COEFFICIENT BOUNDS FOR ω-QUASI-CONVEX FUNCTIONS DEFINED ON THE UNIT DISC

A. Jenifer, C. Selvaraj

Abstract. Main aim of this paper is to introduce a generalized class of ω -quasi-convex functions $f(z)$ defined on the unit disk $E:=\{z /|z|<1\}$ normalized by the conditions $f(0)=0=f^{\prime}(0)-1$ and we obtain several sharp bounds for $f(z)$, its inverse $f^{-1}(w), \log \left(\frac{f(z)}{z}\right)$ and the Second Hankel determinant $\left|a_{2} a_{4}-a_{3}^{2}\right|$.

2010 Mathematics Subject Classification: Primary 30c45, secondary 30c50.
Keywords: quasi-convex, gamma starlike, close-to-convex, ω-quasi-convex.

1. Introduction And Basic Results

Denote by S the family of regular and univalent functions in the unit disk E with the series expansion

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

and normalized by the conditions $f(0)=0=f^{\prime}(0)-1$. Let us designate by C and K the well-known sub-classes of convex and close-to-convex functions respectively. In the year 1980, K.I.Noor and D.K.Thomas introduced the concept of quasi convexity and investigated various properties by defining a new subclass of quasi-convex functions $\left(C^{*}\right)$ in [9]. Moreover, $f(z)$ is quasi-convex if and only if $z f^{\prime}(z)$ is close-to-convex. It was further generalized to α-quasi-convex functions by K.I.Noor and F.M.Al-oboudi in [8].

For $\alpha \geq 0$, if the real part of arithmetic mean of $\frac{f^{\prime}(z)}{g^{\prime}(z)}$ and $\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}$ is positive, where $z \in E$ and $g(z) \in C$, then $f(z)$ is said to be α-quasi-convex. In the year 2018, D.K.Thomas in [12] introduced and investigated the subclass M^{γ} of γ-starlike functions by considering the geometric mean of the quantities $\frac{z f^{\prime}(z)}{f(z)}$ and $\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}$ for functions $f(z)$ of the form (1). Motivated by their work, we in this paper, define a
subclass Q^{ω} of ω-quasi-convex functions. A function $f(z)$ of the form (1) is said to be in Q^{ω} if there is a convex function $g(z)$ in C such that

$$
\begin{equation*}
\left.\operatorname{Re}\left[\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right\}^{\omega}\left\{\frac{f^{\prime}(z)}{g^{\prime}(z)}\right\}^{1-\omega}\right\}\right] \geq 0 \tag{2}
\end{equation*}
$$

for $z \in E$.
We observe that when $\omega=1, Q^{\omega}=C^{*}$, the class of quasi-convex functions. When $\omega=1$ and $f(z)=g(z), Q^{\omega}$ reduces to the familiar class of convex functions. Thus every ω-quasi-convex function is convex and hence univalent in E. If $\omega=0, Q^{\omega}$ becomes K, the class of close-to-convex functions studied by Kaplan [4]. For $0 \leq \omega \leq 1$, the transition from close-to-convexity to quasi-convexity is smooth.

2. PRELIMINARIES

We need the following lemmas which will be used as tools to prove our results. Denote by \mathbb{P} the class of Caratheodory functions $p(z)$ analytic in E for which $\operatorname{Re}(p(z))>0, p(0)=1$ and

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} . \tag{3}
\end{equation*}
$$

Lemma 1. [2] If $p(z) \in \mathbb{P}$, is of the form (3), then

$$
\begin{equation*}
2 p_{2}=p_{1}^{2}+y\left(4-p_{1}^{2}\right) \tag{4}
\end{equation*}
$$

for some $y,|y| \leq 1$ and

$$
\begin{equation*}
4 p_{3}=p_{1}^{3}+2\left(4-p_{1}^{2}\right) p_{1} y-p_{1}\left(4-p_{1}^{2}\right) y^{2}+2\left(4-p_{1}^{2}\right)\left(1-|y|^{2}\right) \xi \tag{5}
\end{equation*}
$$

for some $\xi,|\xi| \leq 1$.
Lemma 2. [1] If $p(z) \in \mathbb{P}$, then the sharp estimate

$$
\begin{equation*}
\left|p_{n}\right| \leq 2 \tag{6}
\end{equation*}
$$

holds for $n=1,2, \ldots$.
Lemma 3. [3] If $p(z) \in \mathbb{P}$, then the following estimate holds for
$n, k \in\{1,2, \ldots\}$

$$
\begin{equation*}
\left|p_{n}-\mu_{k} p_{n-k}\right| \leq \max \{2,2|2 \mu-1|\} . \tag{7}
\end{equation*}
$$

Lemma 4. [6] If $0 \leq \beta \leq 1$ and $\beta(2 \beta-1) \leq \alpha \leq \beta$ then

$$
\begin{equation*}
\left|p_{3}-2 \beta p_{1} p_{2}+\alpha p_{1}^{3}\right| \leq 2 . \tag{8}
\end{equation*}
$$

3. THE COEFFICIENTS OF $f(z)$

In this section we state and prove a theorem that yields sharp coefficient bounds for functions belonging to Q^{ω} and in the sequel we obtain the results proved in [4] and [9].

