ON EIGENSTATES FOR SOME SL₂ RELATED HAMILTONIAN

Fahad M. Alamrani

ABSTRACT. In this paper we consider the stationary Schrdinger equation for a selfconjugated Hamiltonian $H = \frac{e+f}{i}$, where e and f is an anti-unitary pair of the canonical Cartan "creating" and "annihilation" operators for the classical Lie algebra sl_2 taken in the representation with "the lowest weight equals to 1". In this paper we prove that this operator has the continuous spectrum. Construction of eigenstates for H is given in details.

2010 Mathematics Subject Classification: 81R12, 81R50.

Keywords: hamiltonian, representation of sl_2 , quantum mechanics, stationary schrdinger equation, eigenstate.

1. INTRODUCTION

This paper will deal with the representation theory of the classical Lie algebra [1]. We will consider the Lie algebra sl_2 in a certain infinitely dimensional representation corresponding to the lowest weight 1. The representation module is equivalent to the Fock Space representation of the quantum oscillator [2]. The "creating" and "annihilation" operators e and f are anti-unitary, so that the operator $H = \frac{1}{i}(e+f)$ is Hermitian, and therefore it can be interpreted as a Hamiltonian for a certain Quantum Mechanical system. This Hamiltonian is related to a Hamiltonian considered in [3, 4] in the limit q = 1 (Note, the regime q = 1 was not considered in [3, 4]).

This paper organised as follows. In section 2 we fix the proper representation of sl_2 and rewrite the stationary Schrödinger equation as a linear recursion with nonconstant coefficients. Section 3 is devoted to the analysis of the recursion equations. Its asymptotic is discussed in section 4. Section 5 contains discussion and conclusion.

2. Formulation of the problem

We consider the algebra sl_2 generated by three operators e, f, h satisfying the three fundamental commutation relations [1].

$$[e, f] = h$$
, $[h, e] = 2e$, $[h, f] = -2f$. (1)

Let \mathfrak{F} stands for the Fock Space,

$$\mathfrak{F} = \operatorname{Span}\left\{ \left| n \right\rangle, \quad n \in \mathbb{Z}_{n \ge 0} \right\}.$$
(2)

The map

$$e \xrightarrow{\pi} \pi(e) \in \operatorname{End}(\mathfrak{F}), \quad \text{etc.},$$
 (3)

we define as

$$\boldsymbol{e} |n\rangle = |n+1\rangle \operatorname{i}(n+1), \quad \boldsymbol{f} |n\rangle = |n-1\rangle \operatorname{in}, \quad \boldsymbol{h} |n\rangle = |n\rangle (2n+1), \quad n \in \mathbb{Z}_{n \ge 0},$$
(4)

where for shortness we use notation e instead of $\pi(e)$, etc. Our representation (4) is the representation with the lowest weight 1,

$$\boldsymbol{h}|0\rangle = |0\rangle . \tag{5}$$

(in Physics this is called "spin = -1/2 representation"). The Fock co-module is defined by

$$\langle n|n'\rangle = \delta_{n,n'}, \quad n,n' \ge 0.$$
 (6)

An essential feature of our paper is that this representation not unitary:

$$\boldsymbol{e}^{\dagger} = -\boldsymbol{f} , \qquad (7)$$

where the "dagger" means the Hermitian conjugation. Subject of our interest is self-conjugated unbounded Hamiltonian

$$H = \frac{e+f}{i}, \qquad (8)$$

and the stationary Schrödinger equation for it,

$$\boldsymbol{H} \ket{\psi} = \ket{\psi} \boldsymbol{E} \,. \tag{9}$$

In what follows, we will study the structure of $|\psi\rangle$ for any $E \in \mathbb{R}$ and deduce that our Hamiltonian has continuous spectrum.

