ON EIGENSTATES FOR SOME SL $_{2}$ RELATED HAMILTONIAN

Fahad M. Alamrani

AbStract. In this paper we consider the stationary Schrdinger equation for a selfconjugated Hamiltonian $\boldsymbol{H}=\frac{\boldsymbol{e}+\boldsymbol{f}}{\mathrm{i}}$, where \boldsymbol{e} and \boldsymbol{f} is an anti-unitary pair of the canonical Cartan "creating" and "annihilation" operators for the classical Lie algebra $s l_{2}$ taken in the representation with "the lowest weight equals to 1 ". In this paper we prove that this operator has the continuous spectrum. Construction of eigenstates for \boldsymbol{H} is given in details.

2010 Mathematics Subject Classification: 81R12, 81R50.
Keywords: hamiltonian, representation of $s l_{2}$, quantum mechanics, stationary schrdinger equation, eigenstate.

1. Introduction

This paper will deal with the representation theory of the classical Lie algebra [1]. We will consider the Lie algebra $s l_{2}$ in a certain infinitely dimensional representation corresponding to the lowest weight 1. The representation module is equivalent to the Fock Space representation of the quantum oscillator [2]. The "creating" and "annihilation" operators \boldsymbol{e} and \boldsymbol{f} are anti-unitary, so that the operator $\boldsymbol{H}=\frac{1}{\mathrm{i}}(\boldsymbol{e}+\boldsymbol{f})$ is Hermitian, and therefore it can be interpreted as a Hamiltonian for a certain Quantum Mechanical system. This Hamiltonian is related to a Hamiltonian considered in $[3,4]$ in the limit $q=1$ (Note, the regime $q=1$ was not considered in $[3,4]$).

This paper organised as follows. In section 2 we fix the proper representation of $s l_{2}$ and rewrite the stationary Schrödinger equation as a linear recursion with nonconstant coefficients. Section 3 is devoted to the analysis of the recursion equations. Its asymptotic is discussed in section 4 . Section 5 contains discussion and conclusion.

2. Formulation of the problem

We consider the algebra $s l_{2}$ generated by three operators $\boldsymbol{e}, \boldsymbol{f}, \boldsymbol{h}$ satisfying the three fundamental commutation relations [1].

$$
\begin{equation*}
[\boldsymbol{e}, \boldsymbol{f}]=\boldsymbol{h}, \quad[\boldsymbol{h}, \boldsymbol{e}]=2 \boldsymbol{e}, \quad[\boldsymbol{h}, \boldsymbol{f}]=-2 \boldsymbol{f} \tag{1}
\end{equation*}
$$

Let \mathfrak{F} stands for the Fock Space,

$$
\begin{equation*}
\mathfrak{F}=\operatorname{Span}\left\{|n\rangle, \quad n \in \mathbb{Z}_{n \geq 0}\right\} \tag{2}
\end{equation*}
$$

The map

$$
\begin{equation*}
e \xrightarrow{\pi} \pi(e) \in \operatorname{End}(\mathfrak{F}), \quad \text { etc. }, \tag{3}
\end{equation*}
$$

we define as
$\boldsymbol{e}|n\rangle=|n+1\rangle \mathrm{i}(n+1), \quad \boldsymbol{f}|n\rangle=|n-1\rangle \mathrm{i} n, \quad \boldsymbol{h}|n\rangle=|n\rangle(2 n+1), \quad n \in \mathbb{Z}_{n \geq 0}$,
where for shortness we use notation \boldsymbol{e} instead of $\pi(\boldsymbol{e})$, etc. Our representation (4) is the representation with the lowest weight 1 ,

$$
\begin{equation*}
\boldsymbol{h}|0\rangle=|0\rangle . \tag{5}
\end{equation*}
$$

(in Physics this is called "spin $=-1 / 2$ representation"). The Fock co-module is defined by

$$
\begin{equation*}
\left\langle n \mid n^{\prime}\right\rangle=\delta_{n, n^{\prime}}, \quad n, n^{\prime} \geq 0 \tag{6}
\end{equation*}
$$

An essential feature of our paper is that this representation not unitary:

$$
\begin{equation*}
e^{\dagger}=-f, \tag{7}
\end{equation*}
$$

where the "dagger" means the Hermitian conjugation. Subject of our interest is self-conjugated unbounded Hamiltonian

$$
\begin{equation*}
\boldsymbol{H}=\frac{e+f}{\mathrm{i}}, \tag{8}
\end{equation*}
$$

and the stationary Schrödinger equation for it,

$$
\begin{equation*}
\boldsymbol{H}|\psi\rangle=|\psi\rangle E . \tag{9}
\end{equation*}
$$

In what follows, we will study the structure of $|\psi\rangle$ for any $E \in \mathbb{R}$ and deduce that our Hamiltonian has continuous spectrum.

