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Abstract. In this work, we study existence, uniqueness and Ulam stability type
of solutions of fractional pantograph equations involving two Caputo-Hadamard frac-
tional orders. The existence and uniqueness of solutions is established by contraction
mapping principle, while the existence of solutions is derived by Leray-Schauder’s
alternative. We also present and discuss different types of Ulam-stability for our
problem. Finally, we give some illustrative examples.
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1. Introduction

Pantograph equation have been the focus of many studies due to their application
in various sciences, such as electrodynamics, astrophysics, nonlinear dynamical sys-
tems, probability theory on algebraic structures, quantum mechanics. For further
information and applications, see [3, 11, 12, 13, 19]. Recently, many studies on
fractional pantograph differential equations involving different operators, such as
Caputo operators [1], Riemann-Liouville operators [16], Hilfer operators [22], Hilfer-
Hadamard operators [23], Caputo-Hdamard fractional derivative [9] have appeared
during the past several years. Moreover, by applying different fixed point theo-
rems, many mathematicians have obtained results of the existence and uniqueness
of solutions for various classes of fractional pantograph differential equations, see
[1, 2, 4, 6, 7]. Recently, Ulam’s type stability problems have been taken up by sev-
eral researchers and the study of this area has grown to be one of the most important
subjects in the mathematical analysis area, for more details see [8, 10, 15, 18, 20]
and references therein. Also the Ulam stability of pantograph differential equations
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with fractional derivative has been investigated by different authors, we refer the
reader to the papers [9, 12, 21, 22, 23].

In the present work, we study existence, uniqueness and Ulam-stability of solu-
tions for fractional pantograph differential equations involving two Caputo-Hadamard
type derivatives:

C
HD

α
(
C
HD

β + γ
)
u (t) = f (t, u (t) , u (λt)) , t ∈ [1, T ], γ ∈ R, 0 < λ < 1,

u (1) = θ, u (T ) = ϑ, θ, ϑ ∈ R,
(1)

where 0 < α, β ≤ 1,CH D
α,CH D

β are Caputo-Hadamard fractional derivatives and
f : [1, T ]× R× R→ R, is given continuous function.

The paper is organized as follows. In Section 2, we recall some definitions and
lemma which are used throughout the paper. In Section 3, we present our main
results for existence and uniqueness of solutions for the proposed fractional problem
(1). Section 4, we study the Ulam-stability type of solutions for the fractional
problem (1). Some examples to illustrate our results are presented in Section 5.

2. Preliminaries

In this section, we recall some basic definitions and lemmas which are used through-
out this work.

Definition 1. [17] The Hadamard fractional integral of order α for a continuous
function h : [a,+∞)→ R is defined as

HI
αf (t) = 1

Γ(ρ)

∫ t

a

(
log

t

s

)ρ−1 f (s)

s
ds, ρ > 0, (2)

where log (.) = loge (.), provided that the integral exist.

Definition 2. [14] For at least n−times differentiable function f : [a,∞) → R the
Caputo-Hadamard fractional derivative of order ρ is defined as

C
HD

αf(t) = 1
Γ(n−ρ)

∫ t

a

(
log

t

s

)n−ρ−1

δn
f(s)

s
ds, (3)

where n − 1 < ρ < n, n = [ρ] + 1, δ = t ddt , [ρ] denotes the integer part of α and
log (.) = loge (.).
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Lemma 1. [14] Let u ∈ Cnδ ([a, b] ,R) . Then

HI
α
(
C
HD

αu
)

(t) = u(t)−
n−1∑
i=0

ci(log t)i, ci ∈ R, (4)

where Cnδ ([a, b] ,R) =
{
h : [a, b]→ R : δn−1h ∈ C ([a, b] ,R)

}
.

Lemma 2. [5]. (Leray-Schauder alternative). Let S : F → F be a completely
continuous operator (i.e.,a map that restricted to any bounded set in S is compact).
Let

Ω (S) = {u ∈ F : u = σS (u) for some 0 < σ < 1} .

