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Abstract. Wavelet frames have become a useful tool in time frequency anal-
ysis and image processing. Many authors worked in the field of wavelet frames
and obtained various necessary and sufficient conditions. Ron and Shen [17] gave a
charactarization of wavelet frames. Benedetto and Treiber [3], Ron and Shen [17]
presented different presentations to the wavelet frames. Any function f ∈ L2(R)
can be expanded as an orthonormal wavelet series and pointwise convergence and
uniform convergence of series have been discussed extensively by various authors [9,
17]. In this paper we investigate the pointwise convergence of orthogonal wavelet se-
ries in Pringscheim’s sense. Furthermore, we investigate cesaro |C, 1, 1| summability
and the strong cesaro |C, 1, 1| summability of wavelet series.
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1. Introduction

In order to analyze seismic data, wavelets with local support in the time and fre-
quency domains were defined by A. Grossman and J. Morlet [6]. However,the pro-
totypes of wavelets can be found in the work of A. Haar [8]. S. Mallat [12] and Y.
Meyer developed the framework of multiresolution analysis in order to identify the
underlying structure and to generate interesting examples of orthonormal bases for
L2(R). P.G. Lemarie and Y. Meyer [10] constructed wavelets in S(Rn), the space
of rapidly decreasing smooth functions. J.O.Stromberg [17] was looking for uncon-
ditional bases for Hardy spaces and developed spline wavelets. In the context of
wavelet theory, G. Battle [2] and P.G. Lemari [11] developed these bases. Spline
wavelets have exponential decay, but only CN smoothness (for a finite N depend-
ing on the order of the associated splines). I. Daubechies [4]constructed compactly
supported wavelets with CN smoothness. The support of these wavelets increased
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with the smoothness; in general, to have C∞ smoothness, wavelets must have infi-
nite support. The convergence results for wavelet expansions was first studied by
Y. Meyer [14] then he was followed by G. Walter ([25], [26]). Kon and Repheal [9]
gave definite conditions for the convergence of wavelet series. Under some regularity
assumptions on the wavelets, Meyer proved that wavelet expansions of continuous
functions converge everywhere. In comparison of these results, the pointwise conver-
gence results give almost everywhere convergence (and convergence on the Lebesgue
set ) for expansions of general Lp(1 ≤ p ≤ ∞) functions. More results about con-
vergence of wavelet series on different spaces have been obtained by Firdous A.
Shah, Neyaz A. Sheikh [23]. In this paper we investigate the pointwise convergence
of orthogonal wavelet series in Pringscheim’s sense. Furthermore, we study cesaro
|C, 1, 1| summability and the strong cesaro |C, 1, 1| summability of wavelet series.

Let ψj(x) : j = 1, 2... be orthonormal system of real-valued functions on X. We
consider the orthogonal series

∞∑
j=1

cjψj(x), (1.1)

where cj is sequence of real numbers (so-called co-efficients)satisfying the condition

∞∑
j=1

c2j ≤ ∞. (1.2)

By Riesz-Fischer theorem, there exists a function f(x) ∈ L2 = L2(X,F , µ) such
that (1.1) is the generalized Fourier series of f(x) with respect to the system ψj(x).
The partial sums

sm(x) =

m∑
j=1

cjψj(x),m = 1, 2, ...

converges to f(x) in L2 norm:

lim
m→∞

∫
|sm(x)− f(x)|2dµ(x) = 0 (1.3)

Here and in the sequel, the integrals are taken over the entire space X. It is well
known that the condition (1.2) does not ensure the pointwise convergence of the
partial sums sm(x) to f(x) as m→∞. If

∞∑
j=1

c2j [log(j + 1)]2 <∞, (1.4)
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where the logarithm is to be the base 2, then

lim
m→∞

sm(x) = f(x) a.e., (1.5)

where f(x) is the sum of (1.1) in the L2- norm (see in (1.3)). We note that the
condition (1.4) is not only sufficient, but also necessary in certain cases for the
fulfillment of (1.5), as the following theorem of Tandori. If

|c1| ≥ |c2| ≥ ... ≥ |cj | ≥ ...

and
∞∑
j=1

c2j [log(j + 1)]2 =∞.