3. Analysis of the recursion

We will use the Dirac notations for 〈bra| and |ket〉 vectors. In components,

$$
\begin{equation*}
\psi_{n}=\langle n \mid \psi\rangle, \tag{10}
\end{equation*}
$$

where $\langle n|$ is a state of Fock co-module, cf. (6), and $|\psi\rangle$ is a required wavefunction. The stationary Schrödinger equation (9) in components reads

$$
\begin{equation*}
(n+1) \psi_{n+1}+n \psi_{n-1}=E \psi_{n} \tag{11}
\end{equation*}
$$

where we assume

$$
\begin{equation*}
\psi_{0}=1 \quad \forall E \in \mathbb{R} \tag{12}
\end{equation*}
$$

Our aim now is to understand the asymptotic behaviour of ψ_{n} when $n \rightarrow \infty$. Since E for now is only one free parameter, we assume implicitly

$$
\begin{equation*}
|\psi\rangle=\left|\psi_{E}\right\rangle, \quad \psi_{n}=\psi_{n}(E) \tag{13}
\end{equation*}
$$

Recursion (11) can be identically rewritten in matrix form [3, 4]:

$$
\begin{equation*}
\left(\psi_{n}, \psi_{n+1}\right)=\left(\psi_{n-1}, \psi_{n}\right) \cdot L_{n+1} \tag{14}
\end{equation*}
$$

where

$$
L_{n}=\left(\begin{array}{cc}
0 & -1+\frac{1}{n} \tag{15}\\
1 & \frac{E}{n}
\end{array}\right)
$$

Thus,

$$
\begin{equation*}
\left(\psi_{n-1}, \psi_{n}\right)=(0,1) L_{1} \cdot L_{2} \cdots L_{n-1} \cdot L_{n} \tag{16}
\end{equation*}
$$

Since

$$
L_{\infty}=\left(\begin{array}{cc}
0 & -1 \tag{17}\\
1 & 0
\end{array}\right), \quad L_{\infty}^{4}=1
$$

we expect $\bmod 4$ pattern for ψ_{n}. Diagonalising matrix L_{n},

$$
L_{n}=P_{n}^{-1}\left(\begin{array}{cc}
\lambda_{n} & 0 \tag{18}\\
0 & \overline{\lambda_{n}}
\end{array}\right) P_{n}
$$

where

$$
\begin{equation*}
\lambda_{n}=\mathrm{i}\left(\sqrt{1-\frac{1}{n}-\frac{E^{2}}{4 n^{2}}}-\mathrm{i} \frac{E}{2 n}\right)=\mathrm{i} \sqrt{1-\frac{1}{n}} \exp \left\{-\mathrm{i} \arcsin \frac{E}{2 \sqrt{n(n-1)}}\right\} \tag{19}
\end{equation*}
$$

and

$$
P_{n} P_{n+1}^{-1}=1+\frac{1}{2 n^{2}}\left(\begin{array}{cc}
0 & 0 \tag{20}\\
-E & 1
\end{array}\right)+\mathcal{O}\left(1 / n^{3}\right)
$$

one can deduce the following asymptotic straightforwardly from (16):

$$
\begin{equation*}
\psi_{n}(E)=\frac{A_{n}(E)}{\sqrt{n}} \cos \left(\frac{E}{2} \log n-\frac{\pi n}{2}+\varphi_{n}(E)\right), \quad n \gg 1 \tag{21}
\end{equation*}
$$

