# ON STAR COLORING OF DEGREE SPLITTING OF TENSOR PRODUCT OF GRAPHS 

S.Ulagammal, Vernold Vivin.J


#### Abstract

A star coloring of a graph $G$ is a proper vertex coloring which states that every path on four vertices in $G$ is in excess of two dissimilar colors. The star chromatic number $\chi_{s}(G)$ of $G$ is the fewest number of colors that require to star color $G$. Let $G=(V, E)$ graph with $V_{i}$ denote the set of all vertices of degree $i$, the degree splitting graph $D S(G)$ is obtained from $G$ by adding new vertices $w_{i}$ for each $V_{i}$ with $\left|V_{i}\right| \geq 2$, and joining $w_{i}$ with every vertex in $V_{i}$. In this note, we obtain the star chromatic number of degree splitting of tensor product of path with complete graph, wheel graph, cycle graph, complete bipartite graph and path graph.


2010 Mathematics Subject Classification: 05C15, 05C75
Keywords: star coloring, degree splitting graph, tensor product.

## 1. Introduction

Throughout this paper, the graphs are considered to be finite, simple, connected and undirected $[2,6]$.

The idea of star chromatic number was introduced by Grünbaum in 1973 [5]. A star coloring of a graph $G$ is a proper vertex coloring which states that every path on four vertices in $G$ is in excess of two dissimilar colors. The star chromatic number $\chi_{s}(G)$ of $G$ is the fewest number of colors that require to star color $G$.

The exact value of the star chromatic number for trees, cycles, complete bipartite graphs, outer planar graphs and 2-dimensional grids was showed by Guillaume Fertin et al. [4] and also they gave bounds for the star chromatic number of other families of graphs, such as planar graphs, hypercubes, $d$-dimensional grids ( $d \geq 3$ ), $d$-dimensional tori $(d \geq 2)$, graphs with bounded treewidth and cubic graphs.

Albertson et al. [1] showed that it is NP-complete to determine whether $\chi_{s}(G) \leq$ 3 , even when $G$ is a graph that is both planar and bipartite. Coleman and More [3] proved that finding an optimal star coloring is NP-hard and remain so even for bipartite graphs.

## 2. Preliminaries

Definition 1. A graph $G$ is complete if every pair of distinct vertices of $G$ are adjacent in $G$. A complete graph with $n$ vertices is denoted by $K_{n}$.

Definition 2. A trail is called a path $P_{m}$ if all its vertices are distinct.
Definition 3. A closed trail whose origin and internal vertices are distinct is called a cycle $C_{n}$.

Definition 4. A wheel $W_{n}$ is defined as $K_{1}+C_{n-1}, n \geq 4$.
Definition 5. A bipartite graph $G$ is a graph whose vertex $V(G)$ can be partitioned into two subsets $V_{1}$ and $V_{2}$ such that every edge of $G$ has one end in $V_{1}$ and the other end in $V_{2} ;\left(V_{1}, V_{2}\right)$ is called a bipartite of $G$. Further, if every vertex of $V_{1}$ is joined to all the vertices of $V_{2}$, then $G$ is called a complete bipartite graph. The complete bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$ such that $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$ is denoted by $K_{m, n}$.

Definition 6. [7] Given a graph $G=(V, E)$ with $V(G)=S_{1} \cup S_{2} \cup S_{3} \cup \ldots S_{t} \cup T$ where each $S_{i}$ is a set of all vertices of the same degree with at least two elements and $T=V(G)-\bigcup_{i=1}^{t} S_{i}$. Thus to construct the degree splitting graph of $G$, add new vertices $w_{1}, w_{2}, \ldots w_{t}$ and join $w_{i}$ to each vertex of $S_{i}$ for $1 \leq i \leq t$. The degree splitting graph of $G$ is denoted by $D S(G)$.

Definition 7. [8] The tensor product of two graphs $G_{1}$ and $G_{2}$ denoted by $G_{1} \times G_{2}$ has the vertex set $V\left(G_{1} \times G_{2}\right)$ and the edge set

$$
E\left(G_{1} \times G_{2}\right)=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right): u_{1} u_{2} \in E\left(G_{1}\right) \text { and } v_{1} v_{2} \in E\left(G_{2}\right)\right\}
$$

## 3. Main Results

In this section, we construe the star coloring of degree splitting of tensor product of path with complete graph, wheel graph, cycle graph, complete bipartite graph and path graph.