3. Analysis of the recursion

We will use the Dirac notations for $\langle bra | and | ket \rangle$ vectors. In components,

$$\psi_n = \langle n | \psi \rangle , \qquad (10)$$

where $\langle n |$ is a state of Fock co-module, cf. (6), and $|\psi\rangle$ is a required wavefunction. The stationary Schrödinger equation (9) in components reads

$$(n+1) \psi_{n+1} + n \psi_{n-1} = E \psi_n , \qquad (11)$$

where we assume

$$\psi_0 = 1 \qquad \forall \ E \in \mathbb{R} . \tag{12}$$

Our aim now is to understand the asymptotic behaviour of ψ_n when $n \to \infty$. Since E for now is only one free parameter, we assume implicitly

$$|\psi\rangle = |\psi_E\rangle, \quad \psi_n = \psi_n(E).$$
 (13)

Recursion (11) can be identically rewritten in matrix form [3, 4]:

$$(\psi_n, \psi_{n+1}) = (\psi_{n-1}, \psi_n) \cdot L_{n+1},$$
 (14)

where

$$L_n = \begin{pmatrix} 0 & -1 + \frac{1}{n} \\ 1 & \frac{E}{n} \end{pmatrix}.$$
 (15)

Thus,

$$(\psi_{n-1},\psi_n) = (0,1) L_1 \cdot L_2 \cdots L_{n-1} \cdot L_n .$$
 (16)

Since

$$L_{\infty} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad L_{\infty}^{4} = 1, \qquad (17)$$

we expect mod 4 pattern for ψ_n . Diagonalising matrix L_n ,

$$L_n = P_n^{-1} \left(\begin{array}{cc} \lambda_n & 0\\ 0 & \overline{\lambda_n} \end{array} \right) P_n , \qquad (18)$$

where

$$\lambda_n = \mathsf{i}\left(\sqrt{1 - \frac{1}{n} - \frac{E^2}{4n^2}} - \mathsf{i}\frac{E}{2n}\right) = \mathsf{i}\sqrt{1 - \frac{1}{n}} \exp\left\{-\mathsf{i}\arcsin\frac{E}{2\sqrt{n(n-1)}}\right\},\tag{19}$$

and

$$P_n P_{n+1}^{-1} = 1 + \frac{1}{2n^2} \begin{pmatrix} 0 & 0 \\ -E & 1 \end{pmatrix} + \mathcal{O}(1/n^3) , \qquad (20)$$

one can deduce the following asymptotic straightforwardly from (16):

$$\psi_n(E) = \frac{A_n(E)}{\sqrt{n}} \cos\left(\frac{E}{2}\log n - \frac{\pi n}{2} + \varphi_n(E)\right), \quad n \gg 1.$$
 (21)

Intensive numerical computations allow one to conclude that the sequences $A_n(E)$ and $\varphi_n(E)$ smoothly converge to A(E) and $\varphi(E)$ when $n \to \infty$. Therefore, we can postulate the 1/n expansion for A_n and φ_n :

$$A_n(E) = A(E) \left(1 + \frac{\delta_1}{n} + \frac{\delta_2}{n^2} + \cdots\right), \quad \varphi_n(E) = \varphi(E) + \frac{\epsilon_1}{n} + \frac{\epsilon_2}{n^2} + \cdots$$
(22)

with some n-independent coefficients

$$\delta_j = \delta_j(E), \quad \epsilon_j = \epsilon_j(E), \quad j \ge 1.$$
 (23)

Values of δ_j , ϵ_j must follow from (11). In what follows, let us combine all correction terms in (22) into

$$\delta(n,E) = \sum_{j=1}^{\infty} \frac{\delta_j(E)}{n^j}, \qquad \epsilon(n,E) = \sum_{j=1}^{\infty} \frac{\epsilon_j(E)}{n^j}.$$
 (24)

To get these values, let us substitute (21) into (11). To do this in convenient way, let us introduce

$$\Phi_n = \frac{E}{n} \log_n -\frac{\pi n}{2} + \varphi_n;, \quad \Phi_{n+1} = \Phi_n - \frac{\pi}{2} + \alpha_n;, \quad \Phi_{n-1} = \Phi_n + \frac{\pi}{2} - \alpha'_n.$$
(25)

The values of α_n and α'_n are then given by

$$\alpha_n = \Phi_{n+1} - \Phi_n + \frac{\pi}{2} = \frac{E}{2} \log_{(n+1)} + \varphi_{n+1} - \frac{E}{2} \log_n - \varphi_n$$