Theorem 5. Let $f(z) \in Q^{\omega}$ for $\omega \geq 0$ and given by (1). Then

$$
\left.\begin{array}{l}
\left|a_{2}\right| \leq \frac{2}{(1+\omega)} \\
\left|a_{3}\right| \leq\left\{\begin{array}{ll}
\frac{\frac{\left(\omega^{2}+26 \omega+9\right)}{3(1+\omega)^{2}(1+2 \omega)}}{\frac{\left(\omega^{2}+8 \omega+3\right)}{(1+\omega)^{2}(1+2 \omega)}}, \omega \leq 1
\end{array}, \omega \geq 1\right.
\end{array}\right] \begin{array}{ll}
\frac{2 \omega^{4}+37 \omega^{3}+160 \omega^{2}+77 \omega+12}{3(1+\omega)^{3}(1+2 \omega)(1+3 \omega)} & , 0 \leq \omega \leq 0.2 \\
\left|a_{4}\right| \leq \begin{cases}\frac{2\left(\omega^{4}+11 \omega^{3}+89 \omega^{2}+37 \omega+6\right)}{3(1+\omega)^{3}(1+2 \omega)(1+3 \omega)} & , 0.2 \leq \omega \leq 1 \\
\frac{4\left(\omega^{4}+11 \omega^{3}+38 \omega^{2}+19 \omega+3\right)}{3(1+\omega)^{3}(1+2 \omega)(1+3 \omega)} & , \omega \geq 1\end{cases}
\end{array}
$$

Proof. Let $\mathrm{g}(\mathrm{z})$ be a convex function, with the Taylor series expansion

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

From (2), we have

$$
\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right\}^{\omega}\left\{\frac{f^{\prime}(z)}{g^{\prime}(z)}\right\}^{1-\omega}=p(z)
$$

where $p(z) \in \mathbb{P}$. Then equating the coefficients we have

$$
\begin{aligned}
a_{2}= & \frac{p_{1}+2 b_{2}}{2(1+\omega)} \\
a_{3}= & \frac{p_{2}}{3(1+2 \omega)}+\frac{2(1+3 \omega) b_{2} p_{1}}{3(1+\omega)^{2}(1+2 \omega)}+\frac{b_{3}}{(1+2 \omega)}-\frac{\omega(\omega-1) p_{1}^{2}}{6(1+\omega)^{2}(1+2 \omega)} \\
& -\frac{2 \omega(\omega-1) b_{2}^{2}}{3(1+\omega)^{2}(1+2 \omega)} \\
a_{4}= & \frac{1}{4(1+3 \omega)}\left(p_{3}+\frac{2(1+5 \omega) b_{2} p_{2}}{(1+\omega)(1+2 \omega)}+\frac{3(1+5 \omega) b_{3} p_{1}}{(1+\omega)(1+2 \omega)}-\frac{12 \omega(\omega-1) b_{2} b_{3}}{(1+\omega)(1+2 \omega)}\right. \\
& +\frac{2 \omega(\omega-1)(1-5 \omega) b_{2}^{2} p_{1}}{(1+\omega)^{3}(1+2 \omega)}-\frac{2 \omega(\omega-1) p_{1} p_{2}}{(1+\omega)(1+2 \omega)}+\frac{\omega(\omega-1)(1-5 \omega) b_{2} p_{1}^{2}}{(1+\omega)^{3}(1+2 \omega)} \\
& \left.+\frac{\omega(\omega-1)\left(4 \omega^{2}+3 \omega+5\right) p_{1}^{3}}{6(1+\omega)^{3}(1+2 \omega)}+\frac{4 \omega(\omega-1)\left(4 \omega^{2}+3 \omega+5\right) b_{2}^{3}}{3(1+\omega)^{3}(1+2 \omega)}+4 b_{4}\right)
\end{aligned}
$$

Since $g(z) \in \mathrm{C}$,

$$
\frac{\left(z g^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}=c(z)
$$

where $c(z) \in \mathbb{P}$ and let $c(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$. Then $b_{2}=\frac{c_{1}}{2}, b_{3}=\frac{c_{2}}{6}+\frac{c_{1}^{2}}{6}$ and $b_{4}=\frac{c_{3}}{12}+\frac{c_{1} c_{2}}{8}+\frac{c_{1}^{3}}{24}$. Thus we have,

$$
\begin{aligned}
a_{2}= & \frac{p_{1}+c_{1}}{2(1+\omega)} \\
a_{3}= & \frac{1}{3(1+2 \omega)}\left[p_{2}-\frac{\omega(\omega-1) p_{1}^{2}}{2(1+\omega)^{2}}+\frac{(1+3 \omega) p_{1} c_{1}}{(1+\omega)^{2}}+\frac{1}{2}\left(c_{2}+\frac{(1+3 \omega) c_{1}^{2}}{(1+\omega)^{2}}\right)\right] \\
a_{4}= & \frac{1}{4(1+3 \omega)}\left[p_{3}-\frac{2 \omega(\omega-1) p_{1} p_{2}}{(1+\omega)(1+2 \omega)}+\frac{\omega\left(4 \omega^{3}-\omega^{2}+2 \omega-5\right) p_{1}^{3}}{6(1+\omega)^{3}(1+2 \omega)}\right. \\
& +\frac{(1+5 \omega)}{(1+\omega)(1+2 \omega)}\left\{c_{1}\left(p_{2}-\frac{\omega\left(5 \omega^{2}-6 \omega+1\right) p_{1}^{2}}{2(1+\omega)^{2}(1+5 \omega)}\right)+\frac{p_{1}}{2}\left(c_{2}\right.\right. \\
& \left.\left.\left.+\frac{\left(17 \omega^{2}+6 \omega+1\right) c_{1}^{2}}{(1+\omega)^{2}(1+5 \omega)}\right)\right\}+\frac{1}{3}\left(c_{3}+\frac{3(1+5 \omega) c_{1} c_{2}}{2(1+\omega)(1+2 \omega)}+\frac{\omega\left(17 \omega^{2}+6 \omega+1\right) c_{1}^{3}}{2(1+\omega)^{3}(1+2 \omega)}\right)\right]
\end{aligned}
$$

