ON THE L_{1} NORM OF THE DIRICHLET KERNEL ON THE GROUP OF 2-ADIC INTEGERS

Nacima Memić and Amil Pečenković

Abstract. The main result in this paper provides an estimate of the L_{1} norm of the Dirichlet kernel on the group of 2 -adic integers. As an application we derive a description of partial sums of Fourier series related to functions from the space H_{1}.

2010 Mathematics Subject Classification: 42C10.
Keywords: 2-adic integers, Dirichlet kernel, Hardy space.

1. Introduction

The L_{1} norm of the generalized Walsh Dirichlet kernel D_{n}, on bounded Vilenkin groups was studied in [4] and [2], where it was estabilshed that it is dominated by some precisely identified unbounded sequences of natural numbers depending on the index n of the function D_{n}. Moreover, it known that the L_{1} norm of partial sums of Fourier series related to some functions from the dyadic Hardy space H_{1} diverges. Meanwhile, [2, Theorem 2] provides a sharp result proving that these partial sums can also be dominated for functions from H_{1}.

Our aim is to prove an analogue of [2, Theorem 2] on the group of 2-adic integers. Our techniques are different, since they are based on a decomposition of the Dirichlet kernel, as a linear combination of test functions with mutually disjoint supports proved in Lemma 1.

Denote by $I=[0,1)$ the unit interval and for all $x \in I n \in \mathbb{N}$, let $I_{n}(x) \subset I$ be the unit dyadic interval of the form $\left[\frac{i}{2^{n}}, \frac{i+1}{2^{n}}\right.$) containing x, where i is a nonnegative integer depending on $x . I_{n}(0)$ is denoted by I_{n}. For every $x \in I$, let $x=\sum_{n=0}^{\infty} x_{n} 2^{-n-1}$ be its dyadic expansion, where $x_{n} \in\{0,1\}$. The group $(I,+)$ is called the group of 2-adic integers.

For every nonnegative integer n and all $x=\sum_{n=0}^{\infty} x_{n} 2^{-n-1} \in I$, let

$$
v_{2^{n}}(x)=\exp 2 \pi i\left(\frac{x_{n}}{2}+\ldots+\frac{x_{0}}{2^{n+1}}\right) .
$$

If we define $\theta_{n}(x)=\sum_{i=0}^{n} x_{i} 2^{i}$, then it can be easily seen that

$$
\begin{equation*}
v_{2^{n}}(x)=\exp 2 \pi i\left(\frac{\theta_{n}(x)}{2^{n+1}}\right) . \tag{1}
\end{equation*}
$$

If a nonnegative integer n has the dyadic expansion $n=\sum_{i=0}^{\infty} n_{i} 2^{i}$, then set $v_{n}=$ $\prod_{i=0}^{\infty}\left(v_{2^{i}}\right)^{n_{i}}$.

The Dirichlet kernel and the partial sums of the Fourier series of any integrable function f are respectively defined as follows

$$
D_{n}=\sum_{k=0}^{n-1} v_{k}, \quad S_{n} f(y)=\int D_{n}(y-x) f(x) d x .
$$

A function $a \in L_{\infty}$ is said to be an atom if it is supported on some interval $I_{N}(y)$, for some nonnegative integer N and $y \in I, \int_{I_{N}(y)} a=0$, and such that $\|a\|_{\infty} \leq 2^{N}$. The space H_{1} consists of functions f that can be put in the atomic decomposition $f=\sum_{i=1}^{\infty} \lambda_{i} a_{i}$, where $\sum_{i=1}^{\infty}\left|\lambda_{i}\right|<\infty$ and a_{i} is an atom for $i \geq 1$. The norm in H_{1} is defined by $\|f\|_{H_{1}}=\inf \sum_{i=1}^{\infty}\left|\lambda_{i}\right|$, where the infimum is taken over all the atomic decompositions.

