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Abstract. In the paper of the author [M. O. Olatinwo; Stability and con-
vergence results for Das-Debata type iterative process using simultaneous set of
contractive conditions of integral type, Bulletin of the Allahabad Mathematical So-
ciety 30 (1) (2015), 75-94], the Jungck-Das-Debata iterative process involving the
nonself-mappings R, S and T was introduced. The (R, S, T )−stability of iterative
processes was then initiated in the same article. The convergence result was also
proved for the Jungck-Das-Debata iterative process. In the present article, we shall
obtain some stability and strong convergence results for the iterative processes of
Agarwal-O’Regan-Sahu, Jungck-Das-Debata and a new Jungck-Ishikawa type iter-
ation for a new class of contractive conditions. Our results generalize and extend
amongst others the stability results of [S. L. Singh, C. Bhatnagar, S. N. Mishra;
Stability of Jungck-type iterative procedures, Int. J. Math. & Math. Sc. 19 (2005),
3035-3043] as well as stability and convergence results contained in [V. Berinde;
Iterative approximation of fixed points, Springer-Verlag, Berlin Heidelberg (2007)]
and a host of others in the literature.

2010 Mathematics Subject Classification: 47H10, 54H25.

Keywords: keywords, phrases. Stability of Jungck-type iterative procedures”,”
stability and convergence results”,” Das-Debata type iterative process”.”

1. Introduction

In Olatinwo [27], the (R, S, T )−stability of iterative process was introduced for
three nonselfmappings and strong convergence result was also obtained for the
Jungck-Das-Debata iterative process by employing a simultaneous set of contrac-
tive conditions. However, in the present article, we shall obtain some stability and
convergence theorems for Agarwal et al., Jungck-Das-Debata iterative processes and
a new Jungck-Ishikawa type for a new class of contractive conditions. Our stability
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results are generalizations and extensions of those of [5, 13, 14, 25, 30, 32, 33, 35],
while the convergence results extend and generalize some results of [6, 7, 19, 20].

Let (E, d) be a complete metric space and S, T : Y → E two non-self mappings.

Definition 1. [34] Let Y and E be two nonempty sets and S, T : Y → E two
mappings. Then, an element x∗ ∈ Y is a coincidence point of S and T if and only
if Sx∗ = Tx∗. Denote the set of the coincidence points of S and T by C(S, T ).

The following general definition for the concept of stability of iterative processes
involving three nonselfmappings is contained in Olatinwo [27]:

Definition 2. [27] Let (E, d) be a complete metric space and R, S, T : Y → E
three nonselfmappings, T (Y ) ⊆ R(Y ), S(Y ) ⊆ R(Y ) and z a coincidence point of
R, S and T, that is, Rz = Sz = Tz = p (say). For any x0 ∈ Y, let the sequence
{Rxn}∞n=0 ⊂ E generated by the iterative procedure

Rxn+1 = f(S, T, xn), n = 0, 1, · · · , (1)

converge to p, where f is some function. Let {Ryn}∞n=0 ⊂ E be an arbitrary sequence,
and set εn = d(Ryn+1, f(S, T, yn)), (n = 0, 1, · · · ). Then, the iterative procedure (1)
will be called (R, S, T )−stable if and only if lim

n→∞
εn = 0 implies that lim

n→∞
Ryn = p.

Remark 1. (i) The definition above reduces to that of stability of iterative processes
in the sense of Harder and Hicks [13] when Y = E, R = S = I (identity operator)
and coincidence point of R, S, T reduces to the fixed point of T.
(ii) The definition also reduces to that of stability of iterative processes in the sense
of Singh et al. [35] if R = S.
In (1), putting R = S,

Sxn+1 = f(S, T, xn) ≡ h(T, xn) = (1− αn)Sxn + αnTxn, αn ∈ [0, 1], (2)

n = 0, 1, 2, · · · , where h is some function, then we obtain the Jungck-Mann iterative
process of Singh et al. [35].

Jungck [17] established that two mappings S and T satisfying

d(Tx, Ty) ≤ ad(Sx, Sy), ∀ x, y ∈ E, a ∈ [0, 1), (3)

have a unique common fixed point in complete metric space E, provided that S and
T commute, T (Y ) ⊆ S(Y ) and S is continuous.
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In the normed space setting, we also have the following well-known iterative
processes:
For x0 ∈ E, the sequence {xn}∞n=0 defined by

xn+1 = (1− αn)xn + αnTxn, n = 0, 1, 2, · · · , (4)

where {αn}∞n=0 ⊂ [0, 1], is called the Mann iterative process (see Mann [22]).
For x0 ∈ E, the sequence {xn}∞n=0 defined by

xn+1 = (1− αn)xn + αnTzn
zn = (1− βn)xn + βnTxn

}
n = 0, 1, · · · , (5)

