# SUFFICIENCY AND DUALITY IN SET-VALUED OPTIMIZATION PROBLEMS UNDER $(p, r)-\rho-(\eta, \theta)$-INVEXITY 

K. Das, C. Nahak


#### Abstract

In this paper, we introduce a new type of generalized invexity, namely $(p, r)-\rho-(\eta, \theta)$-invexity, for set-valued optimization problems. We establish the sufficient optimality conditions and duality results of Mond-Weir type (MWD) under the stated $(p, r)-\rho-(\eta, \theta)$-invexity assumptions. As a special case, our results reduce to the existing ones of scalar valued optimization problems.


2010 Mathematics Subject Classification: 26B25, 49N15.
Keywords: convex cone, contingent derivative, set-valued map, $(p, r)-\rho-(\eta, \theta)-$ invexity, duality.

## 1. Introduction

Convex Analysis has a vital role in investigating the solutions of vector optimization problems. To relax convexity assumptions, various notions of generalized convexity have been introduced. In 1981, Hanson [7] introduced the notion of invexity. Later, many authors have studied further generalizations of invexity. One of such generalizations is ( $p, r$ )-invexity introduced by Antczak $[1,2]$. He established the sufficient optimality conditions and duality results under ( $p, r$ )-invexity assumptions in nonlinear multiobjective programming problems. Recently, Mandal and Nahak [9] introduced generalized $(p, r)$-invexity, namely $(p, r)-\rho-(\eta, \theta)$-invexity, in vector optimization. They established the sufficient optimality conditions and duality results of Mond-Weir type under $(p, r)-\rho-(\eta, \theta)$-invexity assumptions.

Recently, there has been an increasing interest in the extension of vector optimization problems to set-valued optimization problems, where the objective function and functions attached to constraints are set-valued maps. It has huge applications in economics, management science, and engineering. The derivative of set-valued maps is an important tool for set-valued optimization problems. Anbin and Frankowska [3] introduced the notion of contingent derivative of set-valued
maps. For single-valued map, contingent derivative coincides with Frechet derivative (Remark 15.2. in [8]). In 1987, Corley [4] established the generalized Fritz John necessary optimality conditions for the maximization of set-valued maps in terms of contingent derivative. He also proved the generalized Fritz John sufficient conditions of set-valued optimization problems where the objective function and functions attached to constraints are cone concave set-valued maps. Later, Sach and Craven $[10,11]$ introduced invex set-valued maps and proved duality theorems of Mond-Weir type.

In this paper, we extend the notion of $(p, r)-\rho-(\eta, \theta)$-invexity from vectorial case to set-valued one. We establish that the Fritz John optimality conditions are sufficient under $(p, r)-\rho-(\eta, \theta)$-invexity assumptions. We also establish the duality theorems of Mond-Weir type (MWD) of a pair of set-valued optimization problems under $(p, r)-\rho-(\eta, \theta)$-invexity assumptions.

## 2. Definitions and Preliminaries

Let $K$ be a nonempty subset of $\mathbb{R}^{m}$. Then $K$ is said to be a cone if $\lambda y \in K$, for all $y \in K$ and $\lambda \geq 0$. Also, $K$ is called pointed if $K \cap(-K)=\left\{0_{\mathbb{R}^{m}}\right\}$, solid if $\operatorname{int}(K) \neq \emptyset$, closed if $\bar{K}=K$ and convex if $\lambda y_{1}+(1-\lambda) y_{2} \in K$, for all $y_{1}, y_{2} \in K$ and $\lambda \in[0,1]$, where $\operatorname{int}(K)$ and $\bar{K}$ denote the interior and closure of $K$, respectively and $0_{\mathbb{R}^{m}}$ is the zero element of $\mathbb{R}^{m}$. The dual cone to $K$ is

$$
K^{+}=\left\{y^{*} \in \mathbb{R}^{m}: y^{*} y \geq 0, \forall y \in K\right\}
$$

where $y^{*} y$ is the inner product between $y^{*}$ and $y$.
Let $\mathbb{R}_{+}^{m}=\left\{y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}: y_{i} \geq 0\right.$, for all $\left.i=1, \ldots, m\right\}$. Then $\mathbb{R}_{+}^{m}$ is a solid pointed closed convex cone in $\mathbb{R}^{m}$. It is clear that $y^{*} y>0$, for any $y^{*} \in \mathbb{R}_{+}^{m} \backslash\left\{0_{\mathbb{R}^{m}}\right\}$ and $y \in \operatorname{int}\left(\mathbb{R}_{+}^{m}\right)$.

With respect to $\mathbb{R}_{+}^{m}$, there are two types of cone-orderings in $\mathbb{R}^{m}$. For any two elements $y_{1}, y_{2} \in \mathbb{R}^{m}$,

$$
y_{1} \leq y_{2} \text { if } y_{2}-y_{1} \in \mathbb{R}_{+}^{m}
$$

and

$$
y_{1}<y_{2} \text { if } y_{2}-y_{1} \in \operatorname{int}\left(\mathbb{R}_{+}^{m}\right) .
$$

For any nonempty subsets $Y, Y^{\prime}$ of $\mathbb{R}^{m}$ and $y^{*}, y^{\prime *} \in \mathbb{R}^{m}$, define

$$
y^{*} Y+y^{\prime *} Y^{\prime}=\bigcup_{\substack{y \in Y \\ y^{\prime} \in Y^{\prime}}}\left\{y^{*} y+y^{\prime *} y^{\prime}\right\}
$$

The ordering of two subsets of $\mathbb{R}^{m}$ with respect to $\mathbb{R}_{+}^{m}$ is defined as

$$
Y \geq Y^{\prime} \Longleftrightarrow y \geq y^{\prime}, \text { for all } y \in Y \text { and } y^{\prime} \in Y^{\prime}
$$

Let $y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$. The logarithm and exponential of $y$ are defined by componentwise

$$
\log y=\left(\log y_{1}, \ldots, \log y_{m}\right)^{T}, \text { for } y>0\left(\text { wrt. } \mathbb{R}_{+}^{m}\right)
$$

and

$$
e^{y}=\left(e^{y_{1}}, \ldots, e^{y_{m}}\right)^{T}, \text { for any } y .
$$

Let $\emptyset \neq Y \subseteq \mathbb{R}^{m}$. Define two sets $\log Y$ and $e^{Y}$ as

$$
\log Y=\{\log y: y \in Y\}, \text { for } Y>0_{\mathbb{R}^{m}}\left(\text { wrt. } \mathbb{R}_{+}^{m}\right)
$$

and

$$
e^{Y}=\left\{e^{y}: y \in Y\right\}, \text { for any } Y .
$$

Similarly, we can define $y^{\frac{1}{p}}$ and $Y^{\frac{1}{p}}$ for nonzero real number $p$.
Let $2^{\mathbb{R}^{m}}$ be the set of all subsets of $\mathbb{R}^{m}$ and $F: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{m}}$ be a set-valued map from $\mathbb{R}^{n}$ to $\mathbb{R}^{m}$. The effective domain, range, graph, and epigraph of the set-valued map $F$ are defined as

$$
\begin{gathered}
\operatorname{dom}(F)=\left\{x \in \mathbb{R}^{n}: F(x) \neq \emptyset\right\}, \\
F(X)=\bigcup_{x \in X} F(x), \text { for any } \emptyset \neq X \subseteq \mathbb{R}^{n}, \\
\operatorname{gr}(F)=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m}: y \in F(x)\right\},
\end{gathered}
$$

and

$$
\operatorname{epi}(F)=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m}: y \in F(x)+\mathbb{R}_{+}^{m}\right\}
$$

The following notions of minimality are mainly used in $\mathbb{R}^{m}$ with respect to $\mathbb{R}_{+}^{m}$.
Definition 2.1. Let $Y$ be a nonempty subset of $\mathbb{R}^{m}$ and $y^{\prime} \in Y$. Then $y^{\prime}$ is called a minimal point of $Y$ if there is no $y \in Y \backslash\left\{y^{\prime}\right\}$ such that $y \leq y^{\prime}$ and a weakly minimal point of $Y$ if there is no $y \in Y$ such that $y<y^{\prime}$.

