INTEGRAL REPRESENTATIONS OF GENERALIZED CLASSES OF CONCAVE UNIVALENT FUNCTIONS DEFINED BY SALAGEAN OPERATOR

Y.A. Adebayo, K.O. Babalola

Abstract. In this research work, we prove a new integral representations for the generalized classes of concave univalent functions defined by Salagean operator denoted by $C_{n}(0), C_{n}(p)$ and $C_{n}(\alpha)$, using a function of positive real part.Our results unify the ealier ones.

2010 Mathematics Subject Classification: 30C45.
Keywords: Concave univalent function, Salagean differential operator, Salagean integral operator, integral representation.

1. Introduction

The study of concave univalent functions was introduced in [2], where a meromorphic and injective function f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

denoted by C_{0},was considered in a neighborhood of the origin and map the unit disk denoted as $\mathbb{U}=\{|z|<1\}$ onto a concave domain \mathbb{E} which is the exterior of a convex domain.

Avkhadiev and Wirths, studied the inner and the outer radius of the ring domain which is the domain of variability of a_{2} for such function f and that $f \in C_{0}$ implies that

$$
\begin{equation*}
\Phi(z)=z+2 \frac{f^{\prime}(z)}{f^{\prime \prime}(z)} . \tag{2}
\end{equation*}
$$

is holomorphic in \mathbb{U} and maps \mathbb{U} to itself.
Y.A. Adebayo, K.O. Babalola - Integral Representations of Generalised ...

This concept was further studied by researchers (see [1], [4], [8]), where concave univalent function was classified in to three different classes define as follows:

Definition 1[8]

A meromorphic, univalent function f is said to be in the class $C_{o}(0)$, has a simple pole at the origin and the representation

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=0}^{\infty} a_{n} z^{n} \tag{3}
\end{equation*}
$$

Definition 2[8]

A meromorphic, univalent function f is said to be in the class $C_{o}(p)$ for $p \in(0,1)$ has a simple pole at p .

Definition 3[8]

An analytic, univalent function f of the form (1) is said to be in the class $C_{o}(\alpha)$, if $f(1)=\infty$ and an opening angle of $f(\mathbb{E})$ at ∞ is less than or equal to $\alpha \pi$.

The geometric properties of the functions in the above definitions were given in $[5,7,8]$ as follows:

Theorem 1. Let $f: \mathbb{U} \rightarrow \mathbb{E}, f(z)=\frac{1}{z}+\sum_{n=0}^{\infty} a_{n} z^{n}$ be a meromorphic function. The function f is said to be in the class $C_{o}(0)$ if and only if the inequality

$$
\begin{equation*}
\operatorname{Re}\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<0, z \in \mathbb{U} . \tag{4}
\end{equation*}
$$

holds
Theorem 2. Let $f: \mathbb{U} \rightarrow \mathbb{E}$ be a meromorphic function. The function f is said to be in the class $C_{o}(p)$, if and only if for $z \in \mathbb{U}$

$$
\begin{equation*}
\operatorname{Re}\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{z+p}{z-p}-\frac{1+p z}{1-p z}\right)<0 \tag{5}
\end{equation*}
$$

Theorem 3. Let $\alpha \in(1,2]$. An analytic function f with $f(0)=f^{\prime}(0)-1=0$ is said to be in the class $C_{o}(\alpha)$, if and only if for $z \in \mathbb{U}$

$$
\begin{equation*}
\operatorname{Re}\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{\alpha+1}{2} \frac{1+z}{1-z}\right)<0 \tag{6}
\end{equation*}
$$

Y.A. Adebayo, K.O. Babalola - Integral Representations of Generalised ...

A factor $\frac{2}{\alpha-1}$ has to be added to the characterization in case a normalization is required and this was considered in [3], which showed that an analytic function f maps the unit disk \mathbb{U} onto a concave domain \mathbb{E} of angle $\pi \alpha$ if and only if $\operatorname{Rep}(z)>0$, $z \in \mathbb{U}$, where

$$
\begin{equation*}
p(z)=\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1+z}{1-z}-1-z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right] . \tag{7}
\end{equation*}
$$

The salagean differential operator denoted as D^{n} is define as $D^{0} f(z)=f(z)$, $D^{1} f(z)=z f^{\prime}(z), D^{n} f(z)=D\left(D^{n-1} f(z)\right),(n \in \mathbb{N}=1,2, \ldots)$ and its integral operator define as $I^{0} f(z)=f(z), I^{1} f(z)=\int_{0}^{z} \frac{f(t)}{t} d t, I^{n} f(z)=I\left(I^{n-1} f(z)\right),(n \in \mathbb{N})$. Both appeared in [10].