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1], is called the Ishikawa iterative
process (see Ishikawa [15]).
Let x0 ∈ E. The sequence {xn}∞n=0 defined by

xn+1 = (1− αn)Txn + αnTzn
zn = (1− βn)xn + βnTxn

}
n = 0, 1, · · · , (6)

with {αn}∞n=0 , {βn}
∞
n=0 ⊂ [0, 1] was introduced in 2007 by Agarwal et al. [1]. In this

paper, the iterative process defined in (6) will be called the Agarwal-O’Regan-Sahu
iterative process. However, the authors of the paper [1] named (6) as S− iteration
process.
In 2009, the following iterative process was defined to establish some results in a
normed space setting: For x0 ∈ E, the sequence {xn}∞n=0 defined by

xn+1 = P ((1− αn)zn + αnT1(PT1)
n−1zn)

zn = P ((1− βn)xn + βnT2(PT2)
n−1xn)

}
n = 0, 1, 2, · · · , (7)

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1]. The iterative process will be
called the Thaiwan iterative process (see Thaiwan [36]).
There are several other iterative processes available in the literature. However, we
refer to the author [24, 25] for some recently introduced iterative algorithms and
variants of contractive mappings.

Kannan [18] established an extension of the Banach’s fixed point theorem by
using the following contractive definition: For a selfmap T, there exists β ∈ (0, 12)
such that

d(Tx, Ty) ≤ β [d(x, Tx) + d(y, Ty)] , ∀ x, y ∈ E. (8)

Chatterjea [9] used the following contractive condition: For a selfmap T, there exists
γ ∈ (0, 12) such that

d(Tx, Ty) ≤ γ [d(x, Ty) + d(y, Tx)] , ∀ x, y ∈ E. (9)
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By combining (2), (8) and (9), Zamfirescu [37] established a nice generalization of
the Banach’s fixed point theorem.

Several stability results established in metric space and normed linear space are
available in the literature. Some of the various authors whose contributions are of
momentous impact to the study of stability of the fixed point iterative procedures are
Beg and Abbas [4], Berinde [5, 8], Harder and Hicks [13], Jachymski [16], Osilike and
Udomene [30], Ostrowski [31], Rhoades [32, 33] and Singh et al [35]. In Harder and
Hicks [13], the contractive definition stated in (2) was used to prove a stability result
for the Kirk’s iterative process. The first stability result on T− stable mappings was
proved by Ostrowski [31] for the Picard iteration using condition (2).

However, Singh et al. [35] established some stability results for Jungck and
Jungck-Mann iteration processes by employing two contractive definitions both of
which generalize those of Osilike and Udomene [30] but independent of that of Imoru
and Olatinwo [14]. Singh et al. [35] obtained stability results for Jungck and Jungck-
Mann iterative procedures in metric space using both the contractive definition (3)
and the following: For S, T : Y → E and some a ∈ [0, 1), we have

d(Tx, Ty) ≤ ad(Sx, Sy) + Ld(Sx, Tx), ∀ x, y ∈ Y, L ≥ 0. (10)

Let (E, ||.||) be a normed space and Y an arbitrary set. Let R, S, T : Y → E
be three mappings such that T (Y ) ⊆ R(Y ), S(Y ) ⊆ R(Y ), R(Y ) is a complete
subspace of E and R is injective. Then, for x0 ∈ Y, define the sequence {Rxn}∞n=0 ⊂
E iteratively by

Rxn+1 = (1− αn)Rxn + αnTvn
Rvn = (1− βn)Rxn + βnSxn

}
, n = 0, 1, 2, · · · , (11)

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1]. The iterative process defined
in (11) was the Jungck-Das-Debata iterative process introduced in Olatinwo [27] to
establish some stability and strong convergence results for nonself-mappings.

Remark 2. (i) We are using this medium to say that the iterative process defined in
(11) should be called Jungck-Das-Debata iterative process rather than Jungck-Das-
Debata type iterative process for which it was originally nomenclated in [27]. This is
simply because Jungck-Das-Debata iterative process had not been formulated before
the one in [27].
(ii) Jungck-Das-Debata iterative process reduces to several special cases. In particu-
lar, the iterative processes of Das and Debata [11], Ishikawa [15], Jungck [17], Mann
[22], Jungck-Mann (in Singh et al. [35]), Jungck-Ishikawa (in [25]) and some others
are such special cases. For detail, see [27].
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Apart from the Agarwal-O’Regan-Sahu iterative process defined in (6) and Jungck-
Das-Debata iterative process given in (11), we shall employ in addition, the following
Jungck-Ishikawa type iteration stated below:
Again, with (E, ‖.‖) as a normed space and Y an arbitrary set. Suppose S, T : Y →
E are mappings such that T (Y ) ⊆ S(Y ), S(Y ) is a complete subspace of E and S
is injective. Then, for x0 ∈ Y, define the sequence {Sxn}∞n=0 ⊂ E iteratively by

Sxn+1 = (1− αn)Srn + αnTrn
Srn = (1− βn)Sxn + βnTxn

}
, n = 0, 1, 2, · · · , (12)

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1].

Remark 3. (i) The Jungck-Ishikawa type iterative process is a new iterative scheme
which is independent of Jungck-Ishikawa iterative process.
(ii) If βn = 0 in (12), we obtain the Jungck-Mann iterative process defined in (2)
since S is injective.
(iii) The iterative process given in (12) also reduces to Mann iterative process if
Y = E, βn = 0 and S = I =Identity mapping.
(iv) Similarly, Jungck and Picard iterations can be obtained from (12).