### 3.1. Star coloring of degree splitting of tensor product of path with complete graph

Theorem 1. Let $P_{m}$ be a path graph with $m \geq 4$ and $K_{n}$ be a complete graph with $n \geq 3$, then

$$
\chi_{s}\left(D S\left(P_{m} \times K_{n}\right)\right)=2 n+2
$$

Proof. Let $P_{m}$ be a path graph and $K_{n}$ be a complete graph. Let the tensor product of path with complete graph be denoted by $P_{m} \times K_{n}$. Then the vertex set of $\left|V\left(P_{m} \times K_{n}\right)\right|=m n$. We have,

$$
V\left(P_{m} \times K_{n}\right)=\left\{\begin{array}{cccc}
\left(u_{1}, v_{1}\right) & \left(u_{1}, v_{2}\right) & \ldots & \left(u_{1}, v_{n}\right) \\
\left(u_{2}, v_{1}\right) & \left(u_{2}, v_{2}\right) & \ldots & \left(u_{2}, v_{n}\right) \\
\vdots & \vdots & & \vdots \\
\left(u_{n}, v_{1}\right) & \left(u_{n}, v_{2}\right) & \ldots & \left(u_{n}, v_{n}\right)
\end{array}\right\}=S_{1} \cup S_{2}
$$

where

$$
S_{1}=\left\{\left(u_{i}, v_{j}\right): i=1, m \text { and } 1 \leq j \leq n\right\} .
$$

and

$$
S_{2}=\left\{\left(u_{i}, v_{j}\right): 2 \leq i \leq m-1 \text { and } 1 \leq j \leq n\right\} .
$$

To obtain $D S\left(P_{m} \times K_{n}\right)$ from $P_{m} \times K_{n}$, we add two vertices $w_{1}$ and $w_{2}$ corresponding to $S_{1}$ and $S_{2}$, respectively. Thus we get

$$
V\left(D S\left(P_{m} \times K_{n}\right)=V\left(P_{m} \times K_{n}\right) \cup\left\{w_{1}, w_{2}\right\} .\right.
$$

Now, we assign the star coloring as follows:
For $1 \leq i \leq m$ and for every $1 \leq j \leq n$
When $i \equiv 1(\bmod 3)$

$$
c\left(u_{i}, v_{j}\right)=1
$$

When $i \equiv 2(\bmod 3)$

$$
c\left(u_{i}, v_{j}\right)=j+1
$$

When $i \equiv 0(\bmod 3)$

$$
c\left(u_{i}, v_{j}\right)=n+j+1
$$

and also assign

$$
c\left(w_{1}\right)=c\left(w_{2}\right)=2 n+2 .
$$

Thus the star coloring for degree splitting of tensor product of path with complete graph is $2 n+2$.

### 3.2. Star coloring of degree splitting of tensor product of path with wheel graph

Theorem 2. Let $P_{m}$ be a path graph with $m \geq 4$ and $W_{n}$ be a complete graph with $n \geq 4$, then

$$
\chi_{s}\left(D S\left(P_{m} \times W_{n}\right)\right)=2 n+2 .
$$

Proof. Let $P_{m}$ be a path graph and $W_{n}$ be a wheel graph. Let the tensor product of path with wheel graph be denoted by $P_{m} \times W_{n}$. Then the vertex set of $\left|V\left(P_{m} \times W_{n}\right)\right|=m n$.
We have,

$$
V\left(P_{m} \times W_{n}\right)=\left\{\begin{array}{cccc}
\left(u_{1}, v_{1}\right) & \left(u_{1}, v_{2}\right) & \ldots & \left(u_{1}, v_{n}\right) \\
\left(u_{2}, v_{1}\right) & \left(u_{2}, v_{2}\right) & \ldots & \left(u_{2}, v_{n}\right) \\
\vdots & \vdots & & \vdots \\
\left(u_{n}, v_{1}\right) & \left(u_{n}, v_{2}\right) & \ldots & \left(u_{n}, v_{n}\right)
\end{array}\right\}=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}
$$