Then either the set Ω (S) is unbounded, or S has at least one fixed point.

Now we prove the following auxiliary lemma.

Lemma 3. Suppose that h (t) ∈ C ([1, T ] ,R) and consider the fractional problem

C
HD

β
(
C
HD

α + γ
)
u (t) = h (t) , t ∈ [1, T ] , 0 < α, β ≤ 1, (5)

with the condition
u (1) = θ, u (T ) = ϑ. (6)

Then, we have

u (t) =
1

Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

h (s)
ds

s
− γ

Γ (β)

∫ t

1

(
log

t

s

)β−1

u (s) ds

− (log t)β

(log T )β

(
1

Γ (α+ β)

∫ T

1

(
log

T

s

)α+β−1

h (s)
ds

s

− γ

Γ (β)

∫ T

1

(
log

T

s

)α+β−1

u (s) ds− ϑ+ θ

)
+ θ. (7)

Proof. Using Lemma 1, we can write

u (t) =
1

Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

h (s)
ds

s
(8)

− γ

Γ (β)

∫ t

1

(
log

t

s

)β−1

u (s) ds+
c0

Γ (β + 1)
(log t)β + c1.

where c0, c1 ∈ R.
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From (6), a simple calculation gives

c1 = θ,

c0 =
Γ (β + 1)

(log T )β

(
ϑ− θ − 1

Γ (α+ β)

∫ T

1

(
log

T

s

)α+β−1

h (s)
ds

s

+
γ

Γ (β)

∫ T

1

(
log

T

s

)β−1

u (s) ds

)
.

Substituting the values of c0 and c1 in (8) yields the solution (7).This completes the
proof.

3. Existence and uniqueness of solution

We denote by X = C ([1, T ] ,R) the Banach space of all continuous functions from
[1, T ] to R endowed with the norm defined by ‖x‖ = sup {|x (t)| : t ∈ [1, T ]}.

In view of Lemma 3, we define an operator P : X → X as

Pu (t) =
1

Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

f (s, u (s) , u (λs))
ds

s
− γ

Γ (β)

∫ t

1

(
log

t

s

)β−1

u (s) ds

− (log t)β

(log T )β

(
1

Γ (α+ β)

∫ T

1

(
log

T

s

)α+β−1

f (s, u (s) , u (λs))
ds

s

− γ

Γ (β)

∫ T

1

(
log

T

s

)α+β−1

u (s) ds− ϑ+ θ

)
+ θ. (9)

Our first main result is based on the Banach contraction principle.

Theorem 4. Let f : [1, T ]× R× R→ R be a continuous function. Assume that:
(H1) : There exists a constant k > 0 such that

|f (t, x1, x2)− f (t, y1, y2)| ≤ k (|x1 − y1|+ |x2 − y2|) , t ∈ [1, T ] , xi, yi ∈ R, i = 1, 2.

If the inequality

4k

Γ (α+ β + 1)
(log T )α+β < 1− 2 |γ|

Γ (β + 1)
(log T )β , (10)

is valid, then problem (1) has a unique solution on [1, T ].
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Proof. Let us define L = supt∈[1,T ] |f (t, 0, 0)| <∞. Setting

r ≥
2L

Γ(α+β+) (log T )α+β + 2 |θ|+ |ϑ|

1−
[

4k
Γ(α+β+) (log T )α+β + 2|γ|

Γ(β+1) (log T )β
] .