We shall employ the following contractive conditions which are stated in the
metric forms: Let (E, d) be a metric space and Y an arbitrary set.
(i) For T : E → E, there exist real numbers L ≥ 0, k ∈ [0, 1) and a monotone
increasing function φ : IR+ → IR+ with φ(0) = 0, such that

d(Tx, Ty) ≤ [φ(d(x, Tx)) + kd(x, y)]eLd(x,Tx), ∀ x, y ∈ E. (13)

(ii) For S, T : Y → E, with T (Y ) ⊆ S(Y ), there exist real numbers η ≥ 0, k ∈ [0, 1),
such that ∀ x, y ∈ Y, we have

d(Tx, Ty) ≤ [Φ(d(Sx, Tx)) + kd(Sx, Sy)]eηd(Sx,Tx), (14)

where Φ: IR+ → IR+ is a monotone increasing function such that Φ(0) = 0.
(iii) For R, S, T : Y → E, with T (Y ) ⊆ R(Y ), S(Y ) ⊆ R(Y ), there exist real
numbers L ≥ 0, M ≥ 0, a, b ∈ [0, 1), such that ∀ x, y ∈ Y, we have

d(Tx, Ty) ≤ [Φ(d(Rx, Tx)) + ad(Rx,Ry)]eLd(Rx,Tx)

d(Sx, Sy) ≤ [Ψ(d(Rx, Sx)) + bd(Rx,Ry)]eMd(Rx,Sx)

}
, (15)

where Φ, Ψ: IR+ → IR+ are monotone increasing functions such that
Φ(0) = Ψ(0) = 0.
The contractive inequality conditions in (15) are a set of simultaneous contractive
conditions.
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Remark 4. (i) We shall use contractive conditions (13), (14) and (15 to obtain our
results. Since metric is induced by norm, we have d(u, v) = ‖u − v‖, ∀ u, v ∈ X,
where (X, d) is a metric space and (X, ‖ · ‖) is a normed linear space.
(ii) The contractive conditions (15) are independent of those of Olatinwo [27].
(iii) The contractive condition (14) is independent of that of Olatinwo [23], but it is
more general than that of Olatinwo [14].
(iv) If in (15), L = η = 0, Φ(u) = Nu, or, Ψ(u) = Nu, N ≥ 0, u ∈ IR+, and
S = T, then we obtain the contractive condition employed by Singh et al. [35].
(v)The contractive condition (14) is reducible to those employed in [35].
(vi) Similarly, contractive conditions (13), (14) and (15) reduce to some other well-
known contractive conditions in the literature.

We shall require the following lemma in the sequel.

Lemma 1. [5, 8] If δ is a real number such that 0 ≤ δ < 1, and {εn}∞n=0 is a
sequence of positive numbers such that lim

n→∞
εn = 0, then for any sequence of positive

numbers {un}∞n=0 satisfying

un+1 ≤ δun + εn, n = 0, 1, · · · ,

we have lim
n→∞

un = 0.

Remark 5. Recall that for T : E → E, the fixed point set denoted by F (T ) is defined
by F (T ) = {v ∈ E | Tv = v}.

2. Stability Results

Theorem 2. Let (E, ‖.‖) be a normed linear space and T : E → E a mapping
satisfying contractive condition (13). Suppose T has a fixed point q For x0 ∈ E,
let {xn}∞n=0 defined by (6) be the Agarwal-O’Regan-Sahu iterative process where
{αn}∞n=0, {βn}∞n=0 are sequences in [0, 1] such that 0 < α ≤ αn, 0 < β ≤ βn (n =
0, 1, 2, · · · , ). Let φ : IR+ → IR+ be a monotone increasing function such that
φ(0) = 0. Then, the Agarwal-O’Regan-Sahu iterative process is T−stable.

Proof. Suppose that {yn}∞n=0 ⊂ E, εn = ‖yn+1 − (1− αn)Tyn − αnTsn‖,
sn = (1− βn)yn + βnTyn and let lim

n→∞
εn = 0. Then, using the contractive condition
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(13) gives

‖yn+1 − q‖ ≤ ‖yn+1 − (1− αn)Tyn − αnTsn‖+ ‖(1− αn)Tyn + αnTsn − q‖
= εn + ‖(1− αn)Tyn + αnTsn − [1− αn + αn]q‖
= ‖(1− αn)(Tyn − q) + αn(Tsn − q)‖+ εn
≤ (1− αn)‖Tq − Tyn‖+ αn‖Tq − Tsn‖+ εn
≤ (1− αn)[φ(‖q − Tq‖) + k‖q − yn‖]eL‖q−Tq‖

+ αn[φ(‖q − Tq‖) + k|‖q − sn‖]eL‖q−Tq‖ + εn
= k(1− αn)‖yn − q‖+ kαn‖q − sn‖+ εn. (16)

Also, we have by using the contractive condition (13) again that

‖q − sn‖ = ‖(1− βn + βn)q − (1− βn)yn − βnTyn‖ = ‖(1− βn)(q − yn) + βn(q − Tyn)‖
=≤ (1− βn)‖yn − q‖+ βn‖Tq − Tyn‖
≤ (1− βn)‖yn − q‖+ βn[φ(‖q − Tq‖) + k‖yn − q‖]eL‖q−Tq‖
= (1− βn)‖yn − q‖+ kβn‖yn − q‖ = [1− (1− k)βn]‖yn − q‖. (17)