The sets of minimal points and weak minimal points of $Y$ are denoted by min $Y$ and w-min $Y$, respectively and characterized as

$$
\min Y=\left\{y^{\prime} \in Y:\left(y^{\prime}-\mathbb{R}_{+}^{m}\right) \cap Y=\left\{y^{\prime}\right\}\right\}
$$

and

$$
\mathrm{w}-\min Y=\left\{y^{\prime} \in Y:\left(y^{\prime}-\operatorname{int}\left(\mathbb{R}_{+}^{m}\right)\right) \cap Y=\emptyset\right\} .
$$

The maximal points and weak maximal points of $Y$ are defined in similar manners. Contingent cone is an important tool in set-valued analysis. Aubin and Frankowsa [3] characterized the contingent cone in terms of sequences.

Definition 2.2. [3] Let $B$ be a nonempty subset of $\mathbb{R}^{m}$ and $y_{0} \in \bar{B}$. Then the contingent cone of $B$ at $y_{0}$ is denoted by $T\left(B, y_{0}\right)$ and $y \in T\left(B, y_{0}\right)$ if there exist sequences $\left\{\lambda_{n}\right\}$ with $\lambda_{n} \rightarrow 0^{+}$and $\left\{y_{n}\right\}$ with $y_{n} \rightarrow y$ such that, $y_{0}+\lambda_{n} y_{n} \in B$, for all $n \in \mathbb{N}$.

It is obvious that if $y_{0} \in \operatorname{int}(B)$, then $T\left(B, y_{0}\right)=\mathbb{R}^{m}$.
Proposition 2.1. [4] $T\left(B, y_{0}\right)$ is a closed cone of $\mathbb{R}^{m}$ and $T\left(B, y_{0}\right) \subseteq \overline{\bigcup_{h>0} \frac{B-y_{0}}{h}}$. If $B$ is a convex set, then the equality holds and $B-y_{0} \subseteq T\left(B, y_{0}\right)$.

Let $X$ be a nonempty subset of $\mathbb{R}^{n}$ and $F: X \rightarrow 2^{\mathbb{R}^{m}}$ be a set-valued map with $\operatorname{dom}(F)=X$ and $\left(x_{0}, y_{0}\right) \in \operatorname{gr}(F)$. Aubin and Frankowsa [3] introduced the notion of contingent derivative of set-valued maps.

Definition 2.3. [3] A set-valued function $D F\left(x_{0}, y_{0}\right): \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{m}}$ whose graph coincides with the contingent cone to the graph of $F$ at $\left(x_{0}, y_{0}\right)$, i.e.

$$
\operatorname{gr}\left(D F\left(x_{0}, y_{0}\right)\right)=T\left(\operatorname{gr}(F),\left(x_{0}, y_{0}\right)\right)
$$

is said to be the contingent derivative of $F$ at $\left(x_{0}, y_{0}\right)$.
The domain of the contingent derivative, $\operatorname{dom}\left(D F\left(x_{0}, y_{0}\right)\right)$ is not necessarily the whole space $\mathbb{R}^{n}$. It is equal to the projection of $T\left(\operatorname{gr}(F),\left(x_{0}, y_{0}\right)\right)$ onto $\mathbb{R}^{n}$. For a single-valued map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ which is Frechet differentiable at $x_{0}$, from Lyusternik's Theorem [8], we have

$$
T\left(\operatorname{gr}(f),\left(x_{0}, f\left(x_{0}\right)\right)\right)=\operatorname{gr}\left(f^{\prime}\left(x_{0}\right)\right)
$$

Therefore, the contingent derivative is the natural extension of Frechet derivative from vectorial to set-valued case.

Definition 2.4. [4] Let $X$ be a convex set of $\mathbb{R}^{n}$ and $F: X \rightarrow 2^{\mathbb{R}^{m}}$ be a set-valued map. Then $F$ is said to be $\mathbb{R}_{+}^{m}$-convex on $X$ if for all $x_{1}, x_{2} \in X$ and $\lambda \in[0,1]$,

$$
\lambda F\left(x_{1}\right)+(1-\lambda) F\left(x_{2}\right) \subseteq F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)+\mathbb{R}_{+}^{m}
$$

Lemma 2.1. [4] Let $X$ be a convex set of $\mathbb{R}^{n}$ and $F: X \rightarrow 2^{\mathbb{R}^{m}}$ be a $\mathbb{R}_{+}^{m}$-convex set-valued map. Then for all $x, x_{0} \in X$ and $y_{0} \in F\left(x_{0}\right)$,

$$
F(x)-y_{0} \subseteq D\left(F+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right)\left(x-x_{0}\right),
$$

where $F+\mathbb{R}_{+}^{m}$ is a set-valued map defined by

$$
\left(F+\mathbb{R}_{+}^{m}\right)(x)=F(x)+\mathbb{R}_{+}^{m}, x \in X .
$$

Definition 2.5. [11] Let $\emptyset \neq X \subseteq \mathbb{R}^{n}, \eta: X \times X \rightarrow \mathbb{R}^{n}$ be a map and $F: X \rightarrow 2^{\mathbb{R}^{m}}$ be a set-valued map with $\left(x_{0}, y_{0}\right) \in \operatorname{gr}(F)$. Suppose that $F+\mathbb{R}_{+}^{m}$ is contingent derivable at $\left(x_{0}, y_{0}\right)$ with

$$
\eta\left(X, x_{0}\right) \subseteq \operatorname{dom}\left(D\left(F+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right)\right)
$$

Then $F$ is said to be $\eta$-invex at $\left(x_{0}, y_{0}\right)$ if

$$
F(x)-y_{0} \subseteq D\left(F+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right)\left(\eta\left(x, x_{0}\right)\right), \text { for all } x \in X
$$

where $\eta\left(X, x_{0}\right)=\left\{\eta\left(x, x_{0}\right): x \in X\right\}$.
Let $X$ be a nonempty subset of $\mathbb{R}^{n}$ and $F: X \rightarrow 2^{\mathbb{R}^{m}}$ and $G: X \rightarrow 2^{\mathbb{R}^{k}}$ be two set-valued maps with $\operatorname{dom}(F)=\operatorname{dom}(G)=X$. We consider a primal problem (P).

$$
\begin{array}{ll}
\underset{x \in X}{\operatorname{minimize}} & F(x)  \tag{P}\\
\text { subject to } & G(x) \cap\left(-\mathbb{R}_{+}^{k}\right) \neq \emptyset
\end{array}
$$

For special case, when $f: X \rightarrow \mathbb{R}^{m}$ and $g: X \rightarrow \mathbb{R}^{k}$ are single-valued maps, we obtain a classical single-valued primal problem as

$$
\begin{array}{ll}
\underset{x \in X}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g(x) \leq 0_{\mathbb{R}^{m}}
\end{array}
$$

Definition 2.6. A point $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ is said to be a feasible point of the problem (P) if $x_{0} \in X, y_{0} \in F\left(x_{0}\right)$, and $G\left(x_{0}\right) \cap\left(-\mathbb{R}_{+}^{k}\right) \neq \emptyset$.

Let $G^{-}\left(-\mathbb{R}_{+}^{k}\right)=\left\{x \in \mathbb{R}^{n}: G(x) \cap\left(-\mathbb{R}_{+}^{k}\right) \neq \emptyset\right\}$ and $S=X \cap G^{-}\left(-\mathbb{R}_{+}^{k}\right)$. Then minimizers and weak minimizers of the problem ( P ) are defined in the following ways.

Definition 2.7. A feasible point $\left(x_{0}, y_{0}\right)$ of $(\mathrm{P})$ is said to be a minimizer of the problem (P) if

$$
y_{0} \in \min F(S)
$$

and a weak minimizer of the problem (P) if

$$
y_{0} \in \mathrm{w}-\min F(S)
$$

Let $F_{S}, G_{S}$ be the restrictions of $F, G$ to $S$, respectively and $\left(F_{S}+\mathbb{R}_{+}^{m}, G_{S}+\mathbb{R}_{+}^{k}\right)$ be a set-valued map defined by

$$
\left(F_{S}+\mathbb{R}_{+}^{m}, G_{S}+\mathbb{R}_{+}^{k}\right)(x)=\left(F_{S}+\mathbb{R}_{+}^{m}\right)(x) \times\left(G_{S}+\mathbb{R}_{+}^{k}\right)(x), \text { for } x \in X
$$

Corley [4] introduced the Fritz John sufficient optimality conditions of the problem (P).