where

$$
\begin{gathered}
S_{1}=\left\{\left(u_{i}, v_{j}\right): i=1, m \text { and } 1 \leq j \leq n-1\right\} . \\
S_{2}=\left\{\left(u_{i}, v_{j}\right): 2 \leq i \leq m-1 \text { and } 1 \leq j \leq n-1\right\}, \\
S_{3}=\left\{\left(u_{i}, v_{j}\right): 2 \leq i \leq m-1 \text { and } j=n\right\}
\end{gathered}
$$

and

$$
S_{4}=\left\{\left(u_{i}, v_{j}\right): i=1, m \text { and } j=n\right\} .
$$

To obtain $D S\left(P_{m} \times W_{n}\right)$ from $P_{m} \times W_{n}$, we add four vertices $w_{1}, w_{2}, w_{3}$ and $w_{4}$ corresponding to $S_{1}, S_{2}, S_{3}$ and $S_{4}$, respectively. Thus we get

$$
V\left(D S\left(P_{m} \times W_{n}\right)=V\left(P_{m} \times W_{n}\right) \cup\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\} .\right.
$$

Now, we assign the star coloring as follows:
For $1 \leq i \leq m$ and for every $1 \leq j \leq n$
When $i \equiv 1(\bmod 3)$

$$
c\left(u_{i}, v_{j}\right)=1
$$

When $i \equiv 2(\bmod 3)$

$$
c\left(u_{i}, v_{j}\right)=j+1
$$

When $i \equiv 0(\bmod 3)$

$$
c\left(u_{i}, v_{j}\right)=n+j+1
$$

and also assign

$$
c\left(w_{1}\right)=c\left(w_{2}\right)=c\left(w_{3}\right)=c\left(w_{4}\right)=2 n+2 .
$$

Thus the star coloring for degree splitting of tensor product of path with wheel graph is $2 n+2$.

### 3.3. Star coloring of degree splitting of tensor product of path with cycle graph

Theorem 3. Let $P_{m}$ be a path graph with $m \geq 4$ and $C_{n}$ be a cycle graph with $n \geq 3$, then

$$
\chi_{s}\left(D S\left(P_{m} \times C_{n}\right)\right)=7 .
$$

Proof. Let $P_{m}$ be a path graph and $C_{n}$ be a cycle graph. Let the tensor product of path with cycle graph be denoted by $P_{m} \times C_{n}$. Then the vertex set of $\left|V\left(P_{m} \times C_{n}\right)\right|=m n$.
We have,

$$
V\left(P_{m} \times C_{n}\right)=\left\{\begin{array}{cccc}
\left(u_{1}, v_{1}\right) & \left(u_{1}, v_{2}\right) & \ldots & \left(u_{1}, v_{n}\right) \\
\left(u_{2}, v_{1}\right) & \left(u_{2}, v_{2}\right) & \ldots & \left(u_{2}, v_{n}\right) \\
\vdots & \vdots & & \vdots \\
\left(u_{n}, v_{1}\right) & \left(u_{n}, v_{2}\right) & \ldots & \left(u_{n}, v_{n}\right)
\end{array}\right\}=S_{1} \cup S_{2}
$$

where

$$
S_{1}=\left\{\left(u_{i}, v_{j}\right): i=1, m \text { and } 1 \leq j \leq n\right\}
$$

and

$$
S_{2}=\left\{\left(u_{i}, v_{j}\right): 2 \leq i \leq m-1 ; 1 \leq j \leq n\right\},
$$

To obtain $D S\left(P_{m} \times C_{n}\right)$ from $P_{m} \times C_{n}$, we add two vertices $w_{1}$, and $w_{2}$, corresponding to $S_{1}$ and $S_{2}$, respectively. Thus we get

$$
V\left(D S\left(P_{m} \times C_{n}\right)=V\left(P_{m} \times C_{n}\right) \cup\left\{w_{1}, w_{2}\right\} .\right.
$$