Using (17) in (16) gives

‖yn+1 − q‖ ≤ k(1− αn)‖yn − q‖+ kαn[1− (1− k)βn]‖yn − q‖+ εn
= k[1− αn + αn − (1− k)αnβn]‖yn − q‖+ εn
= k[1− (1− k)αnβn]‖yn − q‖+ εn
≤ k[1− (1− k)αβ]‖yn − q‖+ εn. (18)

Since 0 ≤ k[1− (1− k)αβ] < 1, applying Lemma 1 in (18) yields
lim
n→∞

‖yn+1 − q‖ = 0 ⇔ lim
n→∞

yn = q.

Conversely, let lim
n→∞

yn = q. Then, we have by using the contractive condition

(13) again that

εn = ‖yn+1 − (1− αn)Tyn − αnTsn‖
≤ ‖yn+1 − q‖+ (1− αn)‖Tq − Tyn‖+ αn‖Tq − Tsn‖
≤ ‖yn+1 − q‖+ k(1− αn)‖yn − q‖+ kαn‖p− sn‖. (19)

Using (17) again in (19) yields

εn ≤ ‖yn+1 − q‖+ k(1− αn)‖yn − q‖+ kαn[1− (1− k)βn]‖yn − q‖
= ‖yn+1 − q‖+ k[1− (1− k)αnβn]‖yn − q‖
≤ ‖yn+1 − q‖+ k[1− (1− k)αβ]‖yn − q‖ → 0 as n→∞.

Theorem 3. Let (E, ||.||) be a normed linear space and Y an arbitrary set. Suppose
that S, T : Y → E are mappings such that T (Y ) ⊆ S(Y ), S(Y )a complete subspace
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of E and S is an injective mapping. Let z be a coincidence point of S and T (that
is, Sz = Tz = p). Suppose that S and T satisfy contractive condition (14). Let
Φ: IR+ → IR+ be a monotone increasing function such that Φ(0) = 0. For x0 ∈ Y,
let {Sxn}∞n=0 ⊂ E be the Jungck-Ishikawa type iterative process defined by (12)
converging to p, where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] such that
0 < α ≤ αn and 0 < β ≤ βn (n = 0, 1, 2, · · · ). Then, the Jungck-Ishikawa type
iterative process is (S, T )−stable.

Proof. Suppose that {Syn}∞n=0 ⊂ E, εn = ‖Syn+1 − (1− αn)Svn − αnTvn‖,
Svn = (1−βn)Syn+βnTyn and let lim

n→∞
εn = 0. Then, using the contractive condition

(14) gives

‖Syn+1 − p‖ ≤ ‖Syn+1 − (1− αn)Svn − αnTvn‖+ ‖(1− αn)Svn + αnTvn − p‖
= ‖(1− αn)(Svn − p) + αn(Tvn − p)‖+ εn
≤ (1− αn)‖p− Svn‖+ αn‖Tz − Tvn‖+ εn
≤ (1− αn)‖p− Svn‖+ αn[Φ(‖Sz − Tz‖) + k|‖Sz − Svn‖]eη‖Sz−Tz‖ + εn
= [1− (1− k)αn]‖Sz − Svn‖+ εn. (20)

Again, we have by using the contractive condition (14) that

‖Sz − Svn‖ = ‖(1− βn + βn)Sz − (1− βn)Syn − βnTyn‖
≤ (1− βn)‖Syn − Sz‖+ βn‖Tz − Tyn‖
≤ (1− βn)‖Syn − p‖+ βn[Φ(‖Sz − Tz‖) + k|‖Sz − Syn‖]eη‖Sz−Tz‖
= (1− βn)‖Syn − p‖+ kβn‖Sz − Syn‖
= [1− (1− k)βn]‖Syn − p‖. (21)

Using (21) in (20) gives

‖Syn+1 − p‖ ≤ [1− (1− k)αn][1− (1− k)βn]‖Syn − p‖+ εn
≤ [1− (1− k)α][1− (1− k)β]‖Syn − p‖+ εn
= η‖Syn − p‖+ εn, (22)

where 0 ≤ η = [1 − (1 − k)α][1 − (1 − k)β] < 1, since 0 ≤ [1 − (1 − k)α] < 1 and
0 ≤ [1− (1− k)β] < 1.
Therefore, we obtain from (22) and Lemma1 that
lim
n→∞

‖Syn+1 − p‖ = 0 ⇔ lim
n→∞

Syn = p. Conversely, let lim
n→∞

Syn = p. Then, we

obtain by using the contractive condition (14) that

εn ≤ ‖Syn+1 − p‖+ (1− αn)‖p− Svn‖+ αn‖p− Tvn‖
= ‖Syn+1 − p‖+ (1− αn)‖p− Svn‖+ αn‖Tz − Tvn‖
≤ ‖Syn+1 − p‖+ (1− αn)‖Sz − Svn‖+ kαn‖Sz − Svn‖
= ‖Syn+1 − p‖+ [1− (1− k)αn]‖Sz − Svn‖. (23)
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Using (21) again in (23) yields

εn ≤ ‖Syn+1 − p‖+ [1− (1− k)αn][1− (1− k)βn]‖Syn − p‖
≤ ‖Syn+1 − p‖+ [1− (1− k)α][1− (1− k)β]‖Syn − p‖ → 0 as n→∞.