By the inequality (6) the first inequality follows. Since the coefficients of p_{1}^{2} is positive when $\omega \leq 1$, the first inequality of $\left|a_{3}\right|$ follows from Lemma 2 .
Now when $\omega \geq 1$, consider

$$
a_{3}=\frac{1}{3(1+2 \omega)}\left[p_{2}-\frac{\mu p_{1}^{2}}{2}+\frac{(1+3 \omega) p_{1} c_{1}}{(1+\omega)^{2}}+\frac{1}{2}\left(c_{2}+\frac{(1+3 \omega) c_{1}^{2}}{(1+\omega)^{2}}\right)\right]
$$

where $\mu=\frac{\omega(\omega-1)}{(1+\omega)^{2}}$. Now using Lemma 3, the second inequality for $\left|a_{3}\right|$ follows.
In deriving the inequality for a_{4}, note that the coefficients of p_{1}^{3} is positive and p_{1}^{2} and $p_{1} p_{2}$ are negative, when $\omega \geq 1$.

$$
\begin{aligned}
a_{4}= & \frac{1}{4(1+3 \omega)}\left[\left(p_{3}-2 \beta p_{1} p_{2}+\alpha p_{1}^{3}\right)+\frac{1+5 \omega}{(1+\omega)(1+2 \omega)} c_{1}\left(p_{2}-\frac{\mu p_{1}^{2}}{2}\right)\right. \\
& +\frac{(1+5 \omega) p_{1}}{2(1+\omega)(1+2 \omega)}\left(c_{2}+\frac{\left(17 \omega^{2}+6 \omega+1\right) c_{1}^{2}}{(1+\omega)^{2}(1+5 \omega)}\right) \\
& \left.+\frac{1}{3}\left(c_{3}+\frac{3(1+5 \omega) c_{1} c_{2}}{2(1+\omega)(1+2 \omega)}+\frac{\left(17 \omega^{2}+6 \omega+1\right) c_{1}^{3}}{2(1+\omega)^{3}(1+2 \omega)}\right)\right]
\end{aligned}
$$

where $\beta=\frac{\omega(\omega-1)}{(1+\omega)(1+2 \omega)}, \quad \alpha=\frac{\omega\left(4 \omega^{3}-\omega^{2}+2 \omega-5\right)}{6(1+\omega)^{3}(1+2 \omega)} \quad$ and $\mu=\frac{\omega\left(5 \omega^{2}-6 \omega+1\right)}{(1+\omega)^{2}(1+5 \omega)}$.
Here $\alpha-\beta \leq 0$ and $2 \beta(\beta-1) \leq \alpha \leq \beta$, for all $\omega \geq 1$.
$\Rightarrow\left|p_{3}-2 \beta p_{1} p_{2}+p_{1}^{3}\right| \leq 2$, for all $\omega \geq 1$. Upon using Lemma 2, 3 and 4 third
inequality follows. To estimate $\left|a_{4}\right|$, corresponding to $\omega \in[.2,1]$, we first express p_{2} and p_{3} in terms of p_{1} using Lemma 1. Then normalize p_{1} so that $p_{1}=p$ and $0 \leq p \leq 2$. After a simple calculation and using Lemma 3 we arrive at

$$
\begin{aligned}
\left|a_{4}\right| \leq & \frac{\left(3+17 \omega+43 \omega^{2}+7 \omega^{3}+2 \omega^{4}\right) p^{3}}{48(1+\omega)^{3}(1+2 \omega)(1+3 \omega)}+\frac{(1+5 \omega) p|y|\left(4-p^{2}\right)}{8(1+\omega)(1+2 \omega)(1+3 \omega)} \\
& +\frac{\left(4-p^{2}\right)\left(1-|y|^{2}\right)}{8(1+3 \omega)}+\frac{\left(2 \omega^{4}+37 \omega^{3}+313 \omega^{2}+131 \omega+21\right)}{6(1+\omega)^{3}(1+2 \omega)(1+3 \omega)}-\frac{p\left(4-p^{2}\right)|y|^{2}}{16(1+3 \omega)}
\end{aligned}
$$

Let

$$
\begin{aligned}
\phi(p,|y|)= & \frac{\left(3+17 \omega+43 \omega^{2}+7 \omega^{3}+2 \omega^{4}\right) p^{3}}{48(1+\omega)^{3}(1+2 \omega)(1+3 \omega)}+\frac{\left(4-p^{2}\right)\left(1-|y|^{2}\right)}{8(1+3 \omega)}-\frac{p\left(4-p^{2}\right)|y|^{2}}{16(1+3 \omega)} \\
& +\frac{(1+5 \omega) p|y|\left(4-p^{2}\right)}{8(1+\omega)(1+2 \omega)(1+3 \omega)}
\end{aligned}
$$

The maximum and a saddle point of $\phi(p,|y|)$ are $p=|y|=0$ and $p=2$, $|y|=\frac{(1+5 \omega)}{2(1+\omega)(1+2 \omega)}$ respectively. When $p=|y|=0$ we led to the second inequality for $\left|a_{4}\right|$. It is remaining to prove the inequality in $0 \leq \omega \leq .2$. The coefficients of p_{1}^{2} and p_{1}^{3} are negative when $0 \leq \omega \leq .2$. By using the same procedure used above, we arrive at,

$$
\begin{aligned}
a_{4} \leq & \frac{\left(2 \omega^{4}+7 \omega^{3}+43 \omega^{2}+17 \omega+3\right)}{48(1+\omega)^{3}(1+2 \omega)(1+3 \omega)} p^{3}+\frac{(1+5 \omega) p|y|\left(4-p^{2}\right)}{8(1+\omega)(1+2 \omega)(1+3 \omega)} \\
& +\frac{\left(4-p^{2}\right)\left(1-|y|^{2}\right)}{8(1+3 \omega)}+\frac{4 \omega^{4}+134 \omega^{3}+554 \omega^{2}+274 \omega+42}{12(1+\omega)^{3}(1+2 \omega)(1+3 \omega)}-\frac{p\left(4-p^{2}\right)|y|^{2}}{16(1+3 \omega)}
\end{aligned}
$$