Now, we assign the star coloring as follows:
For $1 \leq i \leq m$
Case $(\mathbf{i})$ : When $n \equiv 0(\bmod 3)$ and When $n \equiv 1(\bmod 3)$
For $i \equiv 1(\bmod 3)$

$$
c\left(u_{i}, v_{j}\right)=1
$$

For $i \equiv 2(\bmod 3)$

$$
c\left(u_{i}, v_{j}\right)=\left\{\begin{array}{lll}
2, & \text { if } & j \equiv 1(\bmod 3) \\
4, & \text { if } & j \equiv 2(\bmod 3) \\
6, & \text { if } & j \equiv 0(\bmod 3)
\end{array}\right.
$$

For $i \equiv 0(\bmod 3)$

$$
c\left(u_{i}, v_{j}\right)=\left\{\begin{array}{lll}
3, & \text { if } & j \equiv 1(\bmod 3) \\
4, & \text { if } & j \equiv 2(\bmod 3) \\
5, & \text { if } & j \equiv 0(\bmod 3)
\end{array}\right.
$$

Case (ii): When $n \equiv 2(\bmod 3)$
For every $1 \leq j \leq n-1$
For $i \equiv 1(\bmod 3)$

$$
c\left(u_{i}, v_{j}\right)=1
$$

For $i \equiv 2(\bmod 3)$

$$
c\left(u_{i}, v_{j}\right)=\left\{\begin{array}{lll}
2, & \text { if } & j \equiv 1(\bmod 3) \\
4, & \text { if } & j \equiv 2(\bmod 3) \\
6, & \text { if } & j \equiv 0(\bmod 3)
\end{array}\right.
$$

For $i \equiv 0(\bmod 3)$

$$
c\left(u_{i}, v_{j}\right)=\left\{\begin{array}{lll}
3, & \text { if } & j \equiv 1(\bmod 3) \\
4, & \text { if } & j \equiv 2(\bmod 3) \\
5, & \text { if } & j \equiv 0(\bmod 3)
\end{array}\right.
$$

and

$$
c\left(u_{i}, v_{n}\right)= \begin{cases}1, & \text { if } \\ 6 \equiv 1(\bmod 3) \\ 6, & \text { if } \\ 5 \equiv 2(\bmod 3) \\ 5, & \text { if } \\ j \equiv 0(\bmod 3)\end{cases}
$$

and also assign

$$
c\left(w_{1}\right)=c\left(w_{2}\right)=7 .
$$

Thus the star coloring for degree splitting of tensor product of path with cycle graph is 7 if $n=3 k$. This completes the proof of the theorem.

### 3.4. Star coloring of degree splitting of tensor product of path with complete bipartite graph

Theorem 4. Let $P_{m}$ be a path graph with $m \geq 4$ and $K_{n 1, n 2}$ be a complete bipartite graph with $n 1 \geq 2$ and $n 2 \geq 3$, then

$$
\chi_{s}\left(D S\left(P_{m} \times K_{n 1, n 2}\right)\right)=m+n 1(\text { or } n 2)+2, \text { ifeither } m=n 1 \text { or } m=n 2 .
$$

Proof. Let $P_{m}$ be a path graph and $K_{n 1, n 2}$ be a complete bipartite graph. Let the tensor product of path with complete bipartite graph be denoted by $P_{m} \times K_{n 1, n 2}$. Then the vertex set of $\left|V\left(P_{m} \times K_{n 1, n 2}\right)\right|=m(n 1+n 2)$.
We have,

$$
V\left(P_{m} \times K_{n 1, n 2}\right)=\left\{\begin{array}{cccc}
\left(u_{1}, v_{1}\right) & \left(u_{1}, v_{2}\right) & \ldots & \left(u_{1}, v_{n}\right) \\
\left(u_{2}, v_{1}\right) & \left(u_{2}, v_{2}\right) & \ldots & \left(u_{2}, v_{n}\right) \\
\vdots & \vdots & & \vdots \\
\left(u_{n}, v_{1}\right) & \left(u_{n}, v_{2}\right) & \ldots & \left(u_{n}, v_{n}\right)
\end{array}\right\}=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}
$$