Theorem 4. Let (E, ||.||) be a normed linear space and Y an arbitrary set. Suppose
that R, S, T : Y → E are mappings such that S(Y ) ⊆ R(Y ), T (Y ) ⊆ R(Y ), R(Y )
a complete subspace of E and R is an injective mapping. Let z be a coincidence
point of R, S and T (that is, Rz = Sz = Tz = p). Suppose that R, S and T satisfy
contractive conditions (15). Let Φ, Ψ: IR+ → IR+ be monotone increasing functions
such that Φ(0) = Ψ(0) = 0. For x0 ∈ Y, let {Rxn}∞n=0 ⊂ E be the Jungck-Das-Debata
iterative process defined by (11) converging to p, where {αn}∞n=0 and {βn}∞n=0 are
sequences in [0, 1] such that 0 < α ≤ αn and 0 < β ≤ βn (n = 0, 1, 2, · · · ). Then, the
Jungck-Das-Debata iterative process is (R,S, T )-stable.

Proof. Suppose that {Ryn}∞n=0 ⊂ E, εn = ||Ryn+1 − (1− αn)Ryn − αnTbn||,
n = 0, 1, 2, · · · , where Rbn = (1− βn)Ryn + βnSyn, and let lim

n→∞
εn = 0. Therefore,

using conditions (15) and the iterative algorithm (11), we obtain

‖Ryn+1 − p‖ ≤ ‖Ryn+1 − (1− αn)Ryn − αnTbn‖+ (1− αn)‖Ryn − p‖+ αn‖Tbn − p‖
= (1− αn)‖Ryn − p‖+ αn‖Tz − Tbn‖+ εn
≤ (1− αn)‖Ryn − p‖+ αn[Φ(‖Rz − Tz‖) + a‖Rz −Rbn‖]eL‖Rz−Tz‖ + εn
= (1− αn)‖Ryn − p‖+ aαn‖Rz −Rbn‖+ εn. (24)

Again, using the contractive conditions (15) as well as algorithm (11) give

||Rz −Rbn|| = ‖Rz − (1− βn)Ryn − βnSyn‖
≤ (1− βn)‖Rz −Ryn‖+ βn‖Rz − Syn‖
= (1− βn)‖Ryn − p‖+ βn‖Sz − Syn‖
≤ (1− βn)‖Ryn − p‖+ βn[Ψ(‖Rz − Sz‖) + b‖Rz −Ryn‖)]eM‖Rz−Tz‖
= [1− (1− b)βn]‖Ryn − p‖. (25)

Using (25) in (24) yields

||Ryn+1 − p|| ≤ [1− (1− a)αn − (1− b)aαnβn]‖Ryn − p‖+ εn
≤ [1− (1− a)α− (1− b)aαβ]‖Ryn − p‖+ εn. (26)

Therefore, using Lemma 1 in (26) yields lim
n→∞

||Ryn−p|| = 0. That is, lim
n→∞

Ryn = p.

9



M.O. Olatinwo, A.D. Akwu, N. Ewaoche – Some stability and convergence . . .

Conversely, let lim
n→∞

Ryn = p. Then, by using the contractive definitions (15) and

algorithm (11) again, we have

εn = ‖Ryn+1 − (1− αn)Ryn − αnTbn‖
≤ ‖Ryn+1 − p‖+ (1− αn)‖Ryn − p‖+ αn‖p− Tbn‖
= ‖Ryn+1 − p‖+ (1− αn)‖Ryn − p‖+ αn‖Tz − Tbn‖
≤ ‖Ryn+1 − p‖+ (1− αn)‖Ryn − p‖+ aαn‖Rz −Rbn‖. (27)

By using (25) again in (27), we obtain

εn ≤ ‖Ryn+1 − p‖+ [1− (1− a)αn − (1− b)aαnβn]‖Ryn − p‖
≤ ‖Ryn+1 − p‖+ [1− (1− a)α− (1− b)aαβ]‖Ryn − p‖ → 0 as n→∞,

from which it follows that lim
n→∞

εn = 0.

Remark 6. Theorem 2.1 is more general than Theorem 3.1 contained in Olatinwo
[14] but independent of Theorem 3.2 of the same article, and this statement is valid
for a host of corresponding results in the literature. Theorem 2.2 and Theorem 2.3
are generalizations and extensions of some results in [5, 8, 13, 14, 27, 30, 32, 33, 35],
while Theorem 2.3 is independent of Theorem 3.1 of the author Olatinwo [27].

3. Convergence Results

Theorem 5. Let (E, ‖.‖) be an arbitrary Banach space, K a closed convex subset
of E and T : K → K an operator satisfying (13). For x0 ∈ K, let {xn}∞n=0 defined
by (6) be the Agarwal-O’Regan-Sahu iterative process with αn, βn ∈ [0, 1] such that
0 < α ≤ αn, 0 < β ≤ βn, (n = 0, 1, 2, · · · , ). Then, the Agarwal-O’Regan-Sahu
iteration {xn}∞n=0 converges strongly to the fixed point of T.