We use the above operator to define new classes of concave univalent function.

Definition 4

Let $f: \mathbb{U} \rightarrow \mathbb{E}, f(z)=\frac{1}{z}+\sum_{n=0}^{\infty} a_{n} z^{n}$ be a meromorphic function. The function f is said to be in the class $C_{n}(0)$ if and only if the inequality

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right)<0, z \in \mathbb{U}, n \geq 1 \tag{8}
\end{equation*}
$$

holds.

Definition 5

Let $f: \mathbb{U} \rightarrow \mathbb{E}$ be a meromorphic function. Then the function f is said to be in the class $C_{n}(p)$, if and only if for $z \in \mathbb{U}, n \geq 1$.

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}+\frac{z+p}{z-p}-\frac{1+p z}{1-p z}\right)<.0 \tag{9}
\end{equation*}
$$

Definition 6

An analytic function f with $f(0)=f^{\prime}(0)-1=0$ is said to be in the class $C_{n}(\alpha)$, if and only if for $z \in \mathbb{U}, n \geq 1$ and $\alpha \in(1,2]$

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}-\frac{\alpha+1}{2} \frac{1+z}{1-z}\right)<0 . \tag{10}
\end{equation*}
$$

We note that the geometric inequalities of the classes $C_{n}(0), C_{n}(p)$ and $C_{n}(\alpha)$ belong to the class P which is of the form

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \tag{11}
\end{equation*}
$$

Y.A. Adebayo, K.O. Babalola - Integral Representations of Generalised . . .
with $\operatorname{Rep}(z)>0$ and that

$$
\begin{equation*}
p(z)=\int_{-\pi}^{\pi} \frac{e^{i t}+z}{e^{i t}-z} d \mu(t), \mu(t)(0 \leq t \leq 2 \pi) . \tag{12}
\end{equation*}
$$

which is known as Herglotz formula see([9]). It has been shown in [8], that the function $\varphi: \mathbb{U} \rightarrow \mathbb{U}$, expressed as $z \rightarrow \frac{1+z \varphi(z)}{1-z \varphi(z)}$, holomorphic in \mathbb{U}, maps the unit disk onto itself, normalized by $0 \rightarrow 1$ and that

$$
\begin{equation*}
\frac{1+z \varphi(z)}{1-z \varphi(z)}=\int_{-\pi}^{\pi} \frac{e^{i t}+z}{e^{i t}-z} d \mu(t) . \tag{13}
\end{equation*}
$$

In the next section, we prove the integral representations for the classes $C_{n}(0), C_{n}(p)$ and $C_{n}(\alpha)$ using the function of positive real part .

$$
\begin{equation*}
p(z)=\frac{1+z \varphi(z)}{1-z \varphi(z)} \tag{14}
\end{equation*}
$$

2. Main Results

Theorem 4. Let $n \in \mathbb{N}, f: \mathbb{U} \rightarrow \mathbb{E}$, where $f(z)=\frac{1}{z}+\sum_{k=0} a_{k} z^{k}$ be a meromorphic function. $f \in C_{n}(0)$ if and only if there exists a function $\varphi: \mathbb{U} \rightarrow \mathbb{U}$ holomorphic in \mathbb{U}, such that for $z \in \mathbb{U}$, then

$$
\begin{equation*}
f(z)=I_{n}\left\{\frac{1}{z} \exp \left(-\int_{0}^{z} \frac{2 \varphi(t)}{1-t \varphi(t)} d t\right)\right\} . \tag{15}
\end{equation*}
$$

Proof. The function $f \in C_{n}(0)$, if and only if there exists the function φ such that

$$
\frac{D^{n+1} f(z)}{D^{n} f(z)}=-\frac{1+z \varphi(z)}{1-z \varphi(z)}
$$

From the relation

$$
D^{n+1} f(z)=z\left(D^{n} f(z)\right)^{\prime}
$$

We have that

$$
\begin{gathered}
\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}=-\frac{1+z \varphi(z)}{1-z \varphi(z)} \\
\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}+1=-\frac{2 z \varphi(z)}{1-z \varphi(z)} \\
\frac{1}{z}+\frac{\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}=-\frac{2 \varphi(z)}{1-z \varphi(z)}
\end{gathered}
$$