Let

$$
\begin{aligned}
\phi(p,|y|)= & \frac{\left(2 \omega^{4}+7 \omega^{3}+43 \omega^{2}+17 \omega+3\right)}{48(1+\omega)^{3}(1+2 \omega)(1+3 \omega)} p^{3}+\frac{\left(4-p^{2}\right)\left(1-|y|^{2}\right)}{8(1+3 \omega)}-\frac{p\left(4-p^{2}\right)|y|^{2}}{16(1+3 \omega)} \\
& +\frac{(1+5 \omega) p|y|\left(4-p^{2}\right)}{8(1+\omega)(1+2 \omega)(1+3 \omega)}
\end{aligned}
$$

Differentiating $\phi(p,|y|)$ with respect to p and $|y|$ we get the maximum point at $p=|y|=0$ and the only saddle point is $p=2$ and $|y|=\frac{(1+5 \omega)}{2(1+\omega)(1+2 \omega)}$. We arrive at third inequality when $p=|y|=0$. Now by considering the boundary points in $[0,2] \times[0,1]$, again we obtain the third inequality.
The first inequality is sharp for the function $p(z)=\frac{1+z}{1-z}$ with respect to the convex function $g(z)=\frac{z}{1-z}$ and the second inequality is sharp for the function $p(z)=\frac{1+z^{2}}{1-z^{2}}$ with respect to the convex function $g(z)=\frac{z}{1-z}$.

Remark 1. At this junction we remark that when $f(z)=g(z)$ and $\omega=1, Q^{\omega}$ reduces to the well known class of convex functions and our result reduces to

$$
\left|a_{n}\right| \leq 1 .
$$

When $\omega=0, Q^{\omega}$ reduces to C^{*} and our result reduces to

$$
\left|a_{n}\right| \leq n,
$$

the well known coefficient conjecture for class of close-to-convex functions. When $\omega=1, Q^{\omega}$ reduces to the well known class of quasi-convex functions and our result reduces to

$$
\left|a_{n}\right| \leq 1 .
$$

4. THE COEFFICIENTS OF $\log \left\{\frac{f(z)}{z}\right\}$

For $f(z) \in S$, the logarthmic coefficients are derived from

$$
\begin{equation*}
\frac{1}{2} \log \left(\frac{f(z)}{z}\right)=\sum_{n=1}^{\infty} \delta_{n} z^{n} \tag{9}
\end{equation*}
$$

These coefficients are very important in the study of Univalent(Schlict) functions. For $f(z) \in Q^{\omega}$, in the following theorem, we obtain similar results and these results are sharp for $\left|\delta_{1}\right|$.
Theorem 6. Let $f \in Q^{\omega}$ for $\omega \geq 0$ and the coefficients of $\log \frac{f(z)}{z}$ is given by (9). Then

$$
\begin{aligned}
\left|\delta_{1}\right| & \leq \frac{1}{(1+\omega)} \\
\left|\delta_{2}\right| & \leq \frac{\left(2 \omega^{2}+10 \omega+3\right)}{4(1+\omega)^{2}(1+2 \omega)} \\
\left|\delta_{3}\right| & \leq \begin{cases}\frac{\omega^{4}+8 \omega^{3}+14 \omega^{2}+8 \omega+1}{2(1+\omega)^{3}(1+2 \omega)(1+3 \omega)} & , \text { if } \omega<\frac{1}{5} \\
\frac{2\left(\omega^{4}+\omega^{3}+19 \omega^{2}+7 \omega+1\right)}{3(1+\omega)^{3}(1+2 \omega)(1+3 \omega)} & , \text { if } \omega \geq \frac{1}{5}\end{cases}
\end{aligned}
$$

Proof. Differentiating both sides of (9) and equating the coefficients we get,

$$
\begin{aligned}
\delta_{1} & =\frac{1}{2} a_{2} \\
\delta_{2} & =\frac{1}{2}\left[a_{3}-\frac{a_{2}^{2}}{2}\right] \\
\delta_{3} & =\frac{1}{2}\left[a_{4}-a_{2} a_{3}+\frac{a_{2}^{3}}{3}\right]
\end{aligned}
$$

The inequality for δ_{1} is trivial from Theorem 5 . Now we have,

$$
\begin{aligned}
\delta_{2}= & \frac{p_{2}}{6(1+2 \omega)}-\frac{4 \omega^{2}+2 \omega+3}{48(1+\omega)^{2}(1+2 \omega)} p_{1}^{2}+\frac{1+6 \omega}{48(1+\omega)^{2}(1+2 \omega)} c_{1}^{2} \\
& +\frac{c_{2}}{12(1+2 \omega)}+\frac{1+6 \omega}{24(1+\omega)^{2}(1+2 \omega)} p_{1} c_{1}
\end{aligned}
$$

The coefficients of p_{1}^{2} is negative for all $\omega \geq 0$. Consider

$$
\delta_{2}=\frac{1}{6(1+2 \omega)}\left[p_{2}-\frac{\mu}{2} p_{1}^{2}+\frac{c_{2}}{2}+\frac{1+6 \omega}{8(1+\omega)^{2}} c_{1}^{2}+\frac{1+6 \omega}{4(1+\omega)^{2}} p_{1} c_{1}\right]
$$

where $\mu=\frac{4 \omega^{2}+2 \omega+3}{4(1+\omega)^{2}}$. By using Lemma (3) we obtain the second inequality.