We show that PBr ⊂ Br, where Br = {u ∈ X : ‖u‖ ≤ r}. For u ∈ Br, we find the
following estimate based on the hypothesis (H1) :

|f (t, u (t) , u (λt))| ≤ |f (t, u (t) , u (λt))− f (s, 0, 0)|+ |f (s, 0, 0)|
≤ 2k ‖u‖+ L ≤ 2kr + L, (11)

Using (11), we get

‖u‖ ≤ 1

Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

|f (s, u (s) , u (λs))| ds
s

+
|γ|

Γ (β)

∫ t

1

(
log

t

s

)β−1

|u (s)| ds

+
(log t)β

(log T )β

(
1

Γ (α+ β)

∫ T

1

(
log

T

s

)α+β−1

|f (s, u (s) , u (λs))| ds
s

+
|γ|

Γ (β)

∫ T

1

(
log

T

s

)β−1

|u (s)| ds+ |ϑ|+ |θ|

)
+ |θ|

≤ 2 (log T )α+β

Γ (α+ β+)
(2kr + L) +

2 |γ| (log T )β

Γ (β + 1)
r + 2 |θ|+ |ϑ| .

Thus

‖u‖ ≤
(

4k

Γ (α+ β+)
(log T )α+β +

2 |γ|
Γ (β + 1)

(log T )β
)
r

+
2L

Γ (α+ β+)
(log T )α+β + 2 |θ|+ |ϑ| ≤ r,

which implies that PBr ⊂ Br. Now, for u, v ∈ Br and for any t ∈ J, we get

|Pu (t)− Pv (t)|

≤ 1

Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

|f (s, u (s) , u (λs))− f (s, v (s) , v (λs))| ds
s

+
|γ|

Γ (β)

∫ t

1

(
log

t

s

)β−1

|u (s)− v (s)| ds

+
(log t)β

(log T )β

(
1

Γ (α+ β)

∫ T

1

(
log

T

s

)α+β−1

|f (s, u (s) , u (λs))− f (s, v (s) , v (λs))| ds
s

+
|γ|

Γ (β)

∫ T

1

(
log

T

s

)α+β−1

|u (s)− v (s)| ds

)
.
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By (H1), we can write

‖P (u)− P (v)‖ ≤
(

4k

Γ (α+ β)
(log T )α+β +

2 |γ|
Γ (β + 1)

(log T )β
)
‖u− v‖ .

By (10), we see that P is a contractive operator. Consequently, by the Banach fixed
point theorem, has a fixed point which is a solution of (1).

In the next result, we show the existence of solutions for the problem (1) by
Lemma 2.

Theorem 5. Let f : [1, T ]× R× R→ R be a continuous function. Assume that:
(H2) : there exist real constants ωi ≥ 0 (i = 1, 2) and ω0 > 0 such that for all

x, y ∈ R, we have
|f (t, x, y)| ≤ ω0 + ω1 |x|+ ω2 |y| .

If

4 (log T )α+β

Γ (α+ β + 1)
ω1 +

2 |γ| (log T )β

Γ (β + 1)
< 1. (12)

Then the problem (1) has at least one solution on J .

Proof. First, we show that the operator P : X → X is completely continuous. By
continuity of the function f, it follows that the operator P is continuous.

Let Θ ⊂ X be bounded. Then we can find positive constant M such that

|f (t, u (t) , u (λt))| ≤M,∀ u ∈ Θ.

Then for any u ∈ Θ and by (H2), we have

‖Pu‖ ≤ M

Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1 ds

s
+

γr

Γ (β)

∫ t

1

(
log

t

s

)β−1

ds

+
(log t)β

(log T )β

(
M

Γ (α+ β)

∫ T

1

(
log

T

s

)α+β−1 ds

s

+
γr

Γ (β)

∫ T

1

(
log

T

s

)α+β−1

ds+ |ϑ|+ |θ|

)
+ |θ| .

Hence, we obtain

‖Pu‖ ≤ 2M (log T )α+β

Γ (α+ β + 1)
+

2γr (log T )β

Γ (β + 1)
+ |ϑ|+ 2 |θ| .

40



M. Houas – Existence and Ulam stability of fractional pantograph differential . . .

From the above inequality, it follows that the operator P is uniformly bounded.
Next, we show that P is equicontinuous. Let t1, t2 ∈ [1, T ] with 1 ≤ t1 < t2 ≤ T .