Theorem 2.1. [4] Let $X$ be a convex set and $F, G$ be $\mathbb{R}_{+}^{m}$-convex and $\mathbb{R}_{+}^{k}$-convex on $X$, respectively. Suppose that there exist $x_{0} \in S, y_{0} \in F\left(x_{0}\right), z_{0} \in G\left(x_{0}\right) \cap\left(-\mathbb{R}_{+}^{k}\right)$, $0_{\mathbb{R}^{m}} \neq y^{*} \in \mathbb{R}_{+}^{m}$, and $z^{*} \in T\left(\mathbb{R}_{+}^{k}, z_{0}\right)^{+}$such that,

$$
y^{*} y+z^{*} z \geq 0
$$

for all $(y, z) \in D\left(F_{S}+\mathbb{R}_{+}^{m}, G_{S}+\mathbb{R}_{+}^{k}\right)\left(x_{0}, y_{0}, z_{0}\right)(x)$ and $x \in T\left(S, x_{0}\right)$. Then $\left(x_{0}, y_{0}\right)$ is a weak minimizer of the problem (P).
Definition 2.8. Let $X$ be a nonempty subset of $\mathbb{R}^{n}$ and $F: X \rightarrow 2^{\mathbb{R}^{m}}$ be a set-valued map. Then $F$ is called locally Lipschitz at $x_{0} \in X$ if there exist a neighborhood $N$ of $x_{0}$ and a constant $r$ such that

$$
d_{H}\left(F(x), F\left(x^{\prime}\right)\right) \leq r\left\|x-x^{\prime}\right\|, \text { for all } x, x^{\prime} \in N \cap \operatorname{dom}(F),
$$

where $d_{H}(.,$.$) is the Hausdorff distance in 2^{\mathbb{R}^{m}}$.
Lemma 2.2. [11] Let either $F$ or $G$ be locally Lipschitz at $x_{0}$. Then, we have

$$
\begin{aligned}
D\left(F_{S}+\mathbb{R}_{+}^{m}, G_{S}+\mathbb{R}_{+}^{k}\right)\left(x_{0}, y_{0}\right)(.)= & D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right)(.) \\
& +D\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x_{0}, z_{0}\right)(.) .
\end{aligned}
$$

Now, since $X$ and $G^{-}\left(-\mathbb{R}_{+}^{k}\right)$ are convex sets, so $S$ is also convex. Hence, from Proposition 2.1, we have $x-x_{0} \in T\left(S, x_{0}\right)$, for all $x \in S$. Now, if $z^{*} \in \mathbb{R}_{+}^{k}$ and $z^{*} z_{0}=0$, then $z^{*} \in T\left(\mathbb{R}_{+}^{k}, z_{0}\right)^{+}$. Then, we get Fritz John sufficient optimality conditions as

$$
y^{*} D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+z^{*} D\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x_{0}, z_{0}\right)\left(x-x_{0}\right) \geq 0, \forall x \in S
$$

and

$$
z^{*} z_{0}=0 .
$$

## 3. Optimality Conditions

Our objective is to establish the sufficient optimality conditions of the problem (P) under generalized invexity assumptions. Let $X$ be a nonempty subset of $\mathbb{R}^{n}$ and $F: X \rightarrow 2^{\mathbb{R}^{m}}$ be a set-valued map with $\operatorname{dom}(F)=X$ and $\left(x_{0}, y_{0}\right) \in \operatorname{gr}(F)$. Throughout the paper, we assume that $\mathbf{1}=(1, \ldots, 1) \in \mathbb{R}^{n}, \mathbf{1}^{\prime}=(1, \ldots, 1) \in \mathbb{R}^{m}$, and $\mathbf{1}^{\prime \prime}=(1, \ldots, 1) \in \mathbb{R}^{k}$. We introduce the notion of $(p, r)-\rho-(\eta, \theta)$-invex set-valued maps. For $p=0$ and $r=0$, we have the notions of $\rho-(\eta, \theta)$-invex and $\rho$-cone convex set-valued maps, introduced by Das and Nahak [5, 6].
Definition 3.1. Let $F+\mathbb{R}_{+}^{m}$ be contingent derivable at $\left(x_{0}, y_{0}\right)$. Then $F$ is said to be $(p, r)$ - $\rho-(\eta, \theta)$-invex at $\left(x_{0}, y_{0}\right)$ if there exist vector functions $\eta, \theta: X \times X \rightarrow \mathbb{R}^{n}$ and $\rho \in \mathbb{R}$ with $\left(\left(e^{p \eta\left(X, x_{0}\right)}-\mathbf{1}\right) / p\right) \subset \operatorname{dom}\left(D\left(F+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right)\right)$, for $p \neq 0$ and $\eta\left(X, x_{0}\right) \subset \operatorname{dom}\left(D\left(F+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right)\right)$, for $p=0$, such that, for all $x \in X$,

$$
\begin{array}{r}
\left(e^{r\left(F(x)-y_{0}\right)}-\mathbf{1}^{\prime}\right) / r \subset D\left(F+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right)\left(\left(e^{p \eta\left(x, x_{0}\right)}-\mathbf{1}\right) / p\right)+\rho\left\|\theta\left(x, x_{0}\right)\right\|^{2} \mathbf{1}^{\prime} \\
\text { for } p \neq 0, r \neq 0 \\
F(x)-y_{0} \subset D\left(F+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right)\left(\left(e^{p \eta\left(x, x_{0}\right)}-\mathbf{1}\right) / p\right)+\rho\left\|\theta\left(x, x_{0}\right)\right\|^{2} \mathbf{1}^{\prime} \\
\text { for } p \neq 0, r=0 \\
\left(e^{r\left(F(x)-y_{0}\right)}-\mathbf{1}^{\prime}\right) / r \subset D\left(F+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right)\left(\eta\left(x, x_{0}\right)\right)+\rho\left\|\theta\left(x, x_{0}\right)\right\|^{2} \mathbf{1}^{\prime} \\
\text { for } p=0, r \neq 0 \\
F(x)-y_{0} \subset D\left(F+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right)\left(\eta\left(x, x_{0}\right)\right)+\rho\left\|\theta\left(x, x_{0}\right)\right\|^{2} \mathbf{1}^{\prime} \\
\text { for } p=0, r=0
\end{array}
$$

For a continuously differentiable single valued map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$,

$$
D\left(f+\mathbb{R}_{+}^{m}\right)=\nabla f\left(x_{0}\right)(.)+\mathbb{R}_{+}^{m}
$$

where $\nabla f$ is the gradient of $f$. Therefore, for single valued case, the above notion reduces to $(p, r)-\rho-(\eta, \theta)$-invexity, introduced by Mandal and Nahak [9]. We have the following example of a set-valued map which is $(p, r)-\rho-(\eta, \theta)$-invex but not $\eta$-invex.
Example 3.1. Let $F: \mathbb{R} \rightarrow 2^{\mathbb{R}^{2}}$ be a set-valued map defined by

$$
F(\lambda)= \begin{cases}\left\{\left(x, x^{2}\right): x \geq 0\right\}, & \text { if } \lambda \geq 0 \\ \left\{\left(x, x^{2}\right):-1<x<0\right\}, & \text { if } \lambda<0\end{cases}
$$

We have

$$
T\left(\operatorname{gr}\left(F+\mathbb{R}_{+}^{2}\right),(0,(0,0))\right)=\mathbb{R} \times \mathbb{R}_{+}^{2}
$$

Hence,

$$
\operatorname{gr}\left(D\left(F+\mathbb{R}_{+}^{2}\right)(0,(0,0))\right)=\mathbb{R} \times \mathbb{R}_{+}^{2}
$$

Now for $-1<x<0$,

$$
\left(x, x^{2}\right) \notin D\left(F+\mathbb{R}_{+}^{2}\right)(0,(0,0)) \eta(\lambda, 0)+\mathbb{R}_{+}^{2}, \text { for any } \eta .
$$

Hence, $F$ is not $\eta$-invex map for any $\eta$.
We choose $p=0, r=1, \rho=-1$ and $\eta, \theta$ such a way that

$$
\eta(\lambda, 0) \geq 0 \text { and } \theta(\lambda, 0)=1, \text { for any } \lambda .
$$

Now

$$
e^{\left(x, x^{2}\right)-(0,0)}-\mathbf{1}-\rho|\theta(\lambda, 0)|^{2} \mathbf{1}=e^{\left(x, x^{2}\right)}
$$

For any $x>-1$, we have

$$
e^{\left(x, x^{2}\right)} \in D\left(F+\mathbb{R}_{+}^{2}\right)(0,(0,0)) \eta(\lambda, 0)+\mathbb{R}_{+}^{2}
$$