$$
\begin{aligned}
\delta_{3}= & \frac{1}{8(1+3 \omega)}\left(p_{3}-\frac{2\left(1+3 \omega^{2}\right) p_{1} p_{2}}{3(1+\omega)(1+2 \omega)}+\frac{\left(4 \omega^{4}+5 \omega^{3}+4 \omega^{2}-2 \omega+1\right)}{6(1+\omega)^{3}(1+2 \omega)} p_{1}^{3}\right) \\
& +\frac{(1+9 \omega) c_{1}}{24(1+\omega)(1+2 \omega)(1+3 \omega)}\left(p_{2}-\frac{\left(9 \omega^{3}+4 \omega^{2}+14 \omega+1\right)}{2(1+\omega)^{2}(1+9 \omega)} p_{1}^{2}\right)+\frac{c_{3}}{24(1+3 \omega)} \\
& +\frac{(1+9 \omega) c_{1} c_{2}}{48(1+\omega)(1+2 \omega)(1+3 \omega)}+\frac{\omega(5 \omega-1) c_{1}^{3}}{48(1+\omega)^{3}(1+2 \omega)(1+3 \omega)} \\
& +\frac{(1+9 \omega) p_{1}}{48(1+\omega)(1+2 \omega)(1+3 \omega)}\left(c_{2}-\frac{3 \omega(1-5 \omega)}{(1+\omega)^{2}(1+9 \omega)} c_{1}^{2}\right)
\end{aligned}
$$

The coefficients of $p_{1} p_{2}$ and p_{1}^{2} are always negative. The coefficient of p_{1}^{3} is always positive. When $\omega \geq \frac{1}{5}$ the coefficients of c_{1}^{2} and c_{1}^{3} are positive. We have

$$
\begin{aligned}
\delta_{3}= & \frac{1}{8(1+3 \omega)}\left[p_{3}-2 \beta p_{1} p_{2}+\alpha p_{1}^{3}\right]+\frac{c_{3}}{24(1+3 \omega)}+\frac{(1+9 \omega) c_{1} c_{2}}{48(1+\omega)(1+2 \omega)(1+3 \omega)} \\
& +\frac{\omega(5 \omega-1) c_{1}^{3}}{48(1+\omega)^{3}(1+2 \omega)(1+3 \omega)}+\frac{(1+9 \omega)}{24(1+\omega)(1+2 \omega)(1+3 \omega)} c_{1}\left[p_{2}-\frac{\mu}{2} p_{1}^{2}\right] \\
& +\frac{(1+9 \omega) p_{1} c_{2}}{48(1+\omega)(1+2 \omega)(1+3 \omega)}+\frac{\omega(5 \omega-1) c_{1}^{2} p_{1}}{16(1+\omega)^{3}(1+2 \omega)(1+3 \omega)}
\end{aligned}
$$

where $\beta=\frac{1+3 \omega^{2}}{3(1+\omega)(1+2 \omega)}, \alpha=\frac{4 \omega^{4}+5 \omega^{3}+4 \omega^{2}-2 \omega+1}{6(1+\omega)^{3}(1+2 \omega)}$ and $\mu=\frac{9 \omega^{3}+4 \omega^{2}+14 \omega+1}{(1+\omega)^{2}(1+9 \omega)}$.
Note that $0 \leq \beta \leq 1$ and $\beta(2 \beta-1) \leq \alpha \leq \beta$, when $\omega \geq \frac{1}{5}$ and now applying Lemma 3 and 4 we arrive at the second inequality for $\left|\delta_{3}\right|$. When $\omega \leq \frac{1}{5}$, the coefficients of
c_{1}^{3} and c_{1}^{2} are negative. So let

$$
\begin{aligned}
\delta_{3}= & \frac{1}{8(1+3 \omega)}\left[p_{3}-2 \beta p_{1} p_{2}+\alpha p_{1}^{3}\right]+\frac{(1+9 \omega)}{24(1+\omega)(1+2 \omega)(1+3 \omega)} c_{1}\left[p_{2}-\frac{\mu}{2} p_{1}^{2}\right] \\
& +\frac{(1+9 \omega)}{48(1+\omega)(1+2 \omega)(1+3 \omega)} p_{1}\left[c_{2}-\frac{\lambda}{2} c_{1}^{2}\right]+\frac{(1+9 \omega) c_{1} c_{2}}{48(1+\omega)(1+2 \omega)(1+3 \omega)} \\
& +\frac{\omega(5 \omega-1) c_{1}^{3}}{48(1+\omega)^{3}(1+2 \omega)(1+3 \omega)}+\frac{c_{3}}{24(1+3 \omega)}
\end{aligned}
$$

where $\beta=\frac{1+3 \omega^{2}}{3(1+\omega)(1+2 \omega)}, \alpha=\frac{4 \omega^{4}+5 \omega^{3}+4 \omega^{2}-2 \omega+1}{6(1+\omega)^{3}(1+2 \omega)}, \mu=\frac{9 \omega^{3}+4 \omega^{2}+14 \omega+1}{(1+\omega)^{2}(1+9 \omega)}$ and $\lambda=\frac{6 \omega(1-5 \omega)}{(1+\omega)^{2}(1+9 \omega)}$. Here $0 \leq \beta \leq 1$ and $\beta(2 \beta-1) \leq \alpha \leq \beta$, when $\omega<\frac{1}{5}$ and now we use the same normalization procedure used in finding a_{4} to obtain the inequality,

$$
\begin{aligned}
\left|\delta_{3}\right| \leq & \frac{\omega^{2}+6 \omega+1}{2(1+\omega)(1+2 \omega)(1+3 \omega)}+\frac{\left(\omega^{4}+8 \omega^{3}+19 \omega^{2}+7 \omega+1\right)}{48(1+\omega)^{3}(1+2 \omega)(1+3 \omega)} c^{3} \\
& +\frac{\left(4 \omega^{2}+6 \omega+1\right)\left(4-c^{2}\right) c|y|}{96(1+\omega)(1+2 \omega)(1+3 \omega)}-\frac{\left(4-c^{2}\right) c|y|^{2}}{96(1+3 \omega)}+\frac{\left(4-c^{2}\right)\left(1-|y|^{2}\right)}{48(1+3 \omega)} \\
:= & \phi(c,|y|)
\end{aligned}
$$