where

$$
\begin{gathered}
S_{1}=\left\{\left(u_{i}, v_{j}\right): i=1, m \text { and } 1 \leq j \leq n 1\right\} \\
S_{2}=\left\{\left(u_{i}, v_{j}\right): 2 \leq i \leq m-1 ; 1 \leq j \leq n 1\right\}, \\
S_{3}=\left\{\left(u_{i}, v_{j}\right): 2 \leq i \leq m-1 ; n 1+1 \leq j \leq n 1+n 2\right\}
\end{gathered}
$$

and

$$
S_{4}=\left\{\left(u_{i}, v_{j}\right): i=1, m ; n 1+1 \leq j \leq n 1+n 2\right\} .
$$

To obtain $D S\left(P_{m} \times K_{n 1, n 2}\right)$ from $P_{m} \times K_{n 1, n 2}$, we add four vertices $w_{1}, w_{2}$, $w_{3}$ and $w_{4}$ corresponding to $S_{1}, S_{2}, S_{3}$ and $S_{4}$, respectively. Thus we get

$$
V\left(D S\left(P_{m} \times K_{n 1, n 2}\right)=V\left(P_{m} \times K_{n 1, n 2}\right) \cup\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\} .\right.
$$

Now, we assign the star coloring as follows:
For $1 \leq i \leq m$
Case (i): If $n 1 \leq n 2$
For $i \equiv 1(\bmod 4)$ and $i \equiv 2(\bmod 4)$

$$
c\left(u_{i}, v_{j}\right)= \begin{cases}j+1, & \text { if } 1 \leq j \leq n 1 \\ 1, & \text { if } n 1+1 \leq j \leq n 1+n 2\end{cases}
$$

For $i \equiv 3(\bmod 4)$ and $i \equiv 0(\bmod 4)$

$$
c\left(u_{i}, v_{j}\right)=\left\{\begin{array}{l}
n 1+j+1, \quad \text { if } 1 \leq j \leq n 1 \\
1, \text { if } n 1+1 \leq j \leq n 1+n 2
\end{array}\right.
$$

Case (ii): If $n 1>n 2$
For $i \equiv 1(\bmod 4)$ and $i \equiv 2(\bmod 4)$

$$
c\left(u_{i}, v_{j}\right)=\left\{\begin{array}{l}
1, \quad \text { if } 1 \leq j \leq n 1 \\
1-n 1+j, \quad \text { if } n 1+1 \leq j \leq n 1+n 2
\end{array}\right.
$$

For $i \equiv 3(\bmod 4)$ and $i \equiv 0(\bmod 4)$

$$
c\left(u_{i}, v_{j}\right)=\left\{\begin{array}{l}
1, \quad \text { if } 1 \leq j \leq n 1 \\
n 2-n 1+1+j, \quad \text { if } n 1+1 \leq j \leq n 1+n 2
\end{array}\right.
$$

and also assign

$$
c\left(w_{1}\right)=c\left(w_{2}\right)=c\left(w_{3}\right)=c\left(w_{4}\right)=m+n 1(\text { or } n 2)+2 .
$$

This completes the proof of the theorem.

### 3.5. Star coloring of degree splitting of tensor product of path with path graph

Theorem 5. Let $P_{m}$ and $P_{n}$ be a path graph of order $m \geq 4$ and $n \geq 4$, respectively. Then

$$
\chi_{s}\left(D S\left(P_{m} \times P_{n}\right)\right)=6 .
$$

Proof. Let $P_{m}$ be a path graph and $P_{n}$ be a path graph. Let the tensor product of path with path graph be denoted by $P_{m} \times P_{n}$. Then the vertex set of $\left|V\left(P_{m} \times P_{n}\right)\right|=m n$.
We have,

$$
V\left(P_{m} \times P_{n}\right)=\left\{\begin{array}{cccc}
\left(u_{1}, v_{1}\right) & \left(u_{1}, v_{2}\right) & \ldots & \left(u_{1}, v_{n}\right) \\
\left(u_{2}, v_{1}\right) & \left(u_{2}, v_{2}\right) & \ldots & \left(u_{2}, v_{n}\right) \\
\vdots & \vdots & & \vdots \\
\left(u_{m}, v_{1}\right) & \left(u_{m}, v_{2}\right) & \ldots & \left(u_{m}, v_{n}\right)
\end{array}\right\}=S_{1} \cup S_{2} \cup S_{3}
$$

where

$$
S_{1}=\left\{\left(u_{i}, v_{j}\right): i=1, m \text { and } j=1, n\right\},
$$