Intensive numerical computations allow one to conclude that the sequences $A_{n}(E)$ and $\varphi_{n}(E)$ smoothly converge to $A(E)$ and $\varphi(E)$ when $n \rightarrow \infty$. Therefore, we can postulate the $1 / n$ expansion for A_{n} and φ_{n} :

$$
\begin{equation*}
A_{n}(E)=A(E)\left(1+\frac{\delta_{1}}{n}+\frac{\delta_{2}}{n^{2}}+\cdots\right), \quad \varphi_{n}(E)=\varphi(E)+\frac{\epsilon_{1}}{n}+\frac{\epsilon_{2}}{n^{2}}+\cdots \tag{22}
\end{equation*}
$$

with some n-independent coefficients

$$
\begin{equation*}
\delta_{j}=\delta_{j}(E), \quad \epsilon_{j}=\epsilon_{j}(E), \quad j \geq 1 \tag{23}
\end{equation*}
$$

Values of δ_{j}, ϵ_{j} must follow from (11). In what follows, let us combine all correction terms in (22) into

$$
\begin{equation*}
\delta(n, E)=\sum_{j=1}^{\infty} \frac{\delta_{j}(E)}{n^{j}}, \quad \epsilon(n, E)=\sum_{j=1}^{\infty} \frac{\epsilon_{j}(E)}{n^{j}} \tag{24}
\end{equation*}
$$

To get these values, let us substitute (21) into (11). To do this in convenient way, let us introduce

$$
\begin{equation*}
\Phi_{n}=\frac{E}{n} \log _{n}-\frac{\pi n}{2}+\varphi_{n} ;, \quad \Phi_{n+1}=\Phi_{n}-\frac{\pi}{2}+\alpha_{n} ;, \quad \Phi_{n-1}=\Phi_{n}+\frac{\pi}{2}-\alpha_{n}^{\prime} . \tag{25}
\end{equation*}
$$

The values of α_{n} and α_{n}^{\prime} are then given by

$$
\begin{align*}
& \alpha_{n}=\Phi_{n+1}-\Phi_{n}+\frac{\pi}{2}=\frac{E}{2} \log _{(n+1)}+\varphi_{n+1}-\frac{E}{2} \log _{n}-\varphi_{n} \\
& =\frac{E}{2} \log \left(1+\frac{1}{n}\right)+\epsilon_{1}\left(\frac{1}{n+1}-\frac{1}{n}\right)+\epsilon_{2}\left(\frac{1}{(n+1)^{2}}-\frac{1}{n^{2}}\right)+\cdots \tag{26}
\end{align*}
$$

and similarly for α_{n}^{\prime}. Let further

$$
\begin{equation*}
\frac{1}{n}=x \quad \Rightarrow \quad \frac{1}{n+1}=\frac{x}{1+x}=\sum_{j=1}^{\infty}(-)^{j+1} x^{j} \quad \text { etc. } \tag{27}
\end{equation*}
$$

so that $1 / n$-expansion becomes x-expansion. Then,

$$
\begin{array}{r}
\alpha_{n}=\frac{E}{2} \log (1+x)+\epsilon_{1}\left(\frac{x}{1+x}-x\right)+\epsilon_{2}\left(\frac{x^{2}}{(1+x)^{2}}-x^{2}\right)+\cdots \\
=\frac{E}{2} x-\left(\frac{E}{4}+\epsilon_{1}\right) x^{2}+\left(\frac{E}{6}+\epsilon_{1}-2 \epsilon_{2}\right) x^{3}+\mathcal{O}\left(x^{4}\right) . \tag{28}
\end{array}
$$

Value of α_{n}^{\prime} have similar structure.
Now we can use (25,26 and 28) in (21 and 11):

$$
\begin{align*}
& \psi_{n}=\frac{A_{n}}{\sqrt{n}} \cos \left(\Phi_{n}\right) \\
& \psi_{n+1}=\frac{A_{n+1}}{\sqrt{n+1}} \cos \left(\Phi_{n}-\frac{\pi}{2}+\alpha_{n}\right)=\frac{A_{n+1}}{\sqrt{n+1}}\left(\sin \Phi_{n} \cos \alpha_{n}+\cos \Phi_{n} \sin \alpha_{n}\right) \\
& \psi_{n-1}=\frac{A_{n-1}}{\sqrt{n-1}}\left(-\sin \Phi_{n} \cos \alpha_{n}^{\prime}+\cos \Phi_{n} \sin \alpha_{n}^{\prime}\right) . \tag{29}
\end{align*}
$$