Differentiating $\phi(c,|y|)$ with respect to c and $|y|$, using elementary calculus it is easily seen that the maximum point is $c=0=|y|$ and the saddle point is $c=2$ and $|y|=\frac{16 \omega^{2}+33 \omega+9}{16\left(2 \omega^{2}+3 \omega+1\right)}$. We obtain maximum for the first inequality of $\left|\delta_{3}\right|$ at the end points of $[0,2] \times[0,1]$.
The first inequality is sharp for the function $p(z)=\frac{1+z}{1-z}$ with respect to the convex function $g(z)=\frac{z}{1-z}$.

5. THE COEFFICIENTS OF INVERSE FUNCTION

$Q^{\omega} \subset S$, inverse function f^{-1} exists and defined in some disk $|w|<r_{0}(f)$. Let

$$
f^{-1}(w)=w+A_{2} w^{2}+A_{3} w^{3}+\ldots
$$

then $f\left(f^{-1}(w)\right)=w$. Then equating the coefficients we have,

$$
\begin{aligned}
& A_{2}=-a_{2} \\
& A_{3}=2 a_{2}^{2}-a_{3} \\
& A_{4}=-5 a_{2}^{3}+5 a_{2} a_{3}-a_{4}
\end{aligned}
$$

Theorem 7. Let $f(z) \in Q^{\omega}$ for $\omega \geq 0$ and $f^{-1}(w)$ be the inverse of $f(z)$. Then

$$
\begin{gathered}
\left|A_{2}\right| \leq \frac{2}{(1+\omega)} \\
\left|A_{3}\right| \leq \frac{3 \omega^{2}+30 \omega+19}{3(1+\omega)^{2}(1+2 \omega)} \\
\left|A_{4}\right| \leq \begin{cases}\frac{\left(55+197 \omega+171 \omega^{2}+39 \omega^{3}+2 \omega^{4}\right)}{3(1+\omega)^{3}(1+2 \omega)(1+3 \omega)} & , 0 \leq \omega \leq \omega_{0} \text { and } \omega_{1} \leq \omega \leq \omega_{2} \\
\frac{\left(107+391 \omega+36 \omega^{2}+5 \omega^{3}+3 \omega^{4}\right)}{6(1+\omega)^{3}(1+2 \omega)(1+33)} & , \omega_{0} \leq \omega<\omega_{1} \\
\frac{\left(50+181 \omega+163 \omega^{2}+46 \omega^{3}+4 \omega^{4}\right)}{3(1+\omega)^{3}(1+2 \omega)(1+3 \omega)} & , \omega_{2} \leq \omega\end{cases}
\end{gathered}
$$

where $\omega_{0}=0.5855, \omega_{1}=1$ and $\omega_{2}=1.769$.
Proof. By Theorem 5 the inequality for $\left|A_{2}\right|$ is trivial. We have

$$
\begin{aligned}
A_{3}= & -\frac{p_{2}}{3(1+2 \omega)}+\frac{\left(3+5 \omega+\omega^{2}\right)}{6(1+\omega)^{2}(1+2 \omega)} p_{1}^{2}+\frac{(2+3 \omega)}{3(1+\omega)^{2}(1+2 \omega)} c_{1} p_{1} \\
& -\frac{c_{2}}{6(1+\omega)}+\frac{(2+3 \omega) c_{1}^{2}}{6(1+\omega)^{2}(1+2 \omega)} \\
= & \frac{1}{3(1+2 \omega)}\left[-\left\{\left(p_{2}-\frac{\mu}{2} p_{1}^{2}\right)+\frac{1}{2}\left(c_{2}-\frac{\lambda}{2} c_{1}^{2}\right)\right\}+\frac{(2+3 \omega)}{(1+\omega)^{2}} c_{1} p_{1}\right]
\end{aligned}
$$

where $\mu=\frac{\left(3+5 \omega+\omega^{2}\right)}{(1+\omega)^{2}}$ and $\lambda=\frac{2(2+3 \omega)}{(1+\omega)^{2}}$. Using Lemma 4, we have

$$
\max \{2,2|2 \mu-1|\}=\frac{2\left(\omega^{2}+8 \omega+5\right)}{(1+\omega)^{2}}
$$

and

$$
\max \{2,2|2 \lambda-1|\}=2
$$

Now using lemma 3 we obtain the inequality for $\left|A_{3}\right|$.