then one can construct an ONS ψj(x) : j = 1, 2, ... on the unit interval [0,1] endowed
with the ordinary Lebesgue measure so that the orthogonal series (1.1) diverges at
each point x ∈ [0, 1]. The cesaro (C,1) summability of the orthogonal series (1.1)
defined by the arithmetic means

σM (x) =
1

M

M∑
m=1

sm(x),M = 1, 2, ...

of the partial sums is gauranteed by a weaker condition than (1.1). The Menshov-
Kaczmarz theorem (see, e.g,. [1, Theorem 2.8.1, p.125]) reads as follows: If

∞∑
j=1

c2j [loglog(j + 3)]2 <∞, (1.6)

. then
lim

M→∞
σm(x) = f(x) a.e. (1.7)

The following theorem on the strong cesaro (C,1) summability of orthogonal
series (1.1) was proved by Borgen: Under the condition (1.6), we even have

lim
M→∞

1

M

M∑
m=1

|sm(x)− f(x)|2 = 0 a.e.

We note that in the case of single series of numbers, the notion of strong cesaro
|C, 1| summability is due to G. H. Hardy (where it is called H2 summability). Here
our main goal in this paper is to prove an analogous result for wavelet orthogonal
series on the strong cesaro |C, 1, 1| summability. We also note that the following
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generalization of Borgen’s theorem was proved by Tandori [24]: Let 1 ≤ v1 < v2 <
...vm < ... be an arbitrary sequence of natural numbers and set

σM (v : x) =
1

M

M∑
m=1

svm(x),M = 1, 2, ...

If condition (1.6)is satisfied, then we have

lim
M→∞

1

M

M∑
m=1

|svm(x)− f(x)2 = 0 a.e.

2. Background: Wavelet series

Let ψj,k : j, k = 1, 2, ... be an ONS wavelet on a finite positive measure space (X,F, µ).
We consider the wavelet series

∞∑
j=1

∞∑
k=1

cj,kψj,k(x), (2.1)

where cj,k : j, k = 1, 2, ... are wavelet coefficients satisfying the condition

∞∑
j=1

∞∑
k=1

c2j,k <∞. (2.2)

By the Riesz-Fischer theorem, there exists a function g(x) in L2 = L2(X,F, µ) such
that (2.1) is the wavelet series of g(x) with respect to the system ψj,k(x) and the
recangular partial sums

sm,n(x) =
∞∑
j=1

∞∑
k=1

cj,kψj,k(x), m, n = 1, 2, ... (2.3);

of the wavelet series (2.1) converge to g(x) in L2-norm:

lim
m,n→∞

∫
|sm,n(x)− g(x)|2dµ(x) = 0. (2.4)

It is clear that condition (2.2) does not ensure the pointwise convergence of the rect-
angular partial sums sm,n(x) → g(x)as m, n → ∞. The extension of Redemacher-
Menshov theorem proved by a number of authors reads as follows: If

∞∑
j=1

∞∑
k=1

c2j,k[log(j + 1)]2[log(k + 1)]2 <∞, (2.5)
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then
lim

m,n→∞
sm,n(x) = g(x) a.e.,

where g(x) occurs in (2.4). We note that condition (2.5) is also the best possible
one that guarantees the a.e. convergence of the wavelet series (2.1). Indeed, as it
was proved in [16] that if the double sequence cj,k is such that

|cj,k| ≥ |cj1,k1 |for all 1 ≤ j ≤ j1, 1 ≤ k ≤ k1.

and
∞∑
j=1

∞∑
k=1

c2j,k[log(j + 1)]2[log(k + 1)]2 <∞, (2.6)

then there exists an ONS ψj,k(x) endowed with the plane Lebesgue measure such
that the wavelet series (2.1) diverges a.e. The a.e. cesaro (C, 1, 1) summability of
the wavelet series (2.1) defined by the arithmetic means

σM,N (x) =
1

MN

M∑
m=1

N∑
n=1

sm,n(x),M,N = 1, 2, ... (2.7)

of the rectangular partial sums, can be guaranteed under a weaker condition than
(2.5). The extension of the Menshov-Kaczmarz theorem reads as follows: If