For every nonnegative integer $j=\sum_{i=0}^{\infty} j_{i} 2^{i}$, define $z_{j} \in I$ in the form $z_{j}=$ $\sum_{i=0}^{\infty} j_{i} 2^{-i-1}$. It can be seen that if $|j|=\left\lfloor\log _{2} j\right\rfloor$, then

$$
\begin{equation*}
\theta_{n}\left(z_{j}\right)=j, \forall n \geq 2^{|j|+1} \tag{2}
\end{equation*}
$$

Moreover, for every nonnegative integer N, we have $I=\biguplus_{j=0}^{2^{N}-1} I_{N}\left(z_{j}\right)$.
The following formulae were proved in [5], for every positive integer k and nonnegative integer n

$$
\begin{gather*}
D_{2^{k}}= \begin{cases}2^{k}, & x \in I_{k} ; \\
0, & x \in I \backslash I_{k} .\end{cases} \tag{3}\\
D_{n}(x)=v_{n}(x) \sum_{j=0}^{\infty} n_{j}(-1)^{x_{j}} D_{2^{j}}(x) . \tag{4}
\end{gather*}
$$

2. Main results

Lemma 1. Let n be a positive integer having the dyadic representation $n=2^{N_{1}}+$ $\ldots+2^{N_{t}}$, where $N_{1}<N_{2}<\ldots<N_{t}$ and $N_{t}=|n|$. Then, $D_{n}(x)$ can be written in the form

$$
\begin{equation*}
D_{n}(x)=D_{2^{N_{t}}}(x)+v_{2^{N_{t}}}(x) \sum_{j=0}^{2^{N_{t}-1}} A_{n, j} D_{2^{N_{t}}}\left(x-z_{j}\right), \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n, 0}:=\sum_{i=1}^{t-1} 2^{N_{i}-N_{t}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{n, j}:=v_{2^{N_{t-1}}}\left(z_{j}\right) \ldots v_{2^{N_{i+1}}}\left(z_{j}\right)\left[2^{N_{i}-N_{t}}+v_{2^{N_{i}}}\left(z_{j}\right) \sum_{s=1}^{i-1} 2^{N_{s}-N_{t}}\right], \tag{7}
\end{equation*}
$$

if $j=0\left(\bmod 2^{N_{i}}\right)$ and $j \neq 0\left(\bmod 2^{N_{i+1}}\right)$ for some $i \in\{1, \ldots, t-1\}$. For $j \neq$ $0\left(\bmod 2^{N_{1}}\right), A_{n, j}=0$.

Proof. Formula (4) can be written in the form

$$
\begin{equation*}
D_{n}(x)=v_{n}(x) \sum_{i=1}^{t}(-1)^{x_{N_{i}}} D_{2^{N_{i}}}(x)=\sum_{i=1}^{t} v_{2^{N_{t}}}(x) \ldots v_{2^{N_{i}}}(x)(-1)^{x_{N_{i}}} D_{2^{N_{i}}}(x) . \tag{8}
\end{equation*}
$$

If for some $i \in\{1, \ldots, t-1\}, x \in I_{N_{i}} \backslash I_{N_{i}+1}$, then $x_{N_{i}}=1$ and $x_{k}=0$ for all $k<N_{i}$. Therefore, in this case $v_{2^{N_{i}}}(x)=\exp 2 \pi i\left(\frac{x_{N_{i}}}{2}\right)=\exp \pi i=-1=(-1)^{x_{N_{i}}}$.

On the other hand, if $x \in I_{N_{i}+1}$, then $x_{k}=0$ for all $k \leq N_{i}$, which means that $v_{2^{N_{i}}}(x)=1=(-1)^{x_{N_{i}}}$. Hence, (8) becomes