= $\frac{E}{2} \log(1 + \frac{1}{n}) + \epsilon_1 (\frac{1}{n+1} - \frac{1}{n}) + \epsilon_2 (\frac{1}{(n+1)^2} - \frac{1}{n^2}) + \cdots$ (26)

and similarly for α'_n . Let further

$$\frac{1}{n} = x \quad \Rightarrow \quad \frac{1}{n+1} = \frac{x}{1+x} = \sum_{j=1}^{\infty} (-)^{j+1} x^j \quad \text{etc.},$$
 (27)

so that 1/n-expansion becomes x-expansion. Then,

$$\alpha_n = \frac{E}{2}\log(1+x) + \epsilon_1(\frac{x}{1+x} - x) + \epsilon_2(\frac{x^2}{(1+x)^2} - x^2) + \cdots$$
$$= \frac{E}{2}x - (\frac{E}{4} + \epsilon_1)x^2 + (\frac{E}{6} + \epsilon_1 - 2\epsilon_2)x^3 + \mathcal{O}(x^4).$$
(28)

Value of α'_n have similar structure.

Now we can use (25,26 and 28) in (21 and 11):

$$\psi_n = \frac{A_n}{\sqrt{n}} \cos(\Phi_n) ,$$

$$\psi_{n+1} = \frac{A_{n+1}}{\sqrt{n+1}} \cos(\Phi_n - \frac{\pi}{2} + \alpha_n) = \frac{A_{n+1}}{\sqrt{n+1}} (\sin \Phi_n \cos \alpha_n + \cos \Phi_n \sin \alpha_n)$$

$$\psi_{n-1} = \frac{A_{n-1}}{\sqrt{n-1}} (-\sin \Phi_n \cos \alpha'_n + \cos \Phi_n \sin \alpha'_n) .$$

(29)

Equation (11) can be written as

$$\cos \Phi_n \left[(n+1) \frac{A_{n+1}}{\sqrt{n+1}} \sin \alpha_n + n \frac{A_{n-1}}{\sqrt{n-1}} \sin \alpha'_n - E \frac{A_n}{\sqrt{n}} \right] + \sin \Phi_n \left[(n+1) \frac{A_{n+1}}{\sqrt{n+1}} \cos \alpha_n + n \frac{A_{n-1}}{\sqrt{n-1}} \cos \alpha'_n - E \frac{A_n}{\sqrt{n}} \right] = 0.$$
(30)

Expressions in the square brackets are the series in 1/n. Coefficients $\cos \Phi_n$ and $\sin \Phi_n$ are irregular. Therefore, (30) can be satisfied if and only if:

$$(n+1)\frac{A_{n+1}}{\sqrt{n+1}}\sin\alpha_n + n\frac{A_{n-1}}{\sqrt{n-1}}\sin\alpha'_n - E\frac{A_n}{\sqrt{n}} = 0;$$

$$(n+1)\frac{A_{n+1}}{\sqrt{n+1}}\cos\alpha_n + n\frac{A_{n-1}}{\sqrt{n-1}}\cos\alpha'_n - E\frac{A_n}{\sqrt{n}} = 0.$$
 (31)

Each LHS of (31) is well defined series in x = 1/n. They must be zero, so that each coefficient in x = 1/n expansion must be zero. Thus (31) provides a set of algebraic equations for δ_j, ϵ_j .

Precise form of the asymptotic corrections is the following:

$$\delta(n, E) = -\frac{1}{4n} + \frac{2E^2 + 1}{32n^2} - \frac{5(2E^2 - 1)}{128n^3} + \frac{20E^4 - 60E^2 - 21}{2048n^4}$$

$$-\frac{180E^4 - 1380E^2 + 399}{8192n^5} + \frac{120E^6 - 2540E^4 + 2518E^2 + 869}{65536n^6} + \mathcal{O}(n^{-7})$$
(32)

and

$$\epsilon(n,E) = \frac{E}{4n} - \frac{E(E^2 - 5)}{96n^2} + \frac{E(E^2 - 9)}{96n^3} - \frac{E(9E^4 - 490E^2 + 341)}{15360n^4} + \frac{E(3E^4 - 190E^2 + 375)}{2560n^5} - \frac{E(15E^6 - 2793E^4 + 22169E^2 - 7615)}{258048n^6} + \mathcal{O}(n^{-7}).$$
(33)

The correction terms δ_j and ϵ_j can by produced from the recursion by a bootstrap up to any order of 1/n.

