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Abstract. In this research work, we prove a new integral representations for
the generalized classes of concave univalent functions defined by Salagean operator
denoted by Cn(0), Cn(p) and Cn(α), using a function of positive real part.Our results
unify the ealier ones.
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1. Introduction

The study of concave univalent functions was introduced in [2], where a meromorphic
and injective function f of the form

f(z) = z +
∞∑
n=2

anz
n. (1)

denoted by C0,was considered in a neighborhood of the origin and map the unit disk
denoted as U = {|z| < 1} onto a concave domain E which is the exterior of a convex
domain.

Avkhadiev and Wirths, studied the inner and the outer radius of the ring domain
which is the domain of variability of a2 for such function f and that f ∈ C0 implies
that

Φ(z) = z + 2
f

′
(z)

f ′′(z)
. (2)

is holomorphic in U and maps U to itself.
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This concept was further studied by researchers (see [1], [4], [8]), where concave
univalent function was classified in to three different classes define as follows:

Definition 1[8]
A meromorphic, univalent function f is said to be in the class Co(0), has a simple
pole at the origin and the representation

f(z) =
1

z
+
∞∑
n=0

anz
n. (3)

Definition 2[8]
A meromorphic, univalent function f is said to be in the class Co(p) for p ∈ (0, 1)
has a simple pole at p.

Definition 3[8]
An analytic, univalent function f of the form (1) is said to be in the class Co(α), if
f(1) =∞ and an opening angle of f(E) at ∞ is less than or equal to απ.

The geometric properties of the functions in the above definitions were given in
[5, 7, 8] as follows:

Theorem 1. Let f : U → E, f(z) = 1
z +

∑∞
n=0 anz

n be a meromorphic function.
The function f is said to be in the class Co(0) if and only if the inequality

Re

(
1 + z

f
′′
(z)

f ′(z)

)
< 0, z ∈ U. (4)

holds

Theorem 2. Let f : U→ E be a meromorphic function. The function f is said to
be in the class Co(p), if and only if for z ∈ U

Re

(
1 + z

f
′′
(z)

f ′(z)
+
z + p

z − p
− 1 + pz

1− pz

)
< 0. (5)

Theorem 3. Let α ∈ (1, 2]. An analytic function f with f(0) = f
′
(0) − 1 = 0 is

said to be in the class Co(α), if and only if for z ∈ U

Re

(
1 + z

f
′′
(z)

f ′(z)
− α+ 1

2

1 + z

1− z

)
< 0. (6)
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A factor 2
α−1 has to be added to the characterization in case a normalization is

required and this was considered in [3], which showed that an analytic function f
maps the unit disk U onto a concave domain E of angle πα if and only if Rep(z) > 0,
z ∈ U, where

p(z) =
2

α− 1

[
α+ 1

2

1 + z

1− z
− 1− z f

′′
(z)

f ′(z)

]
. (7)

The salagean differential operator denoted as Dn is define as D0f(z) = f(z),
D1f(z) = zf

′
(z), Dnf(z) = D(Dn−1f(z)), (n ∈ N = 1, 2, ...) and its integral op-

erator define as I0f(z) = f(z), I1f(z) =
∫ z
0
f(t)
t dt, I

nf(z) = I(In−1f(z)), (n ∈ N).
Both appeared in [10].

We use the above operator to define new classes of concave univalent function.

Definition 4
Let f : U→ E, f(z) = 1

z +
∑∞

n=0 anz
n be a meromorphic function. The function f

is said to be in the class Cn(0) if and only if the inequality

Re

(
Dn+1f(z)

Dnf(z)

)
< 0, z ∈ U, n ≥ 1. (8)

holds.

Definition 5
Let f : U→ E be a meromorphic function. Then the function f is said to be in the
class Cn(p), if and only if for z ∈ U, n ≥ 1.

Re

(
Dn+1f(z)

Dnf(z)
+
z + p

z − p
− 1 + pz

1− pz

)
< .0 (9)

Definition 6
An analytic function f with f(0) = f

′
(0)− 1 = 0 is said to be in the class Cn(α), if

and only if for z ∈ U, n ≥ 1 and α ∈ (1, 2]

Re

(
Dn+1f(z)

Dnf(z)
− α+ 1

2

1 + z

1− z

)
< 0. (10)