∞∑
j=1

∞∑
k=1

c2j,k[loglog(j + 3)]2[loglog(k + 3)]2 <∞, (2.8)

then
lim

M,N→∞
σM,N (x) = g(x) a.e. (2.9)

A double series of real (or complex) numbers

∞∑
j=1

∞∑
k=1

uj,k (2.10)

is said to converge in Pringsheim’s sense to the sum s if for every ε > 0 there exists
K = K(ε) ∈ N such that

|
m∑
j=1

n∑
k=1

uj,k − s| < ε if min(m,n) > K.
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Hardy [7]introduced the notion of regular convergence as follows. The double series
(2.10) is said to converge regularly if it converges in Pringsheim’s sense and, in
addition, if each of it’s so-called row (single)subseries defined by

∞∑
j=1

uj,k

converges for each fixed k ∈ N, as well as each of its so-called column (single)subseries
defined by

∞∑
k=1

uj,k

converges for each fixed j ∈ N. Without knowing Hardy’s definition, the present
order rediscovered the notion of regular convergence (where it was called as “con-
vergence in a restricted sense”) as follows: for every E > 0 there existsK = K(E) ∈ N
such that

|
∞∑
j=1

∞∑
k=1

uj,k| < ε if max(j1, k1) > Kand 1 ≤ j1 ≤ j2, 1 ≤ k1 ≤ k2.

It is clear that if the double series (2.10) converges absolutely, that is, if

∞∑
j=1

∞∑
k=1

|uj,k| <∞,

then it converges regularly, as well: but the converse implication is not true in
general.

3. The Kronecker lemma for wavelet series

In the proofs of our Theorems 1 and 2 we will need the extension of the familiar
Kronecker lemma from single to double series of numbers. For the readers con-
venience, first we formulate the Kronecker lemma for single series as follows: If a
non-decreasing sequence λj : j = 1, 2, ... of positive numbers tends to ∞ as j →∞,
and the sequence uj : j = 1, 2, ... of real numbers is such that the series

∞∑
j=1

uj
λj
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converges, then

lim
m→∞

1

λm

m∑
j=1

uj = 0.

We recall that the Kronecker lemma for double series reads as follows: Let λj,k : j, k = 1, 2, ...
be a double sequence of positive numbers satisfying the following conditions:

δ1,0λj,k = λj+1,k − λj,k ≥ 0. δ0.1λj,k = λj,k+1 − λj,k ≥ 0.

δ1,1λj,k = λj+1,k+1 − λj+1,k − λj,k+1 + λj,k ≥ 0 forallj, k = 1, 2, ... (3.1)

and
λj,k →∞ as max(m,n)→∞ (or min(m,n)→∞).

If the double series
∞∑
j=1

∞∑
k=1

uj,k
λj,k

converges regularly. (3.2)

where the uj,k are real numbers, then

1

λm,n

m∑
j=1

n∑
k=1

uj,k → 0 as max(m,n)→∞ (or min(m,n)→∞). (3.3)

4. Convergence of wavelet series

Theorem 1. If the wavelet series (2.1) is such that condition (2.2) is satisfied, then

1

MN

M∑
m=1

N∑
n=1

|sm,n(x)− σm,n(x)|2 → 0 a.e. as max(M,N)→∞. (4.1)

Proof. By invoking (2.3)and (2.7), for m, n≥ 2 we have

sm,n(x)− σm,n(x) =

m∑
j=2

n∑
k=2

(j − 1)(k − 1)

mn
cj,kψj,k(x),

for m ≥ 2 we have

sm,1(x)− σm,1(x) =
m∑
j=2

j − 1

m
cj,1ψj,1(x),
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for n ≥ 2

s1,n(x)− σ1,n(x) =

∞∑
k=2

k − 1

n
c1,kψ1,k(x)

Due to the orthonormality of the system ψj,k(x), for m, n = 1,2,... we have,

1

mn

∫
|sm,n(x)− σm,n(x)|2dµ(x) =

m∑
j=2

n∑
k=2

(j − 1)2(k − 1)2

m3n3
c2j,k (4.2)

for m ≥ 2 we have,

1

m

∫
|sm,1(x)− σm,1(x)|2dµ(x) =

∞∑
j=2

(j − 1)2

m3
c2j,1;

and for n ≥ 2 we have,

1

n

∫
|s1,n(x)− σ1,n(x)|2dµ(x) =

∞∑
k=2

(k − 1)2

n3
c21,k

Hence it follows that

∞∑
m=1

∞∑
n=1

1

mn

∫
|sm,n(x)− σm,n(x)|2dµ(x)