Equation (11) can be written as

$$
\begin{align*}
& \cos \Phi_{n}\left[(n+1) \frac{A_{n+1}}{\sqrt{n+1}} \sin \alpha_{n}+n \frac{A_{n-1}}{\sqrt{n-1}} \sin \alpha_{n}^{\prime}-E \frac{A_{n}}{\sqrt{n}}\right] \\
& +\sin \Phi_{n}\left[(n+1) \frac{A_{n+1}}{\sqrt{n+1}} \cos \alpha_{n}+n \frac{A_{n-1}}{\sqrt{n-1}} \cos \alpha_{n}^{\prime}-E \frac{A_{n}}{\sqrt{n}}\right]=0 \tag{30}
\end{align*}
$$

Expressions in the square brackets are the series in $1 / n$. Coefficients $\cos \Phi_{n}$ and $\sin \Phi_{n}$ are irregular. Therefore, (30) can be satisfied if and only if:

$$
\begin{align*}
& (n+1) \frac{A_{n+1}}{\sqrt{n+1}} \sin \alpha_{n}+n \frac{A_{n-1}}{\sqrt{n-1}} \sin \alpha_{n}^{\prime}-E \frac{A_{n}}{\sqrt{n}}=0 \\
& (n+1) \frac{A_{n+1}}{\sqrt{n+1}} \cos \alpha_{n}+n \frac{A_{n-1}}{\sqrt{n-1}} \cos \alpha_{n}^{\prime}-E \frac{A_{n}}{\sqrt{n}}=0 \tag{31}
\end{align*}
$$

Each LHS of (31) is well defined series in $x=1 / n$. They must be zero, so that each coefficient in $x=1 / n$ expansion must be zero. Thus (31) provides a set of algebraic equations for δ_{j}, ϵ_{j}.

Precise form of the asymptotic corrections is the following:

$$
\begin{align*}
& \delta(n, E)=-\frac{1}{4 n}+\frac{2 E^{2}+1}{32 n^{2}}-\frac{5\left(2 E^{2}-1\right)}{128 n^{3}}+\frac{20 E^{4}-60 E^{2}-21}{2048 n^{4}} \tag{32}\\
& -\frac{180 E^{4}-1380 E^{2}+399}{8192 n^{5}}+\frac{120 E^{6}-2540 E^{4}+2518 E^{2}+869}{65536 n^{6}}+\mathcal{O}\left(n^{-7}\right)
\end{align*}
$$

and

$$
\begin{align*}
& \epsilon(n, E)=\frac{E}{4 n}-\frac{E\left(E^{2}-5\right)}{96 n^{2}}+\frac{E\left(E^{2}-9\right)}{96 n^{3}}-\frac{E\left(9 E^{4}-490 E^{2}+341\right)}{15360 n^{4}} \\
& +\frac{E\left(3 E^{4}-190 E^{2}+375\right)}{2560 n^{5}}-\frac{E\left(15 E^{6}-2793 E^{4}+22169 E^{2}-7615\right)}{258048 n^{6}}+\mathcal{O}\left(n^{-7}\right) . \tag{33}
\end{align*}
$$

The correction terms δ_{j} and ϵ_{j} can by produced from the recursion by a bootstrap up to any order of $1 / n$.

4. Orthogonality

There is a remarkable way to derive the inner product for two states in our model. Consider a truncated state,

$$
\begin{equation*}
\left|\psi_{E}^{(N)}\right\rangle=\sum_{n=0}^{N}|n\rangle \psi_{n}(E), \tag{34}
\end{equation*}
$$

where $\psi_{n}(E)$ are defined by (11) with the initial condition $\psi_{0}=1$. Straightforward computation gives

$$
\begin{equation*}
\boldsymbol{H}\left|\psi_{E}^{(N)}\right\rangle=\left|\psi_{E}^{(N-1)}\right\rangle E+|N\rangle N \psi_{N-1}(E)+|N+1\rangle(N+1) \psi_{N}(E) \tag{35}
\end{equation*}
$$