We note that the geometric inequalities of the classes Cn(0), Cn(p) and Cn(α) belong
to the class P which is of the form

p(z) = 1 + c1z + c2z
2 + · · · (11)
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with Rep(z) > 0 and that

p(z) =

∫ π

−π

eit + z

eit − z
dµ(t), µ(t)(0 ≤ t ≤ 2π). (12)

which is known as Herglotz formula see([9]). It has been shown in [8], that the

function ϕ : U → U, expressed as z → 1+zϕ(z)
1−zϕ(z) , holomorphic in U, maps the unit

disk onto itself, normalized by 0→ 1 and that

1 + zϕ(z)

1− zϕ(z)
=

∫ π

−π

eit + z

eit − z
dµ(t). (13)

In the next section, we prove the integral representations for the classes Cn(0), Cn(p)
and Cn(α) using the function of positive real part .

p(z) =
1 + zϕ(z)

1− zϕ(z)
. (14)

2. Main Results

Theorem 4. Let n ∈ N, f : U→ E, where f(z) = 1
z +
∑

k=0 akz
k be a meromorphic

function. f ∈ Cn(0) if and only if there exists a function ϕ : U→ U holomorphic in
U, such that for z ∈ U, then

f(z) = In

{
1

z
exp

(
−
∫ z

0

2ϕ(t)

1− tϕ(t)
dt

)}
. (15)

Proof. The function f ∈ Cn(0), if and only if there exists the function ϕ such that

Dn+1f(z)

Dnf(z)
= −1 + zϕ(z)

1− zϕ(z)

From the relation
Dn+1f(z) = z(Dnf(z))

′

We have that
z(Dnf(z))

′

Dnf(z)
= −1 + zϕ(z)

1− zϕ(z)

z(Dnf(z))
′

Dnf(z)
+ 1 = − 2zϕ(z)

1− zϕ(z)

1

z
+

(Dnf(z))
′

Dnf(z)
= − 2ϕ(z)

1− zϕ(z)
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d

dz
log(z(Dnf(z))) = − 2ϕ(z)

1− zϕ(z)

log(z(Dnf(z)) = −
∫ z

0

2ϕ(t)

1− tϕ(t)
dt

z(Dnf(z)) = exp

(
−
∫ z

0

2ϕ(t)

1− tϕ(t)
dt

)
Dnf(z) =

1

z
exp

(
−
∫ z

0

2ϕ(t)

1− tϕ(t)
dt

)
.

f(z) = In

{
1

z
exp

(
−
∫ z

0

2ϕ(t)

1− tϕ(t)
dt

)}
.

Conversely, if ϕ : U→ U is holomorphic function, the function

f(z) = In

{
1

z
exp

(
−
∫ z

0

2ϕ(t)

1− tϕ(t)
dt

)}
. (16)

Corollary 5. If n = 1, then we have

f(z) =

∫ z

0

{
1

s2
exp

(
−
∫ s

0

2ϕ(t)

1− tϕ(t)
dt

)}
. (17)

which is the result obtained in [8].

Theorem 6. Let p ∈ (0, 1), n ∈ N, f : D → E be a meromorphic function. f ∈
Cn(p) if and only if there exists a function ϕ : U → Ū holomorphic in U, such that
for z ∈ U , then

f(z) = In

{
z

(z − p)2(1− pz)2
exp

{
−
∫ z

0

2ϕ(t)

1− tϕ(t)
dt

}}
. (18)

Proof. Let p ∈ (0, 1). The function f ∈ Cn(p), if and only if there exist the function
ϕ such that

Dn+1f(z)

Dnf(z)
+
z + p

z − p
− 1 + zp

1− zp
= −1 + zϕ(z)

1− zϕ(z)

Dn+1f(z)

Dnf(z)
+

(
2z

z − p
− 1

)
−
(

2zp

1− zp
+ 1

)
+ 1− = − 2zϕ(z)

1− zφ(z)

Dn+1f(z)

Dnf(z)
+

2z

z − p
− 1− 2zp

1− zp
− 1 + 1 = − 2zϕ(z)

1− zϕ(z)
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Dn+1f(z)

Dnf(z)
+

2z

z − p
− 1− 2zp

1− zp
= − 2zϕ(z)

1− zϕ(z)

From the relation
Dn+1f(z) = z(Dnf(z))

′

then
z(Dnf(z))

′

Dnf(z)
+

2z

z − p
− 1− 2zp

1− zp
= − 2zϕ(z)

1− zϕ(z)

(Dnf(z))
′

Dnf(z)
+

2

z − p
− 1

z
− 2p

1− zp
= − 2ϕ(z)

1− zϕ(z)

d

dz
{logDnf(z) + 2log(z − p) + 2log(1− pz)− logz} = − 2ϕ(z)

1− zϕ(z)

log
Dnf(z)(z − p)2(1− pz)2

z
= −

∫ z

0

2ϕ(t)

1− tϕ(t)
dt

Dnf(z) =
z

(z − p)2(1− pz)2
exp

(
−
∫ z

0

2ϕ(t)

1− tϕ(t)
dt

)
f(z) = In

{
z

(z − p)2(1− pz)2
exp

{
−
∫ z

0

2ϕ(t)

1− tϕ(t)
dt

}}
.