Proof. Firstly, we shall establish that T has a unique fixed point by using condition
(13) as follows: Suppose not. Then, there exist u, v ∈ F (T ), u 6= v, and ‖u−v‖ > 0.
Therefore, we obtain that

0 < ‖u− v‖ = ‖Tu− Tv‖ ≤ [φ(‖u− Tu‖) + k‖u− v‖]eL‖u−Tu‖
= φ(0) + k‖u− v‖ = k‖u− v‖,

from which we have that (1− k)‖u− v‖ ≤ 0. That is, since k ∈ [0, 1), 1− k > 0, but
‖u− v‖ ≤ 0 (which is a contradiction since norm is nonnegative).
Therefore, we have ‖u − v‖ = 0 ⇐⇒ u = v (thus, proving the uniqueness of the
fixed point of T ).

10
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We now prove that {xn}∞n=0 converges strongly to the fixed point u of T using
condition (13).

‖xn+1 − p‖ = ‖(1− αn)Txn + αnTbn − p‖
≤ (1− αn)‖Tp− Txn‖+ αn‖Tp− Tbn‖
≤ (1− αn)[φ(‖p− Tp‖) + k‖p− xn‖]eL‖p−Tp‖

+ αn[φ(‖p− Tp‖) + k|‖p− bn‖]eL‖p−Tp‖
= k(1− αn)‖xn − p‖+ kαn‖p− bn‖. (28)

Now, we have that

‖p− bn‖ = ‖p− (1− βn)xnβnTxn‖ = ‖(1− βn)(p− xn) + βn(p− Txn)‖
≤ (1− βn)‖xn − p‖+ βn‖Tp− Txn‖ ≤ [1− (1− k)βn]‖xn − p‖. (29)

Using (19) in (18) gives

‖xn+1 − p‖ ≤ k(1− αn)‖xn − p‖+ kαn[1− (1− k)βn]‖xn − p‖
= k[1− (1− k)αnβn]‖xn − p‖
≤ k[1− (1− k)αβ]‖xn − p‖ = γ‖xn − p‖ (where γ = k[1− (1− k)αβ])
≤ γ2‖xn−1 − p‖ ≤ γ3‖xn−2 − p‖ ≤ · · · ≤ γn+1‖x0 − p‖ → 0 as n→∞, (30)

since 0 ≤ γ < 1.
Hence, it follows from (30) that Agarwal-O’Regan-Sahu iterative process {xn}∞n=0

converges strongly to the fixed point p of T.

Theorem 6. Let (E, ||.||) be an arbitrary Banach space and Y is an arbitrary set.
Suppose that S, T : Y → E are mappings such that T (Y ) ⊆ S(Y ), S(Y ) a complete
subspace of E and S is an injective mapping. Let z be a coincidence point of S
and T (that is, Sz = Tz = p). Suppose that S and T satisfy contractive condition
(14). Let Φ: IR+ → IR+ be a monotone increasing function such that Φ(0) = 0. For
x0 ∈ Y, let {Sxn}∞n=0 ⊂ E be the Jungck-Ishikawa type iterative process defined by
(12), where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] such that
0 < α ≤ αn, and 0 < β ≤ βn (n = 0, 1, 2, · · · ). Then, {Sxn}∞n=0 converges strongly
to p.

Proof. We shall now use contractive condition (14) to establish that S and T have
a unique coincidence point z (i.e. Sz = Tz = p): Injectivity of S is sufficient. Let
C(S, T ) be the set of coincidence points of R, S and T. Suppose that there exist
z1, z2 ∈ C(S, T ), that is, Sz1 = Tz1 = p1 and Sz2 = Tz2 = p2.
If p1 = p2, then Sz1 = Sz2 and since S is injective, it follows that z1 = z2.
If p1 6= p2, then we have by the contractiveness condition (14) for S and T that

‖p1 − p2‖ = ‖Tz1 − Tz2‖
≤ [Φ(‖Sz1 − Tz1‖) + k‖Sz1 − Sz2‖]eη‖Sz1−Tz1‖
= k‖Sz1 − Sz2‖ = k‖p1 − p2‖,

11
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from which it follows that (1 − k)‖p1 − p2‖ ≤ 0. Now, 1 − k > 0, k ∈ [0, 1) but
‖p1 − p2‖ ≤ 0 (which is a contradiction since norm is nonnegative). Therefore, it
follows that ‖p1 − p2‖ = 0.
That is, p1 = p2 =⇒ Sz1 = Sz2.
We have by the injectivity of S that Sz1 = Sz2 =⇒ z1 = z2.
Hence, proving the uniqueness of the coincidence point of S and T.