$$
\begin{gathered}
D_{n}(x)=D_{2^{N_{t}}}(x)+\sum_{i=1}^{t-1} v_{2^{N_{t}}}(x) \ldots v_{2^{N_{i+1}}}(x) D_{2^{N_{i}}}(x) \\
=D_{2^{N_{t}}}(x)+\sum_{i=1}^{t-1} v_{2^{N_{t}}}(x) \ldots v_{2^{N_{i+1}}}(x) \sum_{\substack{j \in\left\{0, \ldots, 2^{N_{t}}-1\right\} \\
j=0\left(\bmod 2^{N_{i}}\right)}} 2^{N_{i}-N_{t}} D_{2^{N_{t}}}\left(x-z_{j}\right) \\
=D_{2^{N_{t}}}(x)+\sum_{i=1}^{t-1} v_{2^{N_{t}}}(x) 2^{N_{i}-N_{t}} D_{2^{N_{t}}}(x)+\sum_{i=1}^{t-1} v_{2^{N_{t}}}(x) \ldots v_{2^{N_{i+1}}}(x) \sum_{\substack{j \in\left\{1, \ldots, 2^{N_{t}}-1\right\} \\
j=0\left(\bmod 2^{N_{i}}\right)}} 2^{N_{i}-N_{t}} D_{2^{N_{t}}}\left(x-z_{j}\right) \\
=D_{2^{N_{t}}}(x)+\sum_{i=1}^{t-1} v_{2^{N_{t}}}(x) 2^{N_{i}-N_{t}} D_{2^{N_{t}}}(x)+\sum_{i=1}^{t-1} v_{2^{N_{t}}}(x) \ldots v_{2^{N_{i+1}}}(x)
\end{gathered}
$$

$$
\sum_{\substack{j \in\left\{1, \ldots, 2^{N_{t}}-1\right\} \\ j=0\left(\bmod \\ j \neq 0\left(\bmod 2^{N_{i}}\right)\\\\\right.}}\left[v_{2^{N_{i}}}(x) \ldots v_{2^{N_{2}}}(x) 2^{N_{1}-N_{t}}+\ldots+2^{N_{i}-N_{t}}\right] D_{2^{N_{t}}}\left(x-z_{j}\right) .
$$

Since for all $x \in I$ and $j \in\left\{1, \ldots, 2^{N_{t}}-1\right\}$, we have that $D_{2^{N_{t}}}\left(x-z_{j}\right) \neq 0$ only if $x \in I_{N_{t}}\left(z_{j}\right)$, then if for some $i \in\{1, \ldots, t-1\}$ we have that $j=0\left(\bmod 2^{N_{i}}\right)$, then in this case $D_{2^{N_{t}}}\left(x-z_{j}\right) \neq 0$ only if $x \in I_{N_{i}}$, which implies that $v_{2^{N_{i-1}}}(x)=\ldots=$ $v_{2^{N_{2}}}(x)=1$. Therefore, the last formula becomes

$$
\begin{gathered}
D_{n}(x)=D_{2^{N_{t}}}(x)+\sum_{i=1}^{t-1} v_{2^{N_{t}}}(x) 2^{N_{i}-N_{t}} D_{2^{N_{t}}}(x)+\sum_{i=1}^{t-1} v_{2^{N_{t}}}(x) \ldots v_{2^{N_{i+1}}}(x) \\
\sum_{\substack{j \in\left\{1, \ldots, 2^{N_{t}}-1\right\} \\
j=0\left(\bmod 2^{N_{i}}\right) \\
j \neq 0\left(\bmod 2^{N_{i+1}}\right)}}\left[v_{2^{N_{i}}}(x) \sum_{s=1}^{i-1} 2^{N_{s}-N_{t}}+2^{N_{i}-N_{t}}\right] D_{2^{N_{t}}}\left(x-z_{j}\right) \\
=D_{2^{N_{t}}}(x)+v_{2^{N_{t}}}(x) \sum_{i=1}^{t-1} 2^{N_{i}-N_{t}} D_{2^{N_{t}}}(x) \\
+v_{2^{N_{t}}}(x) \sum_{\substack{i=1}}^{\sum_{\substack{j \in\left\{1, \ldots, 2^{N_{t}}-1\right\} \\
j=0\left(\bmod 2^{N_{i}} \\
j \neq 0\left(\bmod 2^{N_{i+1}}\right)\right.}}^{t-1} v_{2^{N_{t-1}}}\left(z_{j}\right) \ldots v_{2^{N_{i+1}}}\left(z_{j}\right)\left[v_{2^{N_{i}}}\left(z_{j}\right) \sum_{s=1}^{i-1} 2^{N_{s}-N_{t}}+2^{N_{i}-N_{t}}\right] D_{2^{N_{t}}}\left(x-z_{j}\right),}
\end{gathered}
$$

because $D_{2^{N_{t}}}\left(x-z_{j}\right) \neq 0$ only if $v_{2^{i}}\left(z_{j}\right)=v_{2^{i}}(x)$, for all $i<N_{t}$