Y.A. Adebayo, K.O. Babalola - Integral Representations of Generalised ...

$$
\begin{gathered}
\frac{d}{d z} \log \left(z\left(D^{n} f(z)\right)\right)=-\frac{2 \varphi(z)}{1-z \varphi(z)} \\
\log \left(z\left(D^{n} f(z)\right)=-\int_{0}^{z} \frac{2 \varphi(t)}{1-t \varphi(t)} d t\right. \\
z\left(D^{n} f(z)\right)=\exp \left(-\int_{0}^{z} \frac{2 \varphi(t)}{1-t \varphi(t)} d t\right) \\
D^{n} f(z)=\frac{1}{z} \exp \left(-\int_{0}^{z} \frac{2 \varphi(t)}{1-t \varphi(t)} d t\right) . \\
f(z)=I_{n}\left\{\frac{1}{z} \exp \left(-\int_{0}^{z} \frac{2 \varphi(t)}{1-t \varphi(t)} d t\right)\right\} .
\end{gathered}
$$

Conversely, if $\varphi: \mathbb{U} \rightarrow \mathbb{U}$ is holomorphic function, the function

$$
\begin{equation*}
f(z)=I_{n}\left\{\frac{1}{z} \exp \left(-\int_{0}^{z} \frac{2 \varphi(t)}{1-t \varphi(t)} d t\right)\right\} . \tag{16}
\end{equation*}
$$

Corollary 5. If $n=1$, then we have

$$
\begin{equation*}
f(z)=\int_{0}^{z}\left\{\frac{1}{s^{2}} \exp \left(-\int_{0}^{s} \frac{2 \varphi(t)}{1-t \varphi(t)} d t\right)\right\} . \tag{17}
\end{equation*}
$$

which is the result obtained in [8].
Theorem 6. Let $p \in(0,1), n \in \mathbb{N}, f: \mathbb{D} \rightarrow \mathbb{E}$ be a meromorphic function. $f \in$ $C_{n}(p)$ if and only if there exists a function $\varphi: \mathbb{U} \rightarrow \overline{\mathbb{U}}$ holomorphic in \mathbb{U}, such that for $z \in \mathbb{U}$, then

$$
\begin{equation*}
f(z)=I_{n}\left\{\frac{z}{(z-p)^{2}(1-p z)^{2}} \exp \left\{-\int_{0}^{z} \frac{2 \varphi(t)}{1-t \varphi(t)} d t\right\}\right\} . \tag{18}
\end{equation*}
$$

Proof. Let $p \in(0,1)$. The function $f \in C_{n}(p)$, if and only if there exist the function φ such that

$$
\begin{gathered}
\frac{D^{n+1} f(z)}{D^{n} f(z)}+\frac{z+p}{z-p}-\frac{1+z p}{1-z p}=-\frac{1+z \varphi(z)}{1-z \varphi(z)} \\
\frac{D^{n+1} f(z)}{D^{n} f(z)}+\left(\frac{2 z}{z-p}-1\right)-\left(\frac{2 z p}{1-z p}+1\right)+1-=-\frac{2 z \varphi(z)}{1-z \phi(z)} \\
\frac{D^{n+1} f(z)}{D^{n} f(z)}+\frac{2 z}{z-p}-1-\frac{2 z p}{1-z p}-1+1=-\frac{2 z \varphi(z)}{1-z \varphi(z)}
\end{gathered}
$$

Y.A. Adebayo, K.O. Babalola - Integral Representations of Generalised ...

$$
\frac{D^{n+1} f(z)}{D^{n} f(z)}+\frac{2 z}{z-p}-1-\frac{2 z p}{1-z p}=-\frac{2 z \varphi(z)}{1-z \varphi(z)}
$$

From the relation

$$
D^{n+1} f(z)=z\left(D^{n} f(z)\right)^{\prime}
$$

then

$$
\begin{gathered}
\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}+\frac{2 z}{z-p}-1-\frac{2 z p}{1-z p}=-\frac{2 z \varphi(z)}{1-z \varphi(z)} \\
\frac{\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}+\frac{2}{z-p}-\frac{1}{z}-\frac{2 p}{1-z p}=-\frac{2 \varphi(z)}{1-z \varphi(z)} \\
\frac{d}{d z}\left\{\log D^{n} f(z)+2 \log (z-p)+2 \log (1-p z)-\log z\right\}=-\frac{2 \varphi(z)}{1-z \varphi(z)} \\
\log \frac{D^{n} f(z)(z-p)^{2}(1-p z)^{2}}{z}=-\int_{0}^{z} \frac{2 \varphi(t)}{1-t \varphi(t)} d t \\
D^{n} f(z)=\frac{z}{(z-p)^{2}(1-p z)^{2}} \exp \left(-\int_{0}^{z} \frac{2 \varphi(t)}{1-t \varphi(t)} d t\right) \\
f(z)=I_{n}\left\{\frac{z}{(z-p)^{2}(1-p z)^{2}} \exp \left\{-\int_{0}^{z} \frac{2 \varphi(t)}{1-t \varphi(t)} d t\right\}\right\} .
\end{gathered}
$$