Hence, $F$ is $(0,1)-\rho-(\eta, \theta)$-invex map.
Theorem 3.1. (Sufficient Optimality Conditions) Let $\left(x_{0}, y_{0}\right)$ be a feasible point of the problem (P) and $z_{0} \in G\left(x_{0}\right) \cap\left(-\mathbb{R}_{+}^{k}\right)$. Assume that $F_{S}$ is $(p, r)-\rho_{1^{-}}$ $(\eta, \theta)$-invex at $\left(x_{0}, y_{0}\right)$ and $G_{S}$ is $(p, r)-\rho_{2}-(\eta, \theta)$-invex at $\left(x_{0}, z_{0}\right)$ with respect to same functions $\eta$ and $\theta$ and $\rho_{1}\left(y^{*} \mathbf{1}^{\prime}\right)+\rho_{2}\left(z^{*} \mathbf{1}^{\prime \prime}\right) \geq 0$. Suppose that there exists $\left(y^{*}, z^{*}\right) \in \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{k}$, with $y^{*} \neq 0_{\mathbb{R}^{m}}$, such that

$$
\begin{align*}
& y^{*} D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right)\left(\left(e^{p \eta\left(x, x_{0}\right)}-\mathbf{1}\right) / p\right) \\
& +z^{*} D\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x_{0}, z_{0}\right)\left(\left(e^{p \eta\left(x, x_{0}\right)}-\mathbf{1}\right) / p\right) \geq 0, \forall x \in S,(\text { for } p \neq 0),  \tag{3.1}\\
& y^{*} D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right) \eta\left(x, x_{0}\right) \\
& +z^{*} D\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x_{0}, z_{0}\right) \eta\left(x, x_{0}\right) \geq 0, \forall x \in S,(\text { for } p=0),
\end{align*}
$$

and

$$
\begin{equation*}
z^{*} z_{0}=0 \tag{3.2}
\end{equation*}
$$

Then $\left(x_{0}, y_{0}\right)$ is a weak minimizer of the problem ( P ).
Proof. We prove the theorem by the method of contradiction in the case when $p \neq 0$. For $p=0$, we can prove likewise.
Suppose that $\left(x_{0}, y_{0}\right)$ is not a weak minimizer of the problem (P).
Then,

$$
\left(y_{0}-\operatorname{int}\left(\mathbb{R}_{+}^{m}\right)\right) \cap F(S) \neq \emptyset .
$$

Therefore, there exist $x \in S, y \in F(x)$ such that

$$
y<y_{0}
$$

Hence,

$$
e^{y}<e^{y_{0}} \Rightarrow \frac{1}{r} e^{r y}<\frac{1}{r} e^{r y-0} \Rightarrow\left(e^{r\left(y-y_{0}\right)}-\mathbf{1}^{\prime}\right) / r<\mathbf{0} .
$$

As $y^{*} \neq 0_{\mathbb{R}^{m}}$, we have

$$
y^{*}\left(e^{r\left(y-y_{0}\right)}-\mathbf{1}^{\prime}\right) / r<0
$$

Since, $x \in S$, there exists an element $z \in G(x) \cap\left(-\mathbb{R}_{+}^{k}\right)$.
Let $z^{*}=\left(z_{1}^{*}, \ldots, z_{k}^{*}\right), z=\left(z_{1}, \ldots, z_{k}\right)$, and $z_{0}=\left(z_{1}^{\prime}, \ldots, z_{k}^{\prime}\right)$.
As $z \in-\mathbb{R}_{+}^{k}$, we have

$$
z \leq \mathbf{0} \Rightarrow e^{z} \leq \mathbf{1}^{\prime \prime} \Rightarrow \frac{1}{r} e^{r z} \leq \frac{1}{r} \mathbf{1}^{\prime \prime} \Rightarrow\left(e^{r z}-\mathbf{1}^{\prime \prime}\right) / r \leq 0 .
$$

Now $z^{*} z_{0}=0, z_{0} \in-\mathbb{R}_{+}^{k}$ and $z^{*} \in \mathbb{R}_{+}^{k}$.
Therefore, if $z_{i}{ }^{\prime}<0$ for some $i$, where $1 \leq i \leq k$, then $z_{i}{ }^{*}=0$.
So, in this case,

$$
z_{i}^{*}\left(e^{r\left(z_{i}-z_{i}{ }^{\prime}\right)}-1\right) / r=0 .
$$

Again, if $z_{i}^{\prime}=0$ for some $i$, where $1 \leq i \leq k$, then

$$
z_{i}^{*}\left(e^{r\left(z_{i}-z_{i}^{\prime}\right)}-1\right) / r=z_{i}^{*}\left(e^{r z_{i}}-1\right) / r \leq 0 .
$$

Combining both cases, we have

$$
z^{*}\left(e^{r\left(z-z_{0}\right)}-\mathbf{1}^{\prime \prime}\right) / r \leq 0 .
$$

Hence, we have

$$
\begin{equation*}
y^{*}\left(e^{r\left(y-y_{0}\right)}-\mathbf{1}^{\prime}\right) / r+z^{*}\left(e^{r\left(z-z_{0}\right)}-\mathbf{1}^{\prime \prime}\right) / r<0 . \tag{3.3}
\end{equation*}
$$

As $F_{S}$ is $\rho_{1}-(\eta, \theta)$-invex at $\left(x_{0}, y_{0}\right)$ and $G_{S}$ is $\rho_{2}-(\eta, \theta)$-invex at $\left(x_{0}, z_{0}\right)$, we have

$$
\begin{equation*}
\left(e^{r\left(y-y_{0}\right)}-\mathbf{1}^{\prime}\right) / r \in D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right)\left(\left(e^{p \eta\left(x, x_{0}\right)}-\mathbf{1}\right) / p\right)+\rho\left\|\theta\left(x, x_{0}\right)\right\| \mathbf{1}^{\prime} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(e^{r\left(z-z_{0}\right)}-\mathbf{1}^{\prime \prime}\right) / r \in D\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x_{0}, z_{0}\right)\left(\left(e^{p \eta\left(x, x_{0}\right)}-\mathbf{1}\right) / p\right)+\rho\left\|\theta\left(x, x_{0}\right)\right\|^{2} \mathbf{1}^{\prime \prime} \tag{3.5}
\end{equation*}
$$

Therefore, from (3.1), (3.4), (3.5), and the condition $\rho_{1}\left(y^{*} \mathbf{1}^{\prime}\right)+\rho_{2}\left(z^{*} \mathbf{1}^{\prime \prime}\right) \geq 0$, we have

$$
y^{*}\left(e^{r\left(y-y_{0}\right)}-\mathbf{1}^{\prime}\right) / r+z^{*}\left(e^{r\left(z-z_{0}\right)}-\mathbf{1}^{\prime \prime}\right) / r \geq 0 .
$$

This contradicts (3.3).
Hence, $\left(x_{0}, y_{0}\right)$ is a weak minimizer of the problem (P).

## 4. Mond-Weir Type Duality

In several set-valued optimization problems, evaluating the dual maximization problem is comparatively easier than solving the primal minimization problem. Sach and Craven [11] proved the duality results of Mond-Weir type under invexity assumptions. We establish the duality results under $(p, r)-\rho-(\eta, \theta)$-invexity assumptions. Let $x^{\prime} \in X, y^{\prime} \in F\left(x^{\prime}\right), z^{\prime} \in G\left(x^{\prime}\right)$. We assume that $F_{S}+\mathbb{R}_{+}^{m}$ is contingent derivable at $\left(x^{\prime}, y^{\prime}\right)$ and $G_{S}+\mathbb{R}_{+}^{k}$ is contingent derivable at $\left(x^{\prime}, z^{\prime}\right)$ with,

$$
\begin{array}{r}
\left(\left(e^{p \eta\left(S, x^{\prime}\right)}-\mathbf{1}\right) / p\right) \subseteq \operatorname{dom}\left(D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x^{\prime}, y^{\prime}\right)\right) \cap \operatorname{dom}\left(D\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x^{\prime}, z^{\prime}\right)\right) \\
\text { for } p \neq 0
\end{array}
$$

and

$$
\begin{array}{r}
\eta\left(S, x^{\prime}\right) \subseteq \operatorname{dom}\left(D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x^{\prime}, y^{\prime}\right)\right) \cap \operatorname{dom}\left(D\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x^{\prime}, z^{\prime}\right)\right) \\
\text { for } p=0
\end{array}
$$

For the primal problem (P), we consider a Mond-Weir type dual problem (MWD).