Considering then

$$
\begin{equation*}
\left\langle\psi_{E^{\prime}}^{(N)}\right| \boldsymbol{H}\left|\psi_{E}^{(N)}\right\rangle, \tag{36}
\end{equation*}
$$

one deduces

$$
\begin{equation*}
\left\langle\psi_{E^{\prime}}^{(N-1)} \mid \psi_{E}^{(N-1)}\right\rangle=\frac{N}{E-E^{\prime}}\left(\psi_{N}(E) \psi_{N-1}\left(E^{\prime}\right)-\psi_{N}\left(E^{\prime}\right) \psi_{N-1}(E)\right) \tag{37}
\end{equation*}
$$

Assuming our asymptotic for ψ_{N} for $N \rightarrow \infty$, one obtains

$$
\begin{equation*}
\left\langle\psi_{E^{\prime}}^{(N)} \mid \psi_{E}^{(N)}\right\rangle=A\left(E^{\prime}\right) A(E) \frac{\sin \left(\frac{E^{\prime}-E}{2} \log N+\varphi\left(E^{\prime}\right)-\varphi(E)\right)}{E^{\prime}-E}, \quad N \rightarrow \infty \tag{38}
\end{equation*}
$$

The limit $N \rightarrow \infty$ is well defined here. In general, this is the Fresnel integral limit [5],

$$
\begin{equation*}
\lim _{K \rightarrow \infty} \frac{\sin (K x)}{x}=\pi \delta(x) \tag{39}
\end{equation*}
$$

Therefore, at $N \rightarrow \infty$ one obtains

$$
\begin{equation*}
\left\langle\psi_{E^{\prime}} \mid \psi_{E}\right\rangle=\pi A(E)^{2} \delta\left(E-E^{\prime}\right) . \tag{40}
\end{equation*}
$$

In fact, this is the main result of our paper. Numerical analysis also shows that the spectrum is unbounded since

$$
\begin{equation*}
A(E)=A(-E) \tag{41}
\end{equation*}
$$

5. Conclusion and Discussion

In this paper we have considered the stationary Schrödinger equation for the selfconjugated Hamiltonian $\boldsymbol{H}=\frac{1}{\mathrm{i}}(\boldsymbol{e}+\boldsymbol{f})$, where \boldsymbol{e} and \boldsymbol{f} are creatinig and annihilation operators for the algebra $s l_{2}$ considered for the infinite-dimensional representation with lowest weight equals 1, equivalent to the usual Fock Space.

The eigenvector equation for operator \boldsymbol{H} is the the second order recursion equation. In this paper we have given detailed analysis for a solution of the recursion. General expression of $\psi_{n}(E)$ involves four functions: $A(E), \psi(E), \delta_{n}(E), \varepsilon_{n}(E)$, see equation (22). We give the rigorous way to define $\delta(n, E)$ and $\epsilon(n, E)$ analytically in the forms of series expansion with respect to $1 / n$ and E, however the functions $A(E)$ and $\psi(E)$ are defined only numerically for real E.

The further development of the problem implies two ways: the first way is the further analysis of equation (11) in order to find analytical expressions for the asymptotic analytical functions $A(E)$ and $\varphi(E)$. The second way could be $q \neq 1$ generalisation of the problem. A preliminary analysis shows that $q \neq 1$ case leads to several unexpected mathematical phenomena.

References

[1] J. E. Humphries.,"' Introduction to Lie Algebras and Representation Theory", New York, NY,1970.
[2] J. Von Neumann," Mathematical Foundations of Quantum Mechanics.", Princeton University Press,1955, ISBN: 0-691-02893-1.
[3] S. M. Sergeev., "A quantization scheme for modular q-difference equations.", Theor. Math. Phys., 142(3):500509, 2005.
[4] R. M. Kashaev and S. M. Sergeev, "Spectral equations for the modular oscillator", arXiv:1703.06016.
[5] E. T. Whittaker and G. N. Watson, "A course of Modern Analysis", Cambridge University Press, 1920.

Fahad M. Alamrani - Eigenstates for some sl_{2} related Hamiltonian

Fahad Alamrani,
Department of Mathematics, Faculty of Science \& Technology, University of Canberra,
Canberra, Australia,
Department of Mathematics, Faculty of Science, University of Tabuk,
Tabuk, Saudi Arabia, email: Fahad.Alamrani@canberra.edu.au.