4. Orthogonality

There is a remarkable way to derive the inner product for two states in our model. Consider a truncated state,

$$|\psi_E^{(N)}\rangle = \sum_{n=0}^N |n\rangle\psi_n(E) , \qquad (34)$$

where $\psi_n(E)$ are defined by (11) with the initial condition $\psi_0 = 1$. Straightforward computation gives

$$\boldsymbol{H} |\psi_{E}^{(N)}\rangle = |\psi_{E}^{(N-1)}\rangle E + |N\rangle N\psi_{N-1}(E) + |N+1\rangle (N+1)\psi_{N}(E) .$$
(35)

Considering then

$$\langle \psi_{E'}^{(N)} | \boldsymbol{H} | \psi_E^{(N)} \rangle$$
, (36)

one deduces

$$\langle \psi_{E'}^{(N-1)} | \psi_E^{(N-1)} \rangle = \frac{N}{E - E'} \left(\psi_N(E) \psi_{N-1}(E') - \psi_N(E') \psi_{N-1}(E) \right) .$$
(37)

Assuming our asymptotic for ψ_N for $N \to \infty$, one obtains

$$\langle \psi_{E'}^{(N)} | \psi_E^{(N)} \rangle = A(E')A(E) \frac{\sin\left(\frac{E'-E}{2}\log N + \varphi(E') - \varphi(E)\right)}{E'-E} , \quad N \to \infty .$$
(38)

The limit $N \to \infty$ is well defined here. In general, this is the Fresnel integral limit [5],

$$\lim_{K \to \infty} \frac{\sin(Kx)}{x} = \pi \delta(x) .$$
(39)

Therefore, at $N \to \infty$ one obtains

$$\langle \psi_{E'} | \psi_E \rangle = \pi A(E)^2 \delta(E - E') . \tag{40}$$

In fact, this is the main result of our paper. Numerical analysis also shows that the spectrum is unbounded since

$$A(E) = A(-E). \tag{41}$$

5. CONCLUSION AND DISCUSSION

In this paper we have considered the stationary Schrödinger equation for the selfconjugated Hamiltonian $H = \frac{1}{i}(e + f)$, where e and f are creatinig and annihilation operators for the algebra sl_2 considered for the infinite-dimensional representation with lowest weight equals 1, equivalent to the usual Fock Space.

The eigenvector equation for operator H is the the second order recursion equation. In this paper we have given detailed analysis for a solution of the recursion. General expression of $\psi_n(E)$ involves four functions: A(E), $\psi(E)$, $\delta_n(E)$, $\varepsilon_n(E)$, see equation (22). We give the rigorous way to define $\delta(n, E)$ and $\epsilon(n, E)$ analytically in the forms of series expansion with respect to 1/n and E, however the functions A(E) and $\psi(E)$ are defined only numerically for real E.

The further development of the problem implies two ways: the first way is the further analysis of equation (11) in order to find analytical expressions for the asymptotic analytical functions A(E) and $\varphi(E)$. The second way could be $q \neq 1$ generalisation of the problem. A preliminary analysis shows that $q \neq 1$ case leads to several unexpected mathematical phenomena.

References

[1] J. E. Humphries.," Introduction to Lie Algebras and Representation Theory", New York, NY,1970.

[2] J. Von Neumann," *Mathematical Foundations of Quantum Mechanics.*", Princeton University Press, 1955, ISBN: 0-691-02893-1.

[3] S. M. Sergeev., "A quantization scheme for modular q-difference equations.", Theor. Math. Phys., 142(3):500509, 2005.

[4] R. M. Kashaev and S. M. Sergeev, "Spectral equations for the modular oscillator", arXiv:1703.06016.

[5] E. T. Whittaker and G. N. Watson, "A course of Modern Analysis", Cambridge University Press, 1920.

Fahad Alamrani, Department of Mathematics, Faculty of Science & Technology, University of Canberra, Canberra, Australia, Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia, email: *Fahad.Alamrani@canberra.edu.au*.