$$
\begin{align*}
\operatorname{maximize} & y^{\prime}  \tag{MWD}\\
\text { subject to } & y^{*} D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x^{\prime}, y^{\prime}\right)\left(\left(e^{p \eta\left(x, x^{\prime}\right)}-\mathbf{1}\right) / p\right) \\
& +z^{*} D\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x^{\prime}, z^{\prime}\right)\left(\left(e^{p \eta\left(x, x^{\prime}\right)}-\mathbf{1}\right) / p\right) \geq 0, \forall x \in S, \text { for } p \neq 0 \\
& y^{*} D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x^{\prime}, y^{\prime}\right)\left(\eta\left(x, x^{\prime}\right)\right) \\
& +z^{*}\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x^{\prime}, z^{\prime}\right)\left(\eta\left(x, x^{\prime}\right)\right) \geq 0, \forall x \in S, \text { for } p=0 \\
& z^{*} z^{\prime} \geq 0 \\
& y^{*} \mathbf{1}^{\prime}=1, y^{*} \in \mathbb{R}_{+}^{m} \backslash\left\{0_{\mathbb{R}^{m}}\right\}, \text { and } z^{*} \in \mathbb{R}_{+}^{k}
\end{align*}
$$

For single-valued optimization, we have the Mond-Weir type dual problem considered in [9].

$$
\begin{aligned}
\operatorname{maximize} & f\left(x^{\prime}\right) \\
\text { subject to } & y^{*} \nabla f\left(x^{\prime}\right)\left(\left(e^{p \eta\left(x, x^{\prime}\right)}-\mathbf{1}\right) / p\right) \\
& +z^{*} \nabla g\left(x^{\prime}\right)\left(\left(e^{p \eta\left(x, x^{\prime}\right)}-\mathbf{1}\right) / p\right) \geq 0, \forall x \in S, \text { for } p \neq 0 \\
& y^{*} \nabla f\left(x^{\prime}\right)\left(\eta\left(x, x^{\prime}\right)\right)+z^{*} \nabla g\left(x^{\prime}\right)\left(\eta\left(x, x^{\prime}\right)\right) \geq 0, \forall x \in S, \text { for } p=0 \\
& z^{*} g\left(x^{\prime}\right) \geq 0 \\
& y^{*} \mathbf{1}^{\prime}=1, y^{*} \in \mathbb{R}_{+}^{m} \backslash\left\{0_{\mathbb{R}^{m}}\right\}, \text { and } z^{*} \in \mathbb{R}_{+}^{k}
\end{aligned}
$$

This is the Mond-Weir type dual problem considered in [9].
Let $W_{1}=\left\{y^{\prime}:\left(x^{\prime}, y^{\prime}, z^{\prime}, y^{*}, z^{*}\right)\right.$ is a feasible point of (MWD) $\}$.

Definition 4.1. A feasible point $\left(x^{\prime}, y^{\prime}, z^{\prime}, y^{*}, z^{*}\right)$ of the problem (MWD) is said to be a weak maximizer of (MWD), if

$$
\left(y^{\prime}+\operatorname{int}\left(\mathbb{R}_{+}^{m}\right)\right) \cap W_{1}=\emptyset .
$$

Theorem 4.1. (Weak Duality) Let $\left(x_{0}, y_{0}\right)$ and $\left(x^{\prime}, y^{\prime}, z^{\prime}, y^{*}, z^{*}\right)$ be feasible points for the problems (P) and (MWD), respectively, with $z^{\prime} \in G\left(x^{\prime}\right) \cap\left(-\mathbb{R}_{+}^{k}\right)$. Assume that $F_{S}$ is $(p, r)-\rho_{1}-(\eta, \theta)$-invex at $\left(x^{\prime}, y^{\prime}\right)$ and $G_{S}$ is $(p, r)-\rho_{2}-(\eta, \theta)$-invex at $\left(x^{\prime}, z^{\prime}\right)$ with respect to same functions $\eta, \theta$ and $\rho_{1}+\rho_{2}\left(z^{*} \mathbf{1}^{\prime \prime}\right) \geq 0$. Then, we have

$$
y_{0} \nless y^{\prime} .
$$

Proof. We prove the theorem by the method of contradiction.
Suppose that $y_{0}<y^{\prime}$. Hence,

$$
e^{y_{0}}<e^{y^{\prime}} \Rightarrow \frac{1}{r} e^{r y_{0}}<\frac{1}{r} e^{r y^{\prime}} \Rightarrow\left(e^{r\left(y_{0}-y^{\prime}\right)}-\mathbf{1}^{\prime}\right) / r<\mathbf{0} .
$$

Since, $y^{*} \neq 0_{\mathbb{R}^{m}}$, we have

$$
y^{*}\left(e^{r\left(y_{0}-y^{\prime}\right)}-\mathbf{1}^{\prime}\right) / r<0 .
$$

As $x_{0} \in S$, there exists an element $z_{0} \in G\left(x_{0}\right) \cap\left(-\mathbb{R}_{+}^{k}\right)$.
Let $z^{*}=\left(z_{1}^{*}, \ldots, z_{k}^{*}\right), z_{0}=\left(z_{1}, \ldots, z_{k}\right)$, and $z^{\prime}=\left(z_{1}{ }^{\prime}, \ldots, z_{k}{ }^{\prime}\right)$.
Since, $z_{0} \in-\mathbb{R}_{+}^{k}$, we have

$$
z_{0} \leq \mathbf{0} \Rightarrow e^{z_{0}} \leq \mathbf{1}^{\prime \prime} \Rightarrow \frac{1}{r} e^{r z_{0}} \leq \frac{1}{r} \mathbf{1}^{\prime \prime} \Rightarrow\left(e^{r z_{0}}-\mathbf{1}^{\prime \prime}\right) / r \leq 0 .
$$

As $z^{\prime} \in-\mathbb{R}_{+}^{k}$ and $z^{*} \in \mathbb{R}_{+}^{k}$, we have

$$
z^{*} z^{\prime} \leq 0
$$

Again, from duality constraints, we have

$$
z^{*} z^{\prime} \geq 0
$$

Therefore,

$$
z^{*} z^{\prime}=0 .
$$

Now $z^{*} z^{\prime}=0, z^{\prime} \in-\mathbb{R}_{+}^{k}$ and $z^{*} \in \mathbb{R}_{+}^{k}$.
Consequently, if $z_{i}{ }^{\prime}<0$ for some $i$, where $1 \leq i \leq k$, then $z_{i}{ }^{*}=0$.
So, in this case,

$$
z_{i}^{*}\left(e^{r\left(z_{i}-z_{i}{ }^{\prime}\right)}-1\right) / r=0 .
$$

Again, if $z_{i}{ }^{\prime}=0$ for some $i$, where $1 \leq i \leq k$, then

$$
z_{i}^{*}\left(e^{r\left(z_{i}-z_{i}^{\prime}\right)}-1\right) / r=z_{i}^{*}\left(e^{r z_{i}}-1\right) / r \leq 0
$$

Combining both cases, we have

$$
z^{*}\left(e^{r\left(z_{0}-z^{\prime}\right)}-\mathbf{1}^{\prime \prime}\right) / r \leq 0
$$

So, we have

$$
\begin{equation*}
y^{*}\left(e^{r\left(y_{0}-y^{\prime}\right)}-\mathbf{1}^{\prime}\right) / r+z^{*}\left(e^{r\left(z_{0}-z^{\prime}\right)}-\mathbf{1}^{\prime \prime}\right) / r<0 \tag{4.6}
\end{equation*}
$$

As $F_{S}$ is $(p, r)-\rho_{1}-(\eta, \theta)$-invex at $\left(x^{\prime}, y^{\prime}\right)$ and $G_{S}$ is $(p, r)-\rho_{2}-(\eta, \theta)$-invex at $\left(x^{\prime}, z^{\prime}\right)$, we have

$$
\begin{equation*}
\left(e^{r\left(y_{0}-y^{\prime}\right)}-\mathbf{1}^{\prime}\right) / r \in D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(\left(x^{\prime}, y^{\prime}\right)\left(\left(e^{p \eta\left(x_{0}, x^{\prime}\right)}-\mathbf{1}\right) / p\right)+\rho\left\|\theta\left(x_{0}, x^{\prime}\right)\right\|^{2} \mathbf{1}^{\prime}\right. \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(e^{r\left(z_{0}-z^{\prime}\right)}-\mathbf{1}^{\prime \prime}\right) / r \in D\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x^{\prime}, z^{\prime}\right)\left(\left(e^{p \eta\left(x_{0}, x^{\prime}\right)}-\mathbf{1}\right) / p\right)+\rho\left\|\theta\left(x_{0}, x^{\prime}\right)\right\|^{2} \mathbf{1}^{\prime \prime} \tag{4.8}
\end{equation*}
$$