Then we have

|Pu (t2)− Pu (t1)|

≤ M

Γ (α+ β)

∫ t1

1

[(
log

t2
s

)α+β−1

−
(

log
t1
s

)α+β−1
]
ds

s
+

M

Γ (α+ β)

∫ t2

t1

(
log

t2
s

)α+β−1

+
γr

Γ (β)

∫ t1

1

[(
log

t1
s

)β−1

−
(

log
t2
s

)β−1
]
ds

s
+

γr

Γ (β)

∫ t2

t1

(
log

t2
s

)β−1 ds

s

+
(log t1)β − (log t2)β

(log T )β

(
M (log T )α+β

Γ (α+ β + 1)
+
γr (log T )β

Γ (β + 1)
+ |ϑ|+ |θ|

)

≤ M

Γ (α+ β + 1)

[
(log t2)α+β − (log t1)α+β

]
+

γr

Γ (β + 1)

[
(log t1)β − (log t2)β + 2

(
log

t2
t1

)β]

+
(log t1)β − (log t2)β

(log T )β

(
M (log T )α+β

Γ (α+ β + 1)
+
γr (log T )β

Γ (β + 1)
+ |ϑ|+ |θ|

)
.

As t2 − t1 → 0, the right-hand side of the above inequality tends to zero indepen-
dently of u. Therefore by the Arzelá-Ascoli theorem the operator P is completely
continuous.

Finally, it will be verified that the set Ω = {u ∈ X : u = σP (u) , 0 ≤ σ ≤ 1} is
bounded. Let u ∈ Ω, then u = σP (u) . For any t ∈ [1, T ], we have

u (t) = σPu (t) ,

then

u (t)

≤ σ

(
1

Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

|f (s, u (s) , u (λs))| ds
s

+
|γ|

Γ (β)

∫ t

1

(
log

t

s

)β−1

|u (s)| ds

+
(log t)β

(log T )β

(
1

Γ (α+ β)

∫ T

1

(
log

T

s

)α+β−1

|f (s, u (s) , u (λs))| ds
s

+
|γ|

Γ (β)

∫ T

1

(
log

T

s

)α+β−1

u (s) ds+ |ϑ|+ |θ|

)
+ |θ|

)
.
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Thanks to (H2), we can write

u (t) ≤ 2 (log T )α+β

Γ (α+ β + 1)
(ω0 + 2ω1 ‖u‖) +

2γ (log T )β

Γ (β + 1)
‖u‖+ 2 |θ|+ |ϑ| .

Hence, we have

‖u‖ ≤

(
4 (log T )α+β

Γ (α+ β + 1)
ω1 +

2γ (log T )β

Γ (β + 1)

)
‖u‖+

2 (log T )α+β

Γ (α+ β + 1)
ω0 + 2 |θ|+ |ϑ| .

It follows that

‖u‖ ≤
2(log T )α+β

Γ(α+β+1) ω0 + 2 |θ|+ |ϑ|

1−
(

4(log T )α+β

Γ(α+β+1) ω1 + 2γ(log T )β

Γ(β+1)

) .
This shows that the set Ω is bounded. Thus, by Lemma 2, the operator P has
atleast one fixed point. Hence problem (1) has at least one solution on [1, T ].

4. Ulma-Stability

In this section, we define and study the Ulam–Hyers stability, the generalized Ulam–
Hyers stability and Ulam-Hyers-Rassias stability for the problem (1).

Definition 3. The fractional boundary value problem (1) is Ulam-Hyers stable if
there exists a real number cf > 0 such that for each ε > 0 and for each solution
v ∈ X of the inequality∣∣∣CHDα

(
C
HD

β + γ
)
v (t)− f (t, v (t) , v (λt))

∣∣∣ ≤ ε, t ∈ [1, T ] , (13)

there exists a solution u ∈ X of fractional boundary value problem (1) with

|v (t)− u (t)| ≤ cfε, t ∈ [1, T ] .