We now establish that {Sxn}∞n=0 converges strongly to p using contractive
condition (14). Therefore, we obtain by using the iterative scheme (12) as well as
the contractive condition (14) that

‖Sxn+1 − p‖ = ‖(1− αn)Srn + αnTrn − p‖ = (1− αn)‖(Srn − p) + αn(Trn − p)‖
≤ (1− αn)‖Srn − p‖+ αn‖Tz − Trn‖
≤ (1− αn)‖Srn − Sz‖+ αn[ϕ(‖Sz − Tz‖) + k|‖Sz − Srn‖]eL‖Sz−Tz‖
= [1− (1− k)αn]‖Sz − Srn‖. (31)

Also, we obtain by using the contractive condition (14) again that

‖Sz − Srn‖ ≤ (1− βn)‖Sz − Sxn‖+ βn‖Sz − Txn‖
= (1− βn)‖Sz − Sxn‖+ βn‖Tz − Txn‖
≤ (1− βn)‖Sxn − p‖+ kβn‖Sz − Sxn‖
= (1− βn)‖Sxn − p‖+ kβn‖p− Sxn‖
= [1− (1− k)βn]‖Sxn − p‖. (32)

Using (32) in (31) gives

‖Sxn+1 − p‖ ≤ [1− (1− k)αn][1− (1− k)βn]‖Sxn − p‖
≤ [1− (1− k)α][1− (1− k)β]‖Syn − p‖
= η‖Sxn − p‖ (where η = [1− (1− k)α][1− (1− k)β])
≤ η2‖Sxn−1 − p‖ ≤ η3‖Sxn−2 − p‖
≤ · · · ≤ ηn+1‖Sx0 − p‖ → 0 as n→∞, (33)

where 0 ≤ η < 1, since 0 ≤ [1− (1− k)α] < 1 and 0 ≤ [1− (1− k)β] < 1.
Therefore, it follows from (33) that our new iterative process {Sxn}∞n=0 converges
strongly to p.

Theorem 7. Let (E, ||.||) be an arbitrary Banach space and Y is an arbitrary set.
Suppose that R, S, T : Y → E are mappings such that S(Y ) ⊆ R(Y ), T (Y ) ⊆
R(Y ), R(Y ) a complete subspace of E, and R is an injective operator. Let z be a
coincidence point of S and T (that is, Rz = Sz = Tz = p). Suppose that R, S and T
satisfy the contractive conditions (15). Let Φ, Ψ: IR+ → IR+ be monotone increasing

12
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functions such that Φ(0) = Ψ(0) = 0. For x0 ∈ Y, let {Rxn}∞n=0 be the Jungck-
Das-Debata type iterative process defined by (11), where {αn}∞n=0 and {βn}∞n=0 are
sequences in [0, 1] such that 0 < α ≤ αn, 0 < β ≤ βn (n = 0, 1, 2, · · · ). Then,
{Rxn}∞n=0 converges strongly to p.

Proof. We shall now use conditions (15) to establish that R, S and T have a unique
coincidence point z (i.e. Rz = Sz = Tz = p): Injectivity of R is sufficient. Let
C(R,S, T ) be the set of coincidence points of R, S and T. Suppose that there exist
z1, z2 ∈ C(R,S, T ), that is, Rz1 = Sz1 = Tz1 = p1 and Rz2 = Sz2 = Tz2 = p2.
If p1 = p2, then Rz1 = Rz2 and since R is injective, it follows that z1 = z2.
If p1 6= p2, then we have by the contractiveness conditions (15) for R, S and T that

‖p1 − p2‖ = ‖Tz1 − Tz2‖
≤ [Φ(‖Rz1 − Tz1‖) + a‖Rz1 −Rz2‖]eL‖Rz1−Tz1‖
= a‖Rz1 −Rz2‖ = a‖Sz1 − Sz2‖
≤ a[Ψ(‖Rz1 − Sz1‖) + b‖R1 − Tz2‖]eM‖Rz1−Tz1‖
= ab‖Rz1 −Rz2‖ = ab‖p1 − p2‖,

from which it follows that (1 − ab)‖p1 − p2‖ ≤ 0. Now, 1 − ab > 0, a, b ∈ [0, 1),
but ‖p1 − p2‖ ≤ 0 (which is a contradiction since norm is nonnegative). Therefore,
‖p1 − p2‖ = 0,
from which it follows that p1 = p2 =⇒ Rz1 = Rz2,
and by the injectivity of R, we have that Rz1 = Rz2 =⇒ z1 = z2.
Thus, proving the uniqueness of the coincidence point of R, S and T.

We now show that {Rxn}∞n=0 converges strongly to p using contractive condi-
tions (15). Therefore, we obtain by using the iterative scheme (11) as well as the
contractive conditions (15) that

‖Rxn+1 − p‖ ≤ (1− αn)‖Rxn − p‖+ αn‖Tz − Tvn‖
≤ (1− αn)‖Rxn − p‖+ αn[Φ(‖Rz − Tz‖) + a‖Rz −Rvn‖]eL‖Rz−Tz‖
= (1− αn)‖Rxn − p‖+ aαn‖Rz −Rvn‖. (34)

In a similar manner, using the contractive conditions (15) and the iterative scheme
(11) again yield

‖Rz −Rvn‖ ≤ (1− βn + bβn)‖Rxn − p‖ = [1− (1− b)βn]‖Rxn − p‖. (35)

Using (35) in (34) yields

‖Rxn+1 − p‖ ≤ [1− (1− a)αn − (1− b)aαnβn]‖Rxn − p‖
≤ [1− (1− a)α− (1− b)aαβ]‖Rxn − p‖ = η‖Rxn − p‖, (36)

13
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where 0 ≤ η = 1− (1− a)α− (1− b)aαβ < 1 since α, β ∈ [0, 1).
Therefore, we obtain from (36) that

‖Rxn+1−p‖ ≤ η‖Rxn−p‖ ≤ η2‖Rxn−1−p‖ ≤ · · · ≤ ηn+1‖Rx0−p‖ → 0 as n→∞,

from which it follows that lim
n→∞

‖Rxn − p‖ = 0. That is, lim
n→∞

Rxn = p.