Hence, from (4.7), (4.8), and the conditions $y^{*} 1^{\prime}=1$ and $\rho_{1}+\rho_{2}\left(z^{*} 1^{\prime \prime}\right) \geq 0$, we have

$$
y^{*}\left(e^{r\left(y_{0}-y^{\prime}\right)}-\mathbf{1}^{\prime}\right) / r+z^{*}\left(e^{r\left(z_{0}-z^{\prime}\right)}-\mathbf{1}^{\prime \prime}\right) / r \geq 0
$$

This contradicts (4.6). Therefore

$$
y_{0} \nless y^{\prime} .
$$

Theorem 4.2. (Strong Duality) Let $\left(x_{0}, y_{0}\right)$ be a weak minimizer of the problem (P). Assume that for some $\left(y^{*}, z^{*}\right) \in \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{k}$, with $y^{*} \mathbf{1}^{\prime}=1$, Eqs. (3.1) and (3.2) are satisfied for some $z_{0} \in G\left(x_{0}\right) \cap\left(-\mathbb{R}_{+}^{k}\right)$. Then $\left(x_{0}, y_{0}, z_{0}, y^{*}, z^{*}\right)$ is a feasible solution for (MWD). Now if the Weak Duality Theorem 4.1 between (P) and (MWD) holds, then $\left(x_{0}, y_{0}, z_{0}, y^{*}, z^{*}\right)$ is a weak maximizer of (MWD).

Proof. Since the Eqs. (3.1) and (3.2) are satisfied, we have

$$
\begin{aligned}
& y^{*} D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right)\left(\left(e^{p \eta\left(x, x_{0}\right)}-\mathbf{1}\right) / p\right) \\
& +z^{*} D\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x_{0}, z_{0}\right)\left(\left(e^{p \eta\left(x, x_{0}\right)}-\mathbf{1}\right) / p\right) \geq 0, \forall x \in S, \text { for } p \neq 0 \\
& y^{*} D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x_{0}, y_{0}\right) \eta\left(x, x_{0}\right) \\
& +z^{*} D\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x_{0}, z_{0}\right) \eta\left(x, x_{0}\right) \geq 0, \forall x \in S, \text { for } p=0
\end{aligned}
$$

and

$$
z^{*} z_{0}=0 .
$$

Hence, $\left(x_{0}, y_{0}, z_{0}, y^{*}, z^{*}\right)$ is a feasible solution for (MWD).
Next, we show that,

$$
\left(y_{0}+\operatorname{int}\left(\mathbb{R}_{+}^{m}\right)\right) \cap W_{1}=\emptyset .
$$

We prove it by the method of contradiction.
Let $y^{\prime} \in\left(y_{0}+\operatorname{int}\left(\mathbb{R}_{+}^{m}\right)\right) \cap W_{1}$.
Therefore,

$$
y^{\prime}-y_{0} \in \operatorname{int}\left(\mathbb{R}_{+}^{m}\right) \Rightarrow y_{0}<y^{\prime}
$$

This contradicts the Weak Duality Theorem 4.1 between (P) and (MWD).
Therefore,

$$
\left(y_{0}+\operatorname{int}\left(\mathbb{R}_{+}^{m}\right)\right) \cap W_{1}=\emptyset
$$

Hence, $\left(x_{0}, y_{0}, z_{0}, y^{*}, z^{*}\right)$ is a weak maximizer for (MWD).
Theorem 4.3. (Converse Duality) Let $\left(x^{\prime}, y^{\prime}, z^{\prime}, y^{*}, z^{*}\right)$ be a weak maximizer of the problem (MWD) with $z^{\prime} \in G\left(x^{\prime}\right) \cap\left(-\mathbb{R}_{+}^{k}\right)$. Assume that $F_{S}$ is $(p, r)-\rho_{1^{-}}$ $(\eta, \theta)$-invex at $\left(x^{\prime}, y^{\prime}\right)$ and $G_{S}$ is $(p, r)-\rho_{2}-(\eta, \theta)$-invex at $\left(x^{\prime}, z^{\prime}\right)$ with respect to same functions $\eta$ and $\theta$ and $\rho_{1}+\rho_{2}\left(z^{*} \mathbf{1}^{\prime \prime}\right) \geq 0$. Then $\left(x^{\prime}, y^{\prime}\right)$ is a weak minimizer of ( P ).

Proof. Clearly, $\left(x^{\prime}, y^{\prime}\right)$ is a feasible solution of the problem ( P ).
Let $\left(x^{\prime}, y^{\prime}\right)$ be not a weak minimzer of the problem (P).
Then,

$$
\left(y^{\prime}-\operatorname{int}\left(\mathbb{R}_{+}^{m}\right)\right) \cap F(S) \neq \emptyset
$$

So, there exist $x \in S$ and $y \in F(x)$, such that

$$
y^{\prime}-y \in \operatorname{int}\left(\mathbb{R}_{+}^{m}\right) \text { i.e., } y<y^{\prime} .
$$

Hence,

$$
e^{y}<e^{y^{\prime}} \Rightarrow \frac{1}{r} e^{r y}<\frac{1}{r} e^{r y^{\prime}} \Rightarrow\left(e^{r\left(y-y^{\prime}\right)}-\mathbf{1}^{\prime}\right) / r<\mathbf{0}^{\prime}
$$

Since, $y^{*} \neq 0_{\mathbb{R}^{m}}$, we have

$$
y^{*}\left(e^{r\left(y-y^{\prime}\right)}-\mathbf{1}^{\prime}\right) / r<0
$$

As $x \in S$, there exists an element $z \in G(x) \cap\left(-\mathbb{R}_{+}^{k}\right)$.
Let $z^{*}=\left(z_{1}^{*}, \ldots, z_{k}^{*}\right), z=\left(z_{1}, \ldots, z_{k}\right)$, and $z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{k}{ }^{\prime}\right)$.
Since, $z \in-\mathbb{R}_{+}^{k}$, we have

$$
z \leq \mathbf{0}^{\prime \prime} \Rightarrow e^{z} \leq \mathbf{1}^{\prime \prime} \Rightarrow \frac{1}{r} e^{r z} \leq \frac{1}{r} \mathbf{1}^{\prime \prime} \Rightarrow\left(e^{r z}-\mathbf{1}^{\prime \prime}\right) / r \leq 0 .
$$

As $z^{\prime} \in-\mathbb{R}_{+}^{k}$ and $z^{*} \in \mathbb{R}_{+}^{k}$, we have

$$
z^{*} z^{\prime} \leq 0
$$

Again, from duality constraints we have

$$
z^{*} z^{\prime} \geq 0
$$

Therefore,

$$
z^{*} z^{\prime}=0
$$

Now $z^{*} z^{\prime}=0, z^{\prime} \in-\mathbb{R}_{+}^{k}$ and $z^{*} \in \mathbb{R}_{+}^{k}$.
Therefore, if $z_{i}{ }^{\prime}<0$ for some $i$, where $1 \leq i \leq k$, then $z_{i}{ }^{*}=0$.
So, in this case,

$$
z_{i}^{*}\left(e^{r\left(z_{i}-z_{i}{ }^{\prime}\right)}-1\right) / r=0 .
$$

Again, if $z_{i}{ }^{\prime}=0$ for some $i$, where $1 \leq i \leq k$, then

$$
z_{i}^{*}\left(e^{r\left(z_{i}-z_{i}^{\prime}\right)}-1\right) / r=z_{i}^{*}\left(e^{r z_{i}}-1\right) / r \leq 0
$$

Combining both cases, we have

$$
z^{*}\left(e^{r\left(z-z^{\prime}\right)}-\mathbf{1}^{\prime \prime}\right) / r \leq 0 .
$$

Therefore, we have

$$
\begin{equation*}
y^{*}\left(e^{r\left(y-y^{\prime}\right)}-\mathbf{1}^{\prime}\right) / r+z^{*}\left(e^{r\left(z-z^{\prime}\right)}-\mathbf{1}^{\prime \prime}\right) / r<0 . \tag{4.9}
\end{equation*}
$$