Definition 4. The fractional boundary value problem (1) is generalized Ulam-Hyers
stable if there exists ψf ∈ C(R+,R+), ψf (0) = 0, such that for each solution v ∈ X
of the inequality (13) there exists a solution u ∈ X of the fractional boundary value
problem (1) with

|v (t)− u (t)| ≤ ψf (ε) , t ∈ [1, T ] .

Definition 5. The fractional boundary value problem (1) is Ulam-Hyers-Rassias
stable with respect to ϕ ∈ X if there exists a real number cf > 0 such that for each
ε > 0 and for each solution v ∈ X of the inequality∣∣∣CHDα

(
C
HD

β + γ
)
v (t)− f (t, v (t) , v (λt))

∣∣∣ ≤ εϕ (t) , t ∈ [1, T ] , (14)

42



M. Houas – Existence and Ulam stability of fractional pantograph differential . . .

there exists a solution u ∈ X of problem (1) with

|v (t)− u (t)| ≤ cfεϕ (t) , t ∈ [1, T ] .

Definition 6. The fractional boundary value problem (1) is generalized Ulam-Hyers-
Rassias stable with respect to ϕ ∈ X if there exists a real number cf,ϕ > 0 such that
for each solution v ∈ X of the inequality∣∣∣CHDα

(
C
HD

β + γ
)
v (t)− f (t, v (t) , v (λt))

∣∣∣ ≤ ϕ (t) , t ∈ [1, T ] , (15)

there exists a solution u ∈ X of problem (1) with

|v (t)− u (t)| ≤ cf,ϕϕ (t) , t ∈ [1, T ] .

Remark 1. A function v ∈ X is a solution of the inequality (13) if and only if there
exists a function ψ : [1, T ]→ R such that

(1) : |ψ (t)| ≤ ε, t ∈ [1, T ] .

(2) : CHD
α
(
C
HD

β + γ
)
u (t) = f (t, u (t) , u (λt)) + ψ (t), t ∈ [1, T ] , γ ∈ R, 0 < λ < 1.

Theorem 6. Assume that f : [1, T ]×R×R→ R is a continuous function satisfying
(H1). If

2k

Γ (α+ β + 1)
(log T )α+β +

|γ|
Γ(β + 1)

(log T )β < 1, (16)

then the fractional boundary value problem (1) is Ulam-Hyers stable and conse-
quently, generalized Ulam-Hyers stable.

Proof. Let v ∈ X be a solution of the inequality (13), i.e.∣∣∣CHDα
(
C
HD

βu (t) + γ
)
− f (t, u (t) , u (λt))

∣∣∣ ≤ ε, t ∈ [1, T ] ,

and let us denote by u ∈ X the unique solution of the problem
C
HD

α
(
C
HD

βu (t) + γ
)

= f (t, u (t) , u (λt)) , γ ∈ R, t ∈ J, 0 < α, β < 1, 0 < λ < 1,

u (1) = v (1) , u (T ) = v (T ) ,

By using Lemma 5, we have

u (t) = HI
α+βhu (t)− γHIβu (t) +

c0 (log t)β

Γ (β + 1)
+ c1.
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and by integration of the inequality (13), we obtain∣∣∣∣∣v (t)− HI
α+βhv (t)− γHIβv (t) +

c2 (log t)β

Γ (β + 1)
+ c3

∣∣∣∣∣ ≤ ε

Γ (α+ β + 1)
(log t)α+β(17)

≤ ε

Γ (α+ β + 1)
(log T )α+β .