Remark 1. Using the notations of Lemma 1, it can be easily seen that if for some $i \in\{1, \ldots, t-1\}, N_{i+1} \geq N_{i}+2$, then if $j=0\left(\bmod 2^{N_{i}+1}\right)$ and $j \neq 0\left(\bmod 2^{N_{i+1}}\right)$, we have

$$
2^{N_{i}-N_{t}} \leq\left|A_{n, j}\right|<2^{N_{i}-N_{t}+1}
$$

because in this case $v_{2^{N_{i}}}\left(z_{j}\right)=1$.
Remark 2. Let $j=0\left(\bmod 2^{N_{i}}\right)$ and $j \neq 0\left(\bmod 2^{N_{i}+1}\right)$. If $s \leq i$ is the least positive integer satisfying $N_{s}+i-s=N_{i}$, then

$$
2^{N_{s}-N_{t}-1}<\left|A_{n, j}\right| \leq 2^{N_{s}-N_{t}}
$$

because in this case $v_{2^{N_{i}}}\left(z_{j}\right)=-1$.

Theorem 2. For every positive integer n define $v(n)=n_{0}+\sum_{j=0}^{\infty}\left|n_{j+1}-n_{j}\right|$, where $n=\sum_{j=0}^{\infty} n_{j} 2^{j}, n_{j} \in\{0,1\}$. Then,

$$
\frac{v(n)}{2} \leq\left\|D_{n}\right\|_{1} \leq 2 v(n)
$$

Proof. Using the notations of Lemma 1, we define the numbers $r \in\{1, \ldots, t\}, L_{i}$, $L_{i}^{\prime} \in\{1, \ldots, t\}$, where $i \in\{1, \ldots, r\}$ such that

$$
\begin{gather*}
1=L_{1} \leq L_{1}^{\prime}<L_{2} \leq L_{2}^{\prime}<\ldots<L_{r} \leq L_{r}^{\prime}=t \\
\forall s \in\{1, \ldots, r\}, \forall i \in\left\{L_{s}, \ldots, L_{s}^{\prime}-1\right\}, N_{i+1}=N_{i}+1, \tag{9}
\end{gather*}
$$

and

$$
\forall s \in\{1, \ldots, r-1\}, L_{s+1}=L_{s}^{\prime}+1, N_{L_{s+1}} \geq N_{L_{s}^{\prime}}+2
$$

It can be easily seen that $v(n)=2 r$. Moreover, according to (5), we get

$$
\left\|D_{n}\right\|_{1}=\sum_{j=0}^{2^{|n|}-1}\left|A_{n, j}\right|=\sum_{\substack { l=0 \\
\begin{subarray}{c}{j \in\left\{0, \ldots, 2^{|n|}-1\right\} \\
j=0\left(\bmod 2^{l}\right) \\
j \neq 0\left(\bmod 2^{l+1}\right){ l = 0 \\
\begin{subarray} { c } { j \in \{ 0 , \ldots , 2 ^ { | n | } - 1 \} \\
j = 0 (\operatorname { m o d } 2 ^ { l }) \\
j \neq 0 (\operatorname { m o d } 2 ^ { l + 1 }) } }\end{subarray}}\left|A_{n, j}\right| .
$$

Since $A_{n, j}=0$ for $j \neq 0\left(\bmod 2^{N_{1}}\right)$, we get

$$
\begin{gathered}
\left\|D_{n}\right\|_{1}=\sum_{l=N_{1}}^{|n|-1} \sum_{\substack{j \in\left\{0, \ldots, 2^{|n|}-1\right\} \\
j=0\left(\bmod 2^{l}\right) \\
j \neq 0\left(\bmod 2^{l+1}\right)}}\left|A_{n, j}\right| \\
=\sum_{s=1}^{r-1} \sum_{i=L_{s}}^{L_{s}^{\prime}} \sum_{l=N_{i}}^{N_{i+1}-1} \sum_{\substack{j \in\left\{0, \ldots, 2^{|n|}-1\right\} \\
j=0\left(\bmod 2^{l}\right) \\
j \neq 0\left(\bmod 2^{l+1}\right)}}\left|A_{n, j}\right|+\sum_{i=L_{r}}^{L_{r}^{\prime}-1} \sum_{l=N_{i}}^{N_{i+1}-1} \sum_{\substack{j \in\left\{0, \ldots, 2^{|n|}-1\right\} \\
j=0\left(\bmod 2^{l}\right) \\
j \neq 0\left(\bmod 2^{l+1}\right)}}\left|A_{n, j}\right|+\left|A_{n, 0}\right| .
\end{gathered}
$$