=
∞∑
j=2

∞∑
k=2

(j − 1)2(k − 1)2c2j,k

∞∑
m=j

∞∑
j=k

1

m3n3

+

∞∑
j=2

(j − 1)2c2j,1

∞∑
m=j

1

m3
+

∞∑
k=2

(k − 1)2c21,k

∞∑
n=k

1

n3
. (4.3)

where we interchanged the order of summations with respect to j and m, as well as
with respect to k and n on the right-hand side in (4.2). For j ≥ 2, we have,

∞∑
m=j

1

m3
≤

∞∫
j−1

dt

t3
=

1

2(j − 1)2
.

and for k ≥ 2, we also have an analogous inequality. Taking into account these
inequalities, the right-hand side in (4.3) does not exceed

1

4

∞∑
j=2

∞∑
k=2

c2j,k ≤ ∞.
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thanks to (2.2). To sum up, we have proved that

∞∑
m=1

∞∑
n=1

1

mn

∫
|sm,n(x)− σm,n(x)|2dµ(x) ≤ ∞. (4.4)

By the monotone convergence theorem of the Lebesgue integral, it follows from (4.4)
that

∞∑
m=1

∞∑
n=1

1

mn
|sm,n(x)− σm,n(x)|2 ≤ ∞, a.e. (4.5)

that is, the double series in (4.5) converges absolutely. Consequently, it converges
regularly for almost every x ∈ X. Furthermore, the conditions in(3.1) are clearly
satisfied by λj,k := jk. Thus, condition (3.2) is satisfied and we may apply the
extension of the Kronecker lemma for the double series in (4.5) (cf. (3.3)) yielding
(4.1) to be proved.

Our second new result gives answer to the problem of the strong cesaro |C, 1, 1|
summability of wavelet series.

Theorem 2. If the double orthogonal series (2.1) is such that condition (2.8) is
satisfied, then it is strong Ces‘aro |C, 1, 1| summable a.e., that is,

1

MN

M∑
m=1

N∑
n=1

|sm,n(x)− g(x)|2 → 0 a.e. asM,N →∞. (4.6)

where g(x) is the sum of (2.1) in the L2-norm (see in (2.4)).

Proof. We start with the elementary inequality

|sm,n(x)− g(x)|2 ≤ 2(|sm,n(x)− σm,n(x)|2 + |σm,n(x)− g(x)|2).

hence it follows that for M,N ≥ 2 we have

1

MN

M∑
m=1

N∑
n=1

|sm,n(x)− g(x)|2

≤ 2

MN

M∑
m=1

N∑
n=1

|sm,n(x)− σm,n(x)|2 +
2

MN

M∑
m=1

N∑
n=1

|σm,n(x)− g(x)|2. (4.7)

By Theorem 1, the first term on the right-hand side of (4.7) converges to 0 a.e. as
max{M,N} → ∞.As to the second term there, due to condition(2.8), we may apply
the extended MenshovKaczmarcz theorem for double orthogonal series to obtain
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(2.9), hence we conclude that the second term on the right-hand side of (4.7) also
converges to 0 a.e. as M,N →∞. The proof of (4.6) is complete.

We note that the cesaro (C, 1, 1) summability of the wavelet series (2.1) follows
from its strong cesaro |C, 1, 1| summability. Indeed, by the definition (2.7) and the
familiar Cauchy inequality, we may estimate as follows:

|g(x)| ≤ 1

MN

M∑
m=1

N∑
n=1

1.|sm,n(x)− g(x)|

≤ 1

MN
(

M∑
m=1

N∑
n=1

12)
1
2 (

1

MN

M∑
m=1

N∑
n=1

|sm,n(x)− g(x)|2)
1
2

= (
1

MN

M∑
m=1

N∑
n=1

|sm,n(x)− g(x)|2)
1
2

Now, the implication (3.2) =⇒ (2.9) is clear.
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