On the other hand, if u (1) = v (1) , u (T ) = v (T ), then c0 = c2 and c2 = c3

For any t ∈ [1, T ] , we have

v (t)− u (t) = v (t)− HI
α+βhu (t)− γHIβu (t)− c2 (log t)β

Γ (β + 1)
− c3

+ HI
α+β (hv(t)− hu(t))− γHIβ (v (t)− u (t)) ,

where,
hu (t) = f (t, u (t) , u (λt)) and hv (t) = f (t, v (t) , v (λt)) ,

and

HI
α+β (hv (t)− hu (t)) = HI

α[f(s, v(s), v (λt))− f(s, u(s), u (λt))].

Using (H1), we get

|v (t)− u (t)| ≤

∣∣∣∣∣v (t)− HI
α+βhu (t)− γHIβu (t)− c2 (log t)β

Γ (β + 1)
− c3

∣∣∣∣∣ (18)

+
2k

Γ(α+ β)

∫ t

1
(log

t

s
)α+β−1 ‖v (s)− u (s)‖ ds

s

+
|γ|

Γ(β)

∫ t

1
(log

t

s
)β−1 ‖v (s)− u (s)‖ ds

s
.

By (17), we obtain

|v (t)− u (t)| ≤ ε (log T )α+β

Γ (α+ β + 1)
+

(
2k (log T )α+β

Γ(α+ β + 1)
+
|γ| (log T )β

Γ(β + 1)

)
‖v (s)− u (s)‖ ,

which implies that

‖v (s)− u (s)‖

(
1−

[
2k (log T )α+β

Γ(α+ β + 1)
+
|γ| (log T )β

Γ(β + 1)

])
≤ ε (log T )α+β

Γ (α+ β + 1)
.
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For each t ∈ [1, e] , we have

|v (t)− u (t)| ≤ (log T )α+β

Γ (α+ β + 1)
(

1−
[

2k(log T )α+β

Γ(α+β+1) + |γ|(log T )β

Γ(β+1)

])ε = cfε.

Thus, the fractional boundary value problem (1) is Ulam-Hyers stable. By putting
ϕ (ε) = γε, ϕ (0) = 0 yields that the fractional problem (1) generalized Ulam-Hyers
stable.

Theorem 7. Let f : [1, T ]×R×R→ R be a continuous function and suppose that
(H1) and (16) hold. In addition, the following hypothesis holds (H3) : There exists
an function ϕ ∈ C([1, T ] ,R+) and there exists ηϕ > 0 such that for any t ∈ [1, T ]

1

Γ(α+ β)

∫ t

1
(log

t

s
)α+β−1ϕ(s)

ds

s
≤ ηϕϕ(t). (19)

Then the fractional boundary value problem (1) is Ulam-Hyers-Rassias stable.

Proof. Let v ∈ X be a solution of the inequality (15), i.e.∣∣∣CHDα
(
C
HD

βu (t) + γ
)
− f (t, u (t) , u (λt))

∣∣∣ ≤ εϕ (t) , t ∈ [1, T ] ,

and let us denote by u ∈ X the unique solution of the problem
C
HD

α
(
C
HD

βu (t) + γ
)

= f (t, u (t) , u (λt)) , γ ∈ R, t ∈ J, 0 < α, β < 1, 0 < λ < 1,

u (1) = v (1) , u (T ) = v (T ) ,

Thanks to Lemma 3, we obtain

u (t) = HI
α+βhu (t)− γHIβu (t) +

c0 (log t)β

Γ (β + 1)
+ c1,

and by integration of the inequality (15), we obtain∣∣∣∣∣v (t)− HI
α+βhv (t)− γHIβv (t) +

c2 (log t)β

Γ (β + 1)
+ c3

∣∣∣∣∣ (20)

≤ ε

Γ(α+ β)

∫ t

1

(
log

t

s

)α+β−1

ϕ(s)
ds

s
≤ εηϕϕ(t).
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By (18) and (20), we have

|v (t)− u (t)| ≤ εηϕϕ(t) +
2k

Γ(α+ β)

∫ t

1
(log

t

s
)α+β−1|v (s)− u (s) |ds

s

+
|γ|

Γ(β)

∫ t

1
(log

t

s
)β−1|v (s)− u (s) |ds

s

Hence,

‖v(s)− u(s)‖
(

1− 2ω (log T )α

Γ(α+ 1)

)
≤ εηϕ

1−
[

2k(log T )α+β

Γ(α+β+1) + |γ|(log T )β

Γ(β+1)

]ϕ(t).

