5

2 , 2
)

;
− x2

4a2

]
, (54)

and ∫ 1

0

tµ−1[
t+ a+

√
t2 + 2at

]λH 1
2

(
xt

t+ a+
√
t2 + 2at

)
dt

= x
3
2
aµ−λ

4
Γ (λ− µ)

×2Ψ3

[ (
λ+ 5

2 , 2
)
, (2µ+ 3, 4) ;(

3
2 , 1
)
,
(
λ+ 3

2 , 2
)
, (λ+ µ+ 4, 4) ;

− x2

16

]
. (55)

where H 1
2

(z) =
√

2
πz (1− cos z) .

Example 8. If we take fn (s, b) = (b+ n)−s, Cn = (µ)n
n! , then

F (t, s, b) =
∞∑
n=0

(µ)n
n!

(b+ n)−s = φ∗µ(t, s, b) (56)

where φ∗µ(t, s, b) given by (9) is Hurwitz ( or generalized) zeta function defined by
Goyal and Laddha [7]and is a generalization of Reimann zeta function ζ(s, b).

Corollary 19. By considering the generating function defined in (56) and theorem
4, we have the following integral formula:∫ 1

0

tα−1[
t+ a+

√
t2 + 2at

]β φ∗µ(T, s, b)dt

= 21−αΓ (β − α) aα−β
∞∑
n=0

(µ)n
n!

(b+ n)−s
Γ(1 + n+ β)Γ(2α+ 2n)

Γ(n+ β)Γ(1 + α+ β + 2n)
. (57)

where T = t
t+a+

√
t2+2at

, R(s) > 1, b 6= {0,−1,−2, ...} and φ∗µ(t, s, b) is the Hurwitz

( or generalized) zeta function defined by Goyal and Laddha [7].

15
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