$$
\begin{aligned}
A_{4}= & -\frac{1}{4(1+3 \omega)}\left[p_{3}-2 \beta_{1} p_{1} p_{2}+\alpha_{1} p_{1}^{3}\right]+\frac{(7+15 \omega) c_{1}}{12(1+\omega)(1+2 \omega)(1+3 \omega)}\left[p_{2}-\frac{\mu}{2} p_{1}^{2}\right] \\
& -\frac{1}{12(1+3 \omega)}\left[c_{3}-2 \beta_{2} c_{1} c_{2}+\alpha_{2} c_{1}^{3}\right]+\frac{(7+15 \omega) p_{1}}{24(1+\omega)(1+2 \omega)(1+3 \omega)}\left[c_{2}-\frac{\lambda}{2} c_{1}^{2}\right]
\end{aligned}
$$

where $\beta_{1}=\frac{3 \omega^{2}+12 \omega+5}{3(1+\omega)(1+2 \omega)}, \quad \alpha_{1}=\frac{15+60 \omega+72 \omega^{2}+29 \omega^{3}+4 \omega^{4}}{6(1+\omega)^{3}(1+2 \omega)}, \quad \mu=\frac{25+92 \omega+88 \omega^{2}+15 \omega^{3}}{(1+\omega)^{2}(7+15 \omega)}$, $\lambda=\frac{2\left(6+21 \omega^{1}+7 \omega^{2}\right)}{(1+\omega)^{2}(7+15 \omega)}, \quad \beta_{2}=\frac{7+15 \omega}{4(1+\omega)(1+2 \omega)}$ and $\alpha_{2}=\frac{5+16 \omega+6 \omega^{2}+17 \omega^{3}}{2(1+\omega)^{3}(1+2 \omega)}$.

Here we see that $0 \leq \beta_{1} \leq 1$ and $\beta_{1}\left(2 \beta_{1}-1\right) \leq \alpha_{1} \leq \beta_{1}$ for $\omega \geq \omega_{2}$ where $\omega_{2}=1.769 \ldots$, is the only positive root of $5+16 \omega+8 \omega^{2}-7 \omega^{3}-2 \omega^{4}$. Whenever $\omega \leq \omega_{2}$, we have $\alpha_{1}-\beta_{1} \geq 0$. There we use Lemma 4 with $\alpha_{1}=\beta_{1}$. Also $0 \leq \beta_{2} \leq 1$ and $\beta_{2}\left(2 \beta_{2}-1\right) \leq \alpha_{2} \leq \beta_{2}$ for $\omega_{0} \leq \omega \leq \omega_{1}$ where $\omega_{0}=0.5855$ and $\omega_{1}=1$ are the positive roots of $3+3 \omega-25 \omega^{2}+19 \omega^{3}$. Similarly whenever $\omega \notin[0.5855,1]$, we have $\alpha_{2}-\beta_{2} \geq 0$. There we use Lemma 4 with $\alpha_{2}=\beta_{2}$. Using these along with Lemma 2, we arrive at the required inequalities for $\left|A_{4}\right|$. The inequality for $\left|A_{2}\right|$ is sharp for the function $p(z)=\frac{1+z}{1-z}$ with respect to the convex function $g(z)=\frac{z}{1-z}$.

6. THE SECOND HANKEL DETERMINANT

In [10], Pommerenke defined qth Hankel determinant for a function $f(z)$. Here we find the second Hankel determinant $H_{2}(2)=\left|a_{2} a_{4}-a_{3}^{2}\right|$ for $f(z) \in Q^{\omega}$, when $0 \leq \omega \leq 1$.

Theorem 8. $f(z) \in Q^{\omega}$ for $0 \leq \omega \leq 1$

$$
\left|H_{2}(2)\right| \leq \begin{cases}\frac{1}{8} & , \text { if } \omega=0 \tag{10}\\ \frac{390+4090 \omega+14835 \omega^{2}+23065 \omega^{3}+15425 \omega^{4}+2655 \omega^{5}+456 \omega^{6}}{36(1+\omega)^{4}(1+2 \omega)^{2}(1+3 \omega)} & , \text { if } 0<\omega \leq 0.0799 \\ \frac{489+3427 \omega+8553 \omega^{2}+11683 \omega^{3}+1446 \omega^{4}+12114 \omega^{5}+4848 \omega^{6}}{18(1+\omega)^{4}(1+2 \omega)^{2}(1+3 \omega)} & \text {, if } 0.0799 \leq \omega \leq 1\end{cases}
$$

Proof. When $\omega=0, Q^{\omega}=K$, the corresponding inequality was proved by Duren in [1]. Now consider $\omega \neq 0$. Then we have,

$$
H_{2}(2)=A+B
$$

where,

$$
\begin{aligned}
A= & \frac{p_{1}}{8(1+\omega)(1+2 \omega)}\left[p_{3}+\frac{\omega\left(12 \omega^{4}+26 \omega^{3}+5 \omega^{2}-28 \omega-15\right) p_{1}^{3}}{18(1+\omega)^{3}(1+2 \omega)}\right. \\
& \left.-\frac{2 \omega(\omega-1) p_{1} p_{2}}{(1+\omega)(1+2 \omega)}\right]+\frac{\left(1+15 \omega+18 \omega^{2}\right)}{72(1+\omega)^{2}(1+2 \omega)^{2}(1+3 \omega)} c_{1}^{2}\left[p_{2}\right. \\
& \left.-\frac{\left(18 \omega^{4}+393 \omega^{3}+436 \omega^{2}+161 \omega+16\right)}{2\left(1+15 \omega+18 \omega^{2}\right)} p_{1}^{2}\right]+\frac{c_{1}}{8(1+\omega)(1+3 \omega)}\left[p_{3}\right. \\
& \left.-\frac{\left(36 \omega^{3}+36 \omega^{2}+15 \omega+7\right) p_{1} p_{2}}{9(1+\omega)(1+2 \omega)^{2}}+\frac{\omega\left(12 \omega^{4}-114 \omega^{3}+60 \omega^{2}+46 \omega-4\right)}{9(1+\omega)^{3}(1+2 \omega)^{2}} p_{1}^{3}\right] \\
& -\frac{c_{2}}{9(1+2 \omega)^{2}}\left[p_{2}-\frac{\omega(\omega-1)}{2(1+\omega)^{2}} p_{1}^{2}\right]-\frac{p_{2}}{9(1+2 \omega)^{2}}\left[p_{2}-\frac{\omega(\omega-1)}{(1+\omega)^{2}} p_{1}^{2}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
B= & -\frac{c_{2}^{2}}{36(1+2 \omega)^{2}}+\frac{(1+5 \omega) p_{1}^{2}}{16(1+\omega)^{2}(1+2 \omega)(1+3 \omega)}\left[c_{2}+\frac{\left(17 \omega^{2}+6 \omega+1\right) c_{1}^{2}}{(1+\omega)^{2}(1+5 \omega)}\right] \\
& +\frac{p_{1}}{24(1+\omega)(1+3 \omega)}\left[c_{3}+\frac{\left(180 \omega^{3}+252 \omega^{2}+111 \omega+11\right) c_{1} c_{2}}{6(1+\omega)(1+2 \omega)^{2}}\right. \\
& \left.-\frac{\left(102 \omega^{4}-39 \omega^{3}-147 \omega^{2}-69 \omega-7\right) c_{1}^{3}}{6(1+\omega)^{3}(1+2 \omega)^{2}}\right]+\frac{c_{1}}{24(1+\omega)(1+3 \omega)}\left[c_{3}\right. \\
& \left.+\frac{\left(18 \omega^{2}+15 \omega+1\right) c_{1} c_{2}}{6(1+\omega)(1+2 \omega)}-\frac{\left(102 \omega^{4}-21 \omega^{3}-84 \omega^{2}-33 \omega-4\right) c_{1}^{3}}{6(1+\omega)^{3}(1+2 \omega)}\right] .
\end{aligned}
$$