Remark 7. Theorem 3.3 generalizes and extends a multitude of results in the lit-
erature. Particularly, Theorem 3.3 generalizes and extends both Theorem 1 and
Theorem 2 of Berinde [6], Theorem 2 and Theorem 3 of Kannan [19], Theorem 3 of
Kannan [20], Theorem 4.9 of Berinde [8]), Theorem 5.6 of Berinde [8] and indeed,
some results of the author [25].

Example 1. Let E = IR, Y = [0, 1] ⊂ IR with the Euclidean norm. Let the operators
R, S, T : Y → E be defined by Rx = 1 − 4x, Sx = x2, Tx = x3, ∀ x ∈ Y. Also,
define Φ, Ψ: [0, 6]→ [0, 6] by

Φ(t) =

{
3t2

4 , if t ∈ [0, 3)
t
2 , if t ∈ [3, 6]

and

Ψ(t) =

{
t3

2 , if t ∈ [0, 2)
2t
3 , if t ∈ [2, 6]

We now show that R, S, T satisfy the set of contractive conditions (15) and that
the iterative algorithm defined in (11) is stable as well as convergent.

Solution. Here, both Φ and Ψ are monotone increasing in [0, 5].
T (Y ) = [0, 1] ⊂ R(Y ) = [−3, 1], S(Y ) = [0, 1] ⊂ R(Y ). Now, ∀ x, y ∈ Y,
‖Tx− Ty‖ = |x3 − y3| = |x− y||x2 + xy + y2| ≤ 3|x− y|, ||Rx−Ry|| = 4|x− y|,
‖Sx− Sy‖ = |x2 − y2| = |x+ y||x− y| ≤ 2|x− y|, ‖Rx− Tx‖ = |1− 4x− x3|, and
‖Rx− Sx‖ = |1− 4x− x2|.
Therefore, for L = 1, a = 3

4 , x = 0, y = 1, we obtain from above that ∀ x, y ∈ Y,

[Φ(‖Rx− Tx‖) + a‖Rx−Ry‖]eL‖Rx−Tx‖ ≥ Φ(|1− 4x− x3|) + 4a|x− y| (since eL‖Rx−Tx‖ > 0)
= 15

4 = 15
4 |x− y| ≥ 3|x− y| ≥ ‖Tx− Ty‖.

Similarly, for M = 0, b = 1
2 , x = 0, y = 1, we have ∀ x, y ∈ Y,

[Ψ(‖Rx− Sx‖) + b‖Rx−Ry‖]eM‖Rx−Sx‖ = Ψ(|1− 4x− x2|) + 4b|x− y| = 5
2

= 5
2 |x− y| ≥ 2|x− y| ≥ ‖Sx− Sy‖.

Thus, it follows from above that R, S, T satisfy the contractive conditions (15).

14



M.O. Olatinwo, A.D. Akwu, N. Ewaoche – Some stability and convergence . . .

Consequently, substituting for Rxn, Sxn, Txn in (11), then the mappings
R, S and T have a unique coincidence point, which can be found as limit of a stable
Jungck-Das-Debata iterative algorithm

xn+1 =
1

4

[
1− (1− αn)(1− 4xn)− αn

64

{
1− (1− βn)(1− 4xn)− βnx2n

}3]
, (37)

with x0 ∈ Y, for any sequences {αn}, {βn} ⊂ [0, 1] such that 0 < α ≤ αn and
0 < β ≤ βn (n = 0, 1, 2, · · · ).
More accurately, with x0 ∈ (0, 1], then the sequence {xn} defined by (37) above
provides a stable iterative algorithm, for any sequences {αn}, {βn} ⊂ [0, 1] such that
0 < α ≤ αn and 0 < β ≤ βn (n = 0, 1, 2, · · · ).
In particular, with αn = 1

10 , βn = 1
8 , then Eqn. (37) reduces to

xn+1 =
1

40
+

9

10
xn −

1

2560

(
1

8
+

7

2
xn −

1

8
x2n

)3

, (38)

which converges to the coincidence point z = x191 = 0.2463283675, for x0 = 1.0.

Remark 8. The part of Solution of Example 3.5 involving Eqn. (37) and Eqn.
(38) is also available in Example 3.1 which is contained in Olatinwo [27]. Since the
operators R, S, T satisfying the contractive conditions (15) in the present article
also satisfy the contractive conditions (14)in [27], then this is a vindication of the
fact that the contractive conditions (15) are independent of the contractive conditions
(14) in [27]. In addition, we refer to Olatinwo and Postolache [29] for more study
and examples.
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