Then, for each t ∈ [1, T ]

|v (t)− u (t)| ≤ εηϕ

1−
[

2k(log T )α+β

Γ(α+β+1) + |γ|(log T )β

Γ(β+1)

]ϕ(t).

So, the fractional boundary value problem (1) is Ulam-Hyers-Rassias stable.

5. Examples

To illustrate our main results, we treat the following examples.

Example 1. Consider the Caputo-Hadamard type fractional pantograph equation
C
HD

1
2

(
C
HD

1
3 + 1

15

)
u (t) = 2

13e2t+3u (t) + 2
13e2t+3u

(
3
4 t
)

+ 2
9 , t ∈ [1, e] ,

x (1) = 1
5 , x (e) =

√
3.

(21)

For this example, we have α = 1
2 , β = 1

3 , γ = 1
15 , λ = 3

4 and T = e.
On the other hand,

f (t, u, v) =
2

13e2t+3
u+

2

13e2t+3
v +

2

9
.

For t ∈ [1, e] and (u1, v1) , (u2, v2) ∈ R2, we have

|f(t, u1, v1)− f(t, u2, v2)| ≤ 2

13e3
(|u1 − u2|+ |v1 − v2|) .

Hence the condition (H1) holds with k = 2
13e3

.
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Thus conditions

4k

Γ (α+ β + 1)
(log T )α+β ' 3.257 1× 10−2 < 1− 2 |γ|

Γ (β + 1)
(log T )β ' 0.850 69,

and

2k

Γ (α+ β + 1)
(log T )α+β +

|γ|
Γ(β + 1)

(log T )β ' 9.094 2× 10−2 < 1,

are satisfied. It follows from Theorem 6, that the problem (21) has a unique solution
on [1, e] and from Theorem 14, the fractional problem (21) is Ulam-Hyers stable.

Example 2. Let us consider the following fractional pantograph equation
C
HD

3
4

(
C
HD

2
5 + 1

10

)
u (t) = 1

15 sin (t)u (t) + 1
15u

(
3
4 t
)

+ 3
7 , t ∈ [1, e] ,

u (1) = 2, u (e) = 3,

(22)

Consider fractional pantograph equation with α = 3
4 , β = 2

5 , γ = 1
10 , λ = 3

4 and
f (t, x, y) = 1

15 sin (t)x+ 1
15y + 3

7 .
For (u1, y1) , (u2, v2) ∈ R2 and t ∈ [1, e] , we have

|f(t, u1, v1)− f(t, u2, v2)| ≤ 1

15
|sin (t)| |u1 − u2|+

1

15
|v1 − v2|

≤ 1

15
(|u1 − u2|+ |v1 − v2|) .

Hence hypothesis (H1) is satisfied with with k = 1
15 .

We can show that

4k

Γ (α+ β + 1)
(log T )α+β +

2 |γ|
Γ (β + 1)

(log T )β ' 0.473 94 < 1.

Let ϕ (t) = t3. Then

1

Γ(3
4 + 2

5 + 1)

∫ t

1
(log

t

s
)
3
4

+ 2
5
−1ϕ(s)

ds

s
≤ 6

Γ
(

43
20

) t3 = ηϕϕ (t) .

Thus hypothesis (H3) is satisfied with ϕ (t) = t3 and ηϕ = 6
Γ( 43

20)
. It follows from

Theorem 6 that the fractional problem (22) as a unique solution on [1, e], and from
Theorem 15 problem (22) is Ulam-Hyers-Rassias stable.

—————————————————————–
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