$S_{2}=\left\{\left(u_{i}, v_{j}\right): i=1, m\right.$ and $\left.2 \leq j \leq n-1\right\} \cup\left\{\left(u_{i}, v_{j}\right): j=1, n\right.$ and $\left.2 \leq i \leq m-1\right\}$
and

$$
S_{3}=\left\{\left(u_{i}, v_{j}\right): 2 \leq i \leq m-1 ; 2 \leq j \leq n-1\right\} .
$$

To obtain $D S\left(P_{m} \times P_{n}\right)$ from $P_{m} \times P_{n}$, we add three vertices $w_{1}, w_{2}$ and $w_{3}$ corresponding to $S_{1}, S_{2}$ and $S_{3}$, respectively. Thus we get

$$
V\left(D S\left(P_{m} \times P_{n}\right)\right)=V\left(P_{m} \times P_{n}\right) \cup\left\{w_{1}, w_{2}, w_{3}\right\} .
$$

Now, we assign the star coloring as follows:
For $i \equiv 1(\bmod 4)$ and $i \equiv 3(\bmod 4)$

$$
c\left(u_{i}, v_{j}\right)=1, \quad \forall j
$$

For $i \equiv 2(\bmod 4)$

$$
c\left(u_{i}, v_{j}\right)=\left\{\begin{array}{l}
2, \text { if } j \equiv 1 \text { and } 2(\bmod 4) \\
3, \text { if } j \equiv 3 \text { and } 4(\bmod 4)
\end{array}\right.
$$

For $i \equiv 0(\bmod 4)$

$$
c\left(u_{i}, v_{j}\right)=\left\{\begin{array}{l}
4, \text { if } j \equiv 1 \text { and } 2(\bmod 4) \\
5, \text { if } j \equiv 3 \text { and } 4(\bmod 4)
\end{array}\right.
$$

and also assign

$$
c\left(w_{1}\right)=c\left(w_{2}\right)=c\left(w_{3}\right)=6 .
$$

Thus the star coloring of degree splitting of tensor product of path with path graph is 6 , when $m \geq 4$ and $n \geq 4$. This completes the proof of the theorem.

## References

[1] M.O. Albertson, G.G. Chappell, H.A. Kierstead, A. Kündgen, R. Ramamurthi, Coloring with no 2-Colored $P_{4}$ 's, The Electronic Journal of Combinatorics 11 (2004), Paper \# R26.
[2] J.A. Bondy, U.S.R. Murty, Graph theory with Applications, London, MacMillan 1976.
[3] T.F. Coleman, J. Moré, Estimation of sparse Hessian matrices and graph coloring problems, Mathematical Programming, 28(3) (1984), 243-270.
[4] G. Fertin, A. Raspaud, B. Reed, On Star coloring of graphs, Journal of Graph Theory, 47(3) (2004), 163-182.
[5] B. Grünbaum, Acyclic colorings of planar graphs, Israel Journal of Mathematics, 14 (1973), 390-408.
[6] F. Harary, Graph Theory, Narosa Publishing home, New Delhi 1969.
[7] R. Ponraj, S. Somasundaram, On the degree splitting graph of a graph, National Academy Science Letters, 27(7-8) (2004), 275-278.
[8] S. Klavžar, Coloring graph products - A survey, Discrete Mathematics, 155 (1996), 135-145.
S.Ulagammal

Department of Mathematics
University College of Engineering Nagercoil, (A Constituent College of Anna University, Chennai), Konam, Nagercoil-629 004
Tamil Nadu
India
email:ulagammal2877@gmail.com
Vernold Vivin.J
Department of Mathematics
University College of Engineering Nagercoil,
(A Constituent College of Anna University, Chennai),
Konam, Nagercoil-629 004
Tamil Nadu
India
email: vernoldvivin@yahoo.in