As $F_{S}$ is $(p, r)-\rho_{1}-(\eta, \theta)$-invex at $\left(x^{\prime}, y^{\prime}\right)$ and $G_{S}$ is $(p, r)-\rho_{2}-(\eta, \theta)$-invex at $\left(x^{\prime}, z^{\prime}\right)$, we have

$$
\begin{equation*}
\left(e^{r\left(y-y^{\prime}\right)}-\mathbf{1}^{\prime}\right) / r \in D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x^{\prime}, y^{\prime}\right) \eta\left(x, x^{\prime}\right)+\rho\left\|\theta\left(x, x^{\prime}\right)\right\|^{2} \mathbf{1}^{\prime} \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(e^{r\left(z-z^{\prime}\right)}-\mathbf{1}^{\prime \prime}\right) / r \in D\left(G_{S}+\mathbb{R}_{+}^{p}\right)\left(x^{\prime}, z^{\prime}\right) \eta\left(x, x^{\prime}\right)+\rho\left\|\theta\left(x, x^{\prime}\right)\right\|^{2} \mathbf{1}^{\prime \prime} \tag{4.11}
\end{equation*}
$$

Hence, from (4.10), (4.11), and the conditions $y^{*} \mathbf{1}^{\prime}=1$ and $\rho_{1}+\rho_{2}\left(z^{*} \mathbf{1}^{\prime \prime}\right) \geq 0$, we have

$$
y^{*}\left(e^{r\left(y-y^{\prime}\right)}-\mathbf{1}^{\prime}\right) / r+z^{*}\left(e^{r\left(z-z^{\prime}\right)}-\mathbf{1}^{\prime \prime}\right) / r \geq 0 .
$$

This contradicts (4.9).
Hence, $\left(x^{\prime}, y^{\prime}\right)$ is a weak minimizer of $(\mathrm{P})$.

### 4.1. Wolfe Type Duality

For the primal problem (P), we consider a Wolfe type dual problem (WD).

$$
\begin{aligned}
\operatorname{maximize} & y^{\prime}+\left(z^{*} z^{\prime}\right) \mathbf{1}^{\prime} \\
\text { subject to } & y^{*} D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x^{\prime}, y^{\prime}\right)\left(\left(e^{p \eta\left(x, x^{\prime}\right)}-\mathbf{1}\right) / p\right) \\
& +z^{*} D\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x^{\prime}, z^{\prime}\right)\left(\left(e^{p \eta\left(x, x^{\prime}\right)}-\mathbf{1}\right) / p\right) \geq 0, \forall x \in S, \text { for } p \neq 0, \\
& y^{*} D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x^{\prime}, y^{\prime}\right)\left(\eta\left(x, x^{\prime}\right)\right) \\
& +z^{*} D\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x^{\prime}, z^{\prime}\right)\left(\eta\left(x, x^{\prime}\right)\right) \geq 0, \forall x \in S, \text { for } p=0, \\
& y^{*} \mathbf{1}^{\prime}=1, y^{*} \in \mathbb{R}_{+}^{m} \backslash\left\{0_{\mathbb{R}^{m}}\right\}, \text { and } z^{*} \in \mathbb{R}_{+}^{k} .
\end{aligned}
$$

For single-valued optimization, we have Wolfe type dual problem as

$$
\begin{aligned}
\operatorname{maximize} & f\left(x^{\prime}\right)+\left(z^{*} g\left(z^{\prime}\right)\right) \mathbf{1}^{\prime} \\
\text { subject to } & y^{*} \nabla f\left(x^{\prime}\right)\left(\left(e^{p \eta\left(x, x^{\prime}\right)}-\mathbf{1}\right) / p\right) \\
& +z^{*} \nabla g\left(x^{\prime}\right)\left(\left(e^{p \eta\left(x, x^{\prime}\right)}-\mathbf{1}\right) / p\right) \geq 0, \forall x \in S, \text { for } p \neq 0, \\
& y^{*} \nabla f\left(x^{\prime}\right)\left(\eta\left(x, x^{\prime}\right)\right)+z^{*} \nabla g\left(x^{\prime}\right)\left(\eta\left(x, x^{\prime}\right)\right) \geq 0, \forall x \in S, \text { for } p=0, \\
& y^{*} \mathbf{1}^{\prime}=1, y^{*} \in \mathbb{R}_{+}^{m} \backslash\left\{0_{\mathbb{R}^{m}}\right\}, \text { and } z^{*} \in \mathbb{R}_{+}^{k} .
\end{aligned}
$$

This is the Wolfe type dual problem considered in [9].
Let $W_{2}=\left\{y^{\prime}+\left(z^{*} z^{\prime}\right) \mathbf{1}^{\prime}:\left(x^{\prime}, y^{\prime}, z^{\prime}, y^{*}, z^{*}\right)\right.$ is a feasible point of (WD) $\}$.
Definition 4.2. A feasible point $\left(x^{\prime}, y^{\prime}, z^{\prime}, y^{*}, z^{*}\right)$ of the problem (WD) is said to be a weak maximizer of (WD), if

$$
\left(y^{\prime}+\left(z^{*} z^{\prime}\right) \mathbf{1}^{\prime}+\operatorname{int}\left(\mathbb{R}_{+}^{m}\right)\right) \cap W_{2}=\emptyset
$$

We prove the duality results of Wolfe type of the problem (P). The proofs are very similar to Theorems 4.1--4.3, and hence omitted.

Theorem 4.4. (Weak Duality) Let $\left(x_{0}, y_{0}\right)$ and $\left(x^{\prime}, y^{\prime}, z^{\prime}, y^{*}, z^{*}\right)$ be feasible points for the problems $(\mathrm{P})$ and (WD) respectively. Assume that $F_{S}$ is $(p, 0)-\rho_{1}-(\eta, \theta)$ invex at $\left(x^{\prime}, y^{\prime}\right)$ and $G_{S}$ is $(p, 0)-\rho_{2}-(\eta, \theta)$-invex at $\left(x^{\prime}, z^{\prime}\right)$ with respect to same functions $\eta$ and $\theta$ and $\rho_{1}+\rho_{2}\left(z^{*} e^{\prime}\right) \geq 0$. Then, we have

$$
y_{0} \nless y^{\prime}+\left(z^{*} z^{\prime}\right) \mathbf{1}^{\prime} .
$$

Theorem 4.5. (Strong Duality) Let $\left(x_{0}, y_{0}\right)$ be a weak minimizer of the problem (P). Assume that for some $\left(y^{*}, z^{*}\right) \in \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{k}$, with $y^{*} \mathbf{1}^{\prime}=1$, Eqs. (3.1) and (3.2)
are satisfied for some $z_{0} \in G\left(x_{0}\right) \cap\left(-\mathbb{R}_{+}^{k}\right)$. Then $\left(x_{0}, y_{0}, z_{0}, y^{*}, z^{*}\right)$ is a feasible solution for (WD). Now if the Weak Duality Theorem 4.4 between (P) and (WD) holds, then $\left(x_{0}, y_{0}, z_{0}, y^{*}, z^{*}\right)$ is a weak maximizer of (WD).

Theorem 4.6. (Converse Duality) Let $\left(x^{\prime}, y^{\prime}, z^{\prime}, y^{*}, z^{*}\right)$ be a weak maximizer of the problem (WD) with $z^{*} z^{\prime}=0$. Assume that $F_{S}$ is $(p, 0)-\rho_{1}-(\eta, \theta)$-invex at $\left(x^{\prime}, y^{\prime}\right)$ and $G_{S}$ is $(p, 0)-\rho_{2}-(\eta, \theta)$-invex at $\left(x^{\prime}, z^{\prime}\right)$ with respect to same functions $\eta$ and $\theta$ and $\rho_{1}+\rho_{2}\left(z^{*} \mathbf{1}^{\prime \prime}\right) \geq 0$. Then $\left(x^{\prime}, y^{\prime}\right)$ is a weak minimizer of (P).