The coefficient of p_{1}^{4} in A is negative for all $0<\omega \leq 1$, where 1 is the root of the equation $12 \omega^{4}+26 \omega^{3}+5 \omega^{2}-28 \omega-15$ and the coefficient of $c_{1} p_{1}^{3}$ in A is negative when $\omega \leq 0.0799$, where 0.0799 is the root of the equation $12 \omega^{4}-114 \omega^{3}+60 \omega^{2}+46 \omega-4$. Other coefficients are positive both in A and B for all the values of $\omega \in(0,1]$.
Now consider $0<\omega \leq 0.0799$. Use Lemma 1 to express p_{2} and p_{3} in terms of p_{1} in A. Then normalize p_{1} so that $p_{1}=p$ and $0 \leq p \leq 2$. After subsequent simplification using Lemma 2 and 3 , we get

$$
\begin{aligned}
\left|H_{2}(2)\right| \leq & \frac{1296 \omega^{6}+2878 \omega^{5}+1819 \omega^{4}+1069 \omega^{3}+661 \omega^{2}+481 \omega+96}{9(1+\omega)^{4}(1+2 \omega)^{2}(1+3 \omega)} p^{3} \\
& -\frac{(5+11 \omega)\left(4-p^{2}\right) p_{1}|y|^{2}}{16(1+\omega)(1+2 \omega)(1+3 \omega)}+\frac{(11 \omega+5) p\left(4-p^{2}\right)\left(1-|y|^{2}\right)}{8(1+\omega)(1+2 \omega)} \\
& +\frac{\left(27+189 \omega+75 \omega^{2}-62 \omega^{3}-648 \omega^{4}\right)\left(4-p^{2}\right)|y| p_{1}}{72(1+\omega)^{2}(1+2 \omega)^{2}(1+3 \omega)} \\
& +\frac{78+740 \omega+2227 \omega^{2}+2386 \omega^{3}+699 \omega^{4}-168 \omega^{5}}{9\left(1+\omega^{3}\right)(1+2 \omega)^{2}(1+3 \omega)} .
\end{aligned}
$$

Using elementary calculus we arrive at the second inequality. Now to prove the third inequality in $0.0799<\omega \leq 1$. Using similar arguments we arrive at the third inequality.

References

[1] P.L.Duren, Univalent functions, Springer-Verlag, Berlin, (1983).
[2] U.Grenandee, G.Szego, Toeplitz forms and their applications, University of California Press, Berkeley (1958).
[3] T.Hayami and S.Owa, Generalized Hankel Determinant for certain classes, Int.J.Math.Anal. 52, 4 (2010), 2573-2585.
[4] W.Kaplan, Close-to-Convex Schlitch Functions, Mich.Math. J., 1 (1952), 169185.
[5] Z.Lewandowski, S.Miller, E.J.Zlotkiewicz, Gamma-Starlike functions, Ann. Univ. Mariae-Sklodowska Sect.A, 28 (1974), 53-58.
[6] R.J.Libera and E.J.Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc.Amer.Math.Soc., 85 (1982), 225-230.
[7] S.S.Miller et.all., All α-Convex Functions are Starlike, Rev. Roumaine. Math. Pures Appl., 17 (1972), 1395-1397.
[8] K.I.Noor and F.M.Al-oboudi, Alpha-Quasi Convex Functions, Car.J. Math., 3 (1984), 1-8.
[9] K.I.Noor and D.K.Thomas, Quasi-Convex Univalent Functions, Int. J. Math. and Math.Sci., 3 (1980), 225-266.
[10] C.Pommerenke, On the Hankel determinants of Univalent functions, Mathematika, 14 (1967), 108-112.
[11] C.Pommerenke, On the coefficients of Close-to-Convex functions, Michigan Math.J, 9 (1962), 259-269.
[12] D.K.Thomas, On the Coefficients of Gamma-Starlike Funcions, J.Korean Math.Soc. 55, 1 (2018), 175-184.

Jenifer Arulmani,
Department of Mathematics,
Presidency College(Autonomous),
Chennai, Tamil Nadu,
India-600005
email: jeniferarulmani06@gmail.com
Selvaraj Chellian,
Department of Mathematics, Presidency College(Autonomous), Chennai, Tamil Nadu, India-600005
email: pamc9439@yahoo.co.in