Conversely, if $\varphi: \mathbb{U} \rightarrow \mathbb{U}$ is holomorphic function, the function

$$
f(z)=I_{n}\left\{\frac{z}{(z-p)^{2}(1-p z)^{2}} \exp \left\{-\int_{0}^{z} \frac{2 \varphi(t)}{1-t \varphi(t)} d t\right\}\right\} .
$$

Corollary 7. If $n=1$, then

$$
\begin{equation*}
f(z)=\int_{0}^{z}\left\{\frac{1}{(s-p)^{2}(1-s p)^{2}} \exp \left\{-\int_{0}^{s} \frac{2 \phi(t)}{1-t \phi(t)} d t\right\} \cdot\right\} \tag{19}
\end{equation*}
$$

which is the result obtained in [8].
Theorem 8. Let $\alpha \in(1,2], n \in \mathbb{N}$ and f be an analytic function with $f(0)=$ $f^{\prime}(0)-1=0$. Then $f \in C_{n}(\alpha)$ if and only if there exists a function $\varphi: \mathbb{U} \rightarrow \mathbb{U}$ holomorphic in \mathbb{U}, such that for $z \in \mathbb{U}$ then

$$
\begin{equation*}
f(z)=I_{n}\left\{\frac{z}{(1-z)^{\alpha+1}} \exp \left(-(\alpha-1) \int_{0}^{z} \frac{\varphi(t)}{1-t \varphi(t)} d t\right)\right\} . \tag{20}
\end{equation*}
$$

Y.A. Adebayo, K.O. Babalola - Integral Representations of Generalised ...

Proof. The function $f \in C_{n}(\alpha)$, if and only if there exist a function φ such that

$$
\begin{gathered}
-\frac{2}{\alpha-1}\left[\frac{D^{n+1} f(z)}{D^{n} f(z)}-\frac{\alpha+1}{2} \frac{1+z}{1-z}\right]=\frac{1+z \varphi(z)}{1-z \varphi(z)} \\
\frac{2}{\alpha-1}\left[\frac{D^{n+1} f(z)}{D^{n} f(z)}-\frac{\alpha+1}{2} \frac{1+z}{1-z}\right]=-\frac{1+z \varphi(z)}{1-z \varphi(z)} \\
\frac{2}{\alpha-1}\left[\frac{D^{n+1} f(z)}{D^{n} f(z)}-\frac{\alpha+1}{2}\left[\frac{2 z}{1-z}+1\right]\right]=-\frac{1+z \varphi(z)}{1-z \varphi(z)} \\
\frac{2}{\alpha-1}\left[\frac{D^{n+1} f(z)}{D^{n} f(z)}-\frac{(\alpha+1) z}{1-z}-\frac{\alpha+1}{2}\right]=-\frac{1+z \varphi(z)}{1-z \varphi(z)} \\
\frac{2}{\alpha-1} \frac{D^{n+1} f(z)}{D^{n} f(z)}-\frac{2 z(\alpha+1)}{(\alpha-1)(1-z)}-\frac{\alpha+1}{\alpha-1}+1=-\frac{1+z \varphi(z)}{1-z \varphi(z)}+1 \\
\frac{2}{\alpha-1} \frac{D^{n+1} f(z)}{D^{n} f(z)}-\frac{2 z(\alpha+1)}{(\alpha-1)(1-z)}-\frac{2}{\alpha-1}=-\frac{2 z \varphi(z)}{1-z \varphi(z)} \\
\frac{D^{n+1} f(z)}{D^{n} f(z)}-\frac{z(\alpha+1)}{(1-z)}-1=-(\alpha-1) \frac{z \varphi(z)}{1-z \varphi(z)}
\end{gathered}
$$