Conversely, if ϕ : U→ U is holomorphic function, the function

f(z) = In

{
z

(z − p)2(1− pz)2
exp

{
−
∫ z

0

2ϕ(t)

1− tϕ(t)
dt

}}
.

Corollary 7. If n = 1,then

f(z) =

∫ z

0

{
1

(s− p)2(1− sp)2
exp

{
−
∫ s

0

2φ(t)

1− tφ(t)
dt

}
.

}
(19)

which is the result obtained in [8].

Theorem 8. Let α ∈ (1, 2], n ∈ N and f be an analytic function with f(0) =
f

′
(0) − 1 = 0. Then f ∈ Cn(α) if and only if there exists a function ϕ : U → U

holomorphic in U, such that for z ∈ U then

f(z) = In

{
z

(1− z)α+1
exp

(
−(α− 1)

∫ z

0

ϕ(t)

1− tϕ(t)
dt

)}
. (20)
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Proof. The function f ∈ Cn(α), if and only if there exist a function ϕ such that

− 2

α− 1

[
Dn+1f(z)

Dnf(z)
− α+ 1

2

1 + z

1− z

]
=

1 + zϕ(z)

1− zϕ(z)

2

α− 1

[
Dn+1f(z)

Dnf(z)
− α+ 1

2

1 + z

1− z

]
= −1 + zϕ(z)

1− zϕ(z)

2

α− 1

[
Dn+1f(z)

Dnf(z)
− α+ 1

2

[
2z

1− z
+ 1

]]
= −1 + zϕ(z)

1− zϕ(z)

2

α− 1

[
Dn+1f(z)

Dnf(z)
− (α+ 1)z

1− z
− α+ 1

2

]
= −1 + zϕ(z)

1− zϕ(z)

2

α− 1

Dn+1f(z)

Dnf(z)
− 2z(α+ 1)

(α− 1)(1− z)
− α+ 1

α− 1
+ 1 = −1 + zϕ(z)

1− zϕ(z)
+ 1

2

α− 1

Dn+1f(z)

Dnf(z)
− 2z(α+ 1)

(α− 1)(1− z)
− 2

α− 1
= − 2zϕ(z)

1− zϕ(z)

Dn+1f(z)

Dnf(z)
− z(α+ 1)

(1− z)
− 1 = −(α− 1)

zϕ(z)

1− zϕ(z)

From the relation
Dn+1f(z)− z(Dnf(z))

′

then
z(Dnf(z))

′

Dnf(z)
− z(α+ 1)

(1− z)
− 1 = −(α− 1)

zϕ(z)

1− zϕ(z)

(Dnf(z))
′

Dnf(z)
− (α+ 1)

(1− z)
− 1

z
= −(α− 1)

ϕ(z)

1− zϕ(z)

d

dz
[logDnf(z) + (α+ 1)log(1− z)− logz] = −(α− 1)

ϕ(z)

1− zϕ(z)

log
Dnf(z)(1− z)α+1

z
= −(α− 1)

∫
0

ϕ(z)

1− zϕ(z)

Dnf(z)(1− z)α+1

z
= exp

{
−(α− 1)

∫ z

0

ϕ(t)

1− tϕ(t)
dt

}
Dnf(z)(1− z)α+1 = zexp

{
−(α− 1)

∫ z

0

ϕ(t)

1− tϕ(t)
dt

}
f(z) = In

{
z

(1− z)α+1
exp

(
−(α− 1)

∫ z

0

ϕ(t)

1− tϕ(t)
dt

)}
.
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Conversely, if ϕ : U→ U is holomorphic function, the function

f(z) = In

{
z

(1− z)α+1
exp

(
−(α− 1)

∫ z

0

ϕ(t)

1− tϕ(t)
dt

)}
. (21)

Corollary 9. If n = 1, then

f(z) =

∫ z

0

{
1

(1− s)α+1
exp

(
−(α− 1)

∫ s

0

ϕ(t)

1− tϕ(t)
dt

)}
. (22)

which is the result obtained in [8]
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