Applying (9) we get

According to Remark 2 we have

$$
\begin{aligned}
& \forall s \in\{1, \ldots, r\}, \forall i \in\left\{L_{s}, \ldots, L_{s}^{\prime}\right\}, \forall j=0\left(\bmod 2^{N_{i}}\right), j \neq 0\left(\bmod 2^{N_{i}+1}\right): \\
& 2^{N_{L_{s}}-1-|n|}<\left|A_{n, j}\right| \leq 2^{N_{L_{s}}-|n|} .
\end{aligned}
$$

Similarly, by Remark 1 we have
$\forall s \in\{1, \ldots, r-1\}, \forall l \in\left\{N_{L_{s}^{\prime}}+1, \ldots, N_{L_{s+1}}-1\right\}, \forall j=0\left(\bmod 2^{l}\right), j \neq 0\left(\bmod 2^{l+1}\right):$

$$
2^{N_{L_{s}^{\prime}}-|n|}<\left|A_{n, j}\right| \leq 2^{N_{L_{s}^{\prime}}-|n|+1} .
$$

Therefore, we obtain

$$
\begin{gathered}
\left\|D_{n}\right\|_{1} \leq \sum_{s=1}^{r} \sum_{i=L_{s}}^{L_{s}^{\prime}} 2^{|n|-N_{i}} 2^{N_{L_{s}}-|n|}+\sum_{s=1}^{r-1} \sum_{l=N_{L_{s}^{\prime}}}^{N_{L_{s+1}}-1} 2^{|n|-l} 2^{N_{L_{s}^{\prime}}-|n|+1}+1 \\
\quad \leq \sum_{s=1}^{r} 2^{|n|-N_{L_{s}}+1} 2^{N_{L_{s}}-|n|}+\sum_{s=1}^{r-1} 2^{|n|-N_{L_{s}^{\prime}}} 2^{N_{L_{s}^{\prime}}-|n|+1}+1 \leq 4 r .
\end{gathered}
$$

In a similar way we get

$$
\begin{gathered}
\left\|D_{n}\right\|_{1} \geq \sum_{s=1}^{r} \sum_{i=L_{s}}^{L_{s}^{\prime}} 2^{|n|-N_{i}} 2^{N_{L_{s}}-|n|-1}+\sum_{s=1}^{r-1} \sum_{l=N_{L_{s}^{\prime}}+1}^{N_{L_{s}+1}-1} 2^{|n|-l} 2^{N_{L_{s}^{\prime}}-|n|} \\
\quad \geq \sum_{s=1}^{r} 2^{|n|-N_{L_{s}}} 2^{N_{L_{s}}-|n|-1}+\sum_{s=1}^{r-1} 2^{|n|-N_{L_{s}^{\prime}}-1} 2^{N_{L_{s}^{\prime}}-|n|} \geq r .
\end{gathered}
$$

Theorem 3. 1. There exists a positive constant C such that for every $f \in H_{1}$ and $n \in \mathbb{N}$,

$$
\left\|S_{n} f\right\|_{H_{1}} \leq C v(n)\|f\|_{H_{1}}
$$

2. If $\left(b_{n}\right)_{n}$ is an increasing sequence of positive numbers such that $b_{n} \rightarrow \infty$ and $\left(\frac{v(n)}{b_{n}}\right)_{n}$ is unbounded, then there exists some $f \in H_{1}$ such that $\left(\frac{\left\|S_{n} f\right\|_{1}}{b_{n}}\right)_{n}$ is unbounded.