From the relation

$$
D^{n+1} f(z)-z\left(D^{n} f(z)\right)^{\prime}
$$

then

$$
\begin{gathered}
\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}-\frac{z(\alpha+1)}{(1-z)}-1=-(\alpha-1) \frac{z \varphi(z)}{1-z \varphi(z)} \\
\frac{\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}-\frac{(\alpha+1)}{(1-z)}-\frac{1}{z}=-(\alpha-1) \frac{\varphi(z)}{1-z \varphi(z)} \\
\frac{d}{d z}\left[\log D^{n} f(z)+(\alpha+1) \log (1-z)-\log z\right]=-(\alpha-1) \frac{\varphi(z)}{1-z \varphi(z)} \\
\log \frac{D^{n} f(z)(1-z)^{\alpha+1}}{z}=-(\alpha-1) \int_{0} \frac{\varphi(z)}{1-z \varphi(z)} \\
\frac{D^{n} f(z)(1-z)^{\alpha+1}}{z}=\exp \left\{-(\alpha-1) \int_{0}^{z} \frac{\varphi(t)}{1-t \varphi(t)} d t\right\} \\
D^{n} f(z)(1-z)^{\alpha+1}=z \exp \left\{-(\alpha-1) \int_{0}^{z} \frac{\varphi(t)}{1-t \varphi(t)} d t\right\} \\
f(z)=I_{n}\left\{\frac{z}{(1-z)^{\alpha+1}} \exp \left(-(\alpha-1) \int_{0}^{z} \frac{\varphi(t)}{1-t \varphi(t)} d t\right)\right\} .
\end{gathered}
$$

Y.A. Adebayo, K.O. Babalola - Integral Representations of Generalised ...

Conversely, if $\varphi: \mathbb{U} \rightarrow \mathbb{U}$ is holomorphic function, the function

$$
\begin{equation*}
f(z)=I_{n}\left\{\frac{z}{(1-z)^{\alpha+1}} \exp \left(-(\alpha-1) \int_{0}^{z} \frac{\varphi(t)}{1-t \varphi(t)} d t\right)\right\} . \tag{21}
\end{equation*}
$$

Corollary 9. If $n=1$, then

$$
\begin{equation*}
f(z)=\int_{0}^{z}\left\{\frac{1}{(1-s)^{\alpha+1}} \exp \left(-(\alpha-1) \int_{0}^{s} \frac{\varphi(t)}{1-t \varphi(t)} d t\right)\right\} . \tag{22}
\end{equation*}
$$

which is the result obtained in [8]
Acknowledgements. The authors are grateful to the referee for his helpful comments.

References

[1] Avkhadiev F.G. and Wirths K.J., Concave schlicht functions with bounded opening angle at infinity, Lobachevskii J. of Math. 17(2005), 3-10.
[2] Avkhadiev F.G. and Wirths K.J., , Convex holes produce lower bounds for coefficients, Complex Variables 47(2002), 553-563.
[3] Bhowmik B., Ponnusamy S., Wirths K.J., Characterization and the preSchwarzian norm estimate for concave univalent functions, Monatsh. Math. 161(2010) 59-75.
[4] Cruz L. and Ch. Pommerenke, On concave univalent functions, Complex Var. and Elliptic Equ. 52(2007), 153-159.
[5] Livingston A. E., Convex meromorphic mappings, Ann. Polo. Math. 59(1994), 275-291.
[6] Miller J., Convex and starlike meromorphic functions, Proc. Amer. Math. Soc. 80(1980), 607-613.
[7] Pfaltzgra J. and Pinchuk B., A variational method for classes of meromorphic functions, J. AnalyseMath. 24(1971), 101-150.
[8] Rintaro O. (2014), A Study on Concave Functions in Geometric Function Theory, Doctoral Thesis, Tohoku University, Japan.
[9] Pommerenke Ch. (1975), Univalent Functions, Vandenhoeck Ruprecht, Goettingen.
[10] Salagean, G. S. Subclasses of univalent functions. Lecture notes in Mathematics, Springer-Verlag, Berlin, Heidelberg and New York (1983),362-372.
Y.A. Adebayo, K.O. Babalola - Integral Representations of Generalised ...

Yusuf Abdulahi Adebayo
Department of Mathematics, University of Ilorin, Ilorin.
Nigeria.
email: yusuf.abdulaiłsuccess@gmail.com.
email: yusufaa@funaab.edu.ng.

Kunle Oladeji Babalola
Department of Mathematics, University of Ilorin, Ilorin.
Nigeria.
email: kobabalola@gmail.com