### 4.2. Mixed Type Duality

For the primal problem $(\mathrm{P})$, we consider a mixed type dual problem (Mix D$)$.

$$
\begin{aligned}
\operatorname{maximize} & y^{\prime}+\left(z^{*} z^{\prime}\right) \mathbf{1}^{\prime} \\
\text { subject to } & y^{*} D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x^{\prime}, y^{\prime}\right)\left(\left(e^{p \eta\left(x, x^{\prime}\right)}-\mathbf{1}\right) / p\right) \\
& +z^{*} D\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x^{\prime}, z^{\prime}\right)\left(\left(e^{p \eta\left(x, x^{\prime}\right)}-\mathbf{1}\right) / p\right) \geq 0, \forall x \in S, \text { for } p \neq 0, \\
& y^{*} D\left(F_{S}+\mathbb{R}_{+}^{m}\right)\left(x^{\prime}, y^{\prime}\right)\left(\eta\left(x, x^{\prime}\right)\right) \\
& +z^{*} D\left(G_{S}+\mathbb{R}_{+}^{k}\right)\left(x^{\prime}, z^{\prime}\right)\left(\eta\left(x, x^{\prime}\right)\right) \geq 0, \forall x \in S, \text { for } p=0, \\
& z^{*} z^{\prime} \geq 0, \\
& y^{*} \mathbf{1}^{\prime}=1, y^{*} \in \mathbb{R}_{+}^{m} \backslash\left\{0_{\mathbb{R}^{m}}\right\}, \text { and } z^{*} \in \mathbb{R}_{+}^{k} .
\end{aligned}
$$

For single-valued optimization, we have the mixed type dual problem as

$$
\begin{aligned}
\operatorname{maximize} & f\left(x^{\prime}\right)+\left(z^{*} g\left(z^{\prime}\right)\right) \mathbf{1}^{\prime} \\
\text { subject to } & y^{*} \nabla f\left(x^{\prime}\right)\left(\left(e^{p \eta\left(x, x^{\prime}\right)}-\mathbf{1}\right) / p\right) \\
& +z^{*} \nabla g\left(x^{\prime}\right)\left(\left(e^{p \eta\left(x, x^{\prime}\right)}-\mathbf{1}\right) / p\right) \geq 0, \forall x \in S, \text { for } p \neq 0 \\
& y^{*} \nabla f\left(x^{\prime}\right)\left(\eta\left(x, x^{\prime}\right)\right)+z^{*} \nabla g\left(x^{\prime}\right)\left(\eta\left(x, x^{\prime}\right)\right) \geq 0, \forall x \in S, \text { for } p=0, \\
& z^{*} g\left(x^{\prime}\right) \geq 0 \\
& y^{*} \mathbf{1}^{\prime}=1, y^{*} \in \mathbb{R}_{+}^{m} \backslash\left\{0_{\mathbb{R}^{m}}\right\}, \text { and } z^{*} \in \mathbb{R}_{+}^{k}
\end{aligned}
$$

This is the mixed type dual problem considered in [9].
Let $W_{3}=\left\{y^{\prime}+\left(z^{*} z^{\prime}\right) \mathbf{1}^{\prime}:\left(x^{\prime}, y^{\prime}, z^{\prime}, y^{*}, z^{*}\right)\right.$ is a feasible point of (Mix D) .
Definition 4.3. A feasible point $\left(x^{\prime}, y^{\prime}, z^{\prime}, y^{*}, z^{*}\right)$ of the problem (Mix D) is said to be a weak maximizer of (Mix D), if

$$
\left(y^{\prime}+\left(z^{*} z^{\prime}\right) \mathbf{1}^{\prime}+\operatorname{int}\left(\mathbb{R}_{+}^{m}\right)\right) \cap W_{3}=\emptyset
$$

We prove the duality results of mixed type of the problem (P). The proofs are very similar to Theorems 4.1--4.3, and hence omitted.

Theorem 4.7. (Weak Duality) Let $\left(x_{0}, y_{0}\right)$ and $\left(x^{\prime}, y^{\prime}, z^{\prime}, y^{*}, z^{*}\right)$ be feasible points for the problems ( P ) and (Mix D) respectively with $z^{\prime} \in G\left(x^{\prime}\right) \cap\left(-\mathbb{R}_{+}^{k}\right)$. Assume that $F_{S}$ is $(p, r)-\rho_{1}-(\eta, \theta)$-invex at $\left(x^{\prime}, y^{\prime}\right)$ and $G_{S}$ is $(p, r)-\rho_{2}-(\eta, \theta)$-invex at $\left(x^{\prime}, z^{\prime}\right)$ with respect to same functions $\eta$ and $\theta$ and $\rho_{1}+\rho_{2}\left(z^{*} \mathbf{1}^{\prime \prime}\right) \geq 0$. Then, we have

$$
y_{0} \nless y^{\prime}+\left(z^{*} z^{\prime}\right) \mathbf{1}^{\prime} .
$$

Theorem 4.8. (Strong Duality) Let $\left(x_{0}, y_{0}\right)$ be a weak minimizer of the problem (P). Assume that for some $\left(y^{*}, z^{*}\right) \in \mathbb{R}_{+}^{m} \times \mathbb{R}_{+}^{k}$, with $y^{*} \mathbf{1}^{\prime}=1$, Eqs. (3.1) and (3.2) are satisfied for some $z_{0} \in G\left(x_{0}\right) \cap\left(-\mathbb{R}_{+}^{k}\right)$. Then $\left(x_{0}, y_{0}, z_{0}, y^{*}, z^{*}\right)$ is a feasible solution for (Mix D). Now if the Weak Duality Theorem 4.7 between (P) and (Mix D) holds, then $\left(x_{0}, y_{0}, z_{0}, y^{*}, z^{*}\right)$ is a weak maximizer of (Mix D ).

Theorem 4.9. (Converse Duality) Let $\left(x^{\prime}, y^{\prime}, z^{\prime}, y^{*}, z^{*}\right)$ be a weak maximizer of the problem (Mix D) with $z^{\prime} \in G\left(x^{\prime}\right) \cap\left(-\mathbb{R}_{+}^{p}\right)$. Assume that $F_{S}$ is $(p, r)-\rho_{1^{-}}$ $(\eta, \theta)$-invex at $\left(x^{\prime}, y^{\prime}\right)$ and $G_{S}$ is $(p, r)-\rho_{2}-(\eta, \theta)$-invex at $\left(x^{\prime}, z^{\prime}\right)$ with respect to same functions $\eta$ and $\theta$ and $\rho_{1}+\rho_{2}\left(z^{*} \mathbf{1}^{\prime \prime}\right) \geq 0$. Then $\left(x^{\prime}, y^{\prime}\right)$ is a weak minimizer of (P).

## 5. Conclusions

In this paper, we study set-valued optimization problems with $(p, r)-\rho-(\eta, \theta)$-invexity assumptions. We derive the sufficient optimality conditions and study the duality results of Mond-Weir type under the stated $(p, r)-\rho-(\eta, \theta)$-invexity assumptions. We also construct an example to ensure that $(p, r)-\rho-(\eta, \theta)$-invexity is more general than invexity. For special case, our results reduce to the existing ones available in singlevalued optimization problems.

## References

[1] T. Antczak, ( $p, r$ )-invex sets and functions, J. Math. Anal. Appl. 263, 2 (2001), 355-379.
[2] T. Antczak, ( $p, r$ )-invexity in multiobjective programming, Eur. J. Oper. Res. 152, 1 (2004), 72-87.
[3] J. P. Aubin, H. Frankowska, Set-Valued Analysis, Birhäuser, Boston (1990).
[4] H. W. Corley, Optimality conditions for maximizations of set-valued functions, J. Optim. Theory Appl. 58, 1 (1988), 1-10.
[5] K. Das, C. Nahak, Sufficient optimality conditions and duality theorems for set-valued optimization problem under generalized cone convexity, Rend. Circ. Mat. Palermo (1952-) 63, 3 (2014), 329-345.
[6] K. Das, C. Nahak, Set-valued fractional programming problems under generalized cone convexity, Opsearch 53, 1 (2016), 157-177.
[7] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80, 2 (1981), 545-550.
[8] J. Jahn, Vector Optimization: Theory, Applications, and Extensions, SpringerVerlag, Berlin (2004).
[9] P. Mandal, C. Nahak, $(p, r)-\rho-(\eta, \theta)$-invexity in multiobjective programming problems, Int. J. Optim. Theory Methods Appl. 2, 4 (2010), 273-282.
[10] P. H. Sach, B. D. Craven, Invex multifunctions and duality, Numer. Func. Anal. Opt. 12, 5-6 (1991), 575-591.
[11] P. H. Sach, and B. D. Craven, Invexity in multifunction optimization, Numer. Func. Anal. Opt. 12, 3-4 (1991), 383-394.

Koushik Das
Department of Mathematics,
Taki Government College,
Taki - 743 429, West Bengal, India
email: koushikdas.maths@gmail.com
Chandal Nahak
Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur - 721 302, West Bengal, India
email: cnahak@maths.iitkgp.ernet.in