Proof. (1) From Theorem 2 we get

$$
\left\|S_{n} f\right\|_{1} \leq\left\|D_{n}\right\|_{1}\|f\|_{1} \leq 2 v(n)\|f\|_{H_{1}}
$$

Besides, as noticed in the proof of [2, Theorem 2],

$$
\left\|S_{n} f\right\|_{H_{1}} \leq\|f\|_{H_{1}}+\left\|S_{n} f\right\|_{1} .
$$

Hence,

$$
\left\|S_{n} f\right\|_{H_{1}} \leq C v(n)\|f\|_{H_{1}}
$$

(2) We use the same construction made in [2, Theorem 2]. From the assumptions made on the sequence $\left(b_{n}\right)_{n}$, it contains a subsequence $\left(b_{n_{k}}\right)_{k}$ such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\sqrt{b_{n_{k}}}}{\sqrt{v\left(n_{k}\right)}}<+\infty \tag{10}
\end{equation*}
$$

Define $f=\sum_{i} \lambda_{i} a_{i}$, where

$$
\lambda_{i}=\frac{\sqrt{b_{n_{i}}}}{\sqrt{v\left(n_{i}\right)}},
$$

and

$$
a_{i}=D_{2^{n_{i}+1}}-D_{2^{n_{i}}} .
$$

Since each $a_{k}, k \in \mathbb{N}$, is an atom then from (10) we can see that $f \in H_{1}$.
From the definition of Fourier series we get that

$$
S_{n_{k}} f=S_{2^{n_{k} \mid}} f+S_{n_{k}} f-S_{2^{n_{k} \mid}} f .
$$

By the construction of f we get that

$$
S_{n_{k}} f-S_{2^{\left|n_{k}\right|}} f=\lambda_{k}\left(D_{n_{k}}-D_{2^{\left|n_{k}\right|} \mid}\right)
$$

and

$$
S_{2^{\left|n_{k}\right|} \mid} f=\sum_{i=1}^{k-1} \lambda_{i} a_{i} .
$$

It follows that

$$
\left\|S_{n_{k}} f\right\|_{1} \geq \lambda_{k}\left\|D_{n_{k}}\right\|_{1}-\lambda_{k}\left\|D_{2^{\left|n_{k}\right|}}\right\|_{1}-\sum_{i=1}^{k-1} \lambda_{i}\left\|a_{i}\right\|_{1}
$$

Hence, according to Theorem 2

$$
\left\|S_{n_{k}} f\right\|_{1} \geq \lambda_{k} \frac{v\left(n_{k}\right)}{2}-\lambda_{k}-\sum_{i=1}^{k-1} \lambda_{i} \geq \lambda_{k} \frac{v\left(n_{k}\right)}{2}-\sum_{i=1}^{k} \lambda_{i} .
$$

Therefore,

$$
\left\|\frac{S_{n_{k}} f}{b_{n_{k}}}\right\|_{1} \geq \frac{\sqrt{v\left(n_{k}\right)}}{2 \sqrt{b_{n_{k}}}}-\sum_{i=1}^{\infty} \lambda_{i} \rightarrow \infty, k \rightarrow \infty .
$$

References

[1] I. Blahota, Almost everywhere convergence of a subsequence of logarithmic means of Fourier series on the group of 2-adic integers, Georgian Math. J., No. 3, 19 (2012), 417-425.
[2] I. Blahota, L. E. Persson, G. Tephnadze, Two sided estimates of the Lebesgue constants with repect to Vilenkin systems and applications, Glasg. Math. J. 60 (2018) no $1,17-34$.
[3] G. Gát, On the L_{1}-norm of the weighted maximal function of the Walsh-Kaczmarz-Dirichlet kernels, Acta Acad. Paed. Agriensis Sectio Matematicae 30 (2003), 55-66.
[4] S. F. Lukomskii, Lebesgue constants for characters of the compact zerodimensional Abelian group, East. J. Appr. 15 (2010) no 2, 219--231.
[5] F. Schipp. , W.R. Wade, Norm convergence and summability of Fourier series with respect to certain product systems in Pure and Appl. Math. Approx. Theory, vol. 138, Marcel Dekker, New York-Basel- Hong Kong, 1992, 437-452.

Nacima Memic

Department of Mathematics, Faculty of Natural Sciences and Mathematics, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo, Bosnia and Herzegovina email: nacima.o@gmail.com

Amil Pecenkovic
Department of Mathematics, Faculty of Natural Sciences and Mathematics, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo, Bosnia and Herzegovina email:amil.pecenkovic@gmail.com

