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Abstract. The paper is devoted to deriving some estimates of sum, product
and derivative of analytic or meromorphic functions in the unit disc involving the
concepts of the ϕ-order and the ϕ-type. Our results generalise and improve many
previous results that have used the usual order [7, 16, 17, 21, 23] and the iterated
p-order [4, 13, 14].
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1. Introduction

In order to study the growth of solutions of the following higher order linear differ-
ential equation

f (k) +Ak−1(z)f (k−1) + · · ·+A0(z)f = 0, (1)

where k ≥ 2, A0 6≡ 0 and the coefficients Aj(j = 0, . . . , k − 1) are analytic functions
(respectively, meromorphic functions) in unit disc ∆ = {z ∈ C : |z| < 1} or in the
whole complex plane C, it is very important to determine the order and the type of
the coefficients Aj(j = 0, . . . , k − 1). Through this paper, the reader is assumed to
be familiar with the standard notations and the fundamental results of Nevanlinna
value distribution theory of meromorphic functions in the complex plane and in the
unit disc (see [7, 9, 17, 21, 22]) and can refer to ([3, 4, 8, 10, 11, 15]) for more details
about the growth of solutions of equation (1).

For all r ∈ [0, 1), we define exp1 r = exp r = er and expp+1 r = exp(expp r),

p ∈ N = {1, 2, 3, . . . }. Inductively, for all r in (0, 1), log+ r = max{0, log r}, log+
1 r =

log+ r and log+
p+1 r = log+(log+

p r), p ∈ N ∪ {0}. We also make the conventions

exp0 r = 1 = log+
0 r, exp−1 r = log+

1 r and log+
−1 r = exp1 r.
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Definition 1. [4] The iterated p-order of an analytic function f in ∆ is defined by

ρ̃p(f) := lim sup
r−→1−

log+
p+1M(r, f)

− log(1− r)
, p ∈ N,

where M(r, f) = max{|f(z)| : |z| = r} is the maximum modulus of f . For a mero-
morphic function f in ∆, the iterated p-order is defined by

ρp(f) := lim sup
r−→1−

log+
p T (r, f)

− log(1− r)
, p ∈ N,

where T (r, f) is the Nevanlinna characteristic function of f .

Definition 2. [10] The iterated p-type of an analytic function f in ∆ with 0 <
ρ̃p(f) < +∞ is defined by

τ̃p(f) = lim sup
r−→1−

(1− r)ρ̃p(f) log+
p M(r, f).

For a meromorphic function f in ∆ with (0 < ρp(f) < +∞), the iterated p-type is
defined by

τp(f) = lim sup
r−→1−

(1− r)ρp(f) log+
p−1 T (r, f).

It is clear that ρ1(f) and τ1(f) coincide with the usual order ρ(f) and the usual
type τ(f) respectively. In [14], Lahiri proved that the iterated p-order of the deriva-
tive of an entire function or a meromorphic function in the complex plane is the same
as that of the function, i.e., ρp(f

′) = ρp(f), p ≥ 1. Later, Cao-Yi [4] gave the version
of this result in the unit disc and obtained other properties that are well-known in
the complex plane [7, 17, 23].
Theorem A. [4] Let f1 and f2 be two meromorphic functions in ∆. Then, for
p ∈ N we have

(i) ρp(f1) = ρp(
1
f1

), where f1 6≡ 0, ρp(af1) = ρp(f1), where a ∈ C∗.

(ii) ρp(f
′
1) = ρp(f1).

(iii) max{ρp(f1 + f2), ρp(f1 f2)} ≤ max{ρp(f1), ρp(f2)}.

(iv) If ρp(f1) < ρp(f2), then ρp(f1 + f2) = ρp(f1 f2) = ρp(f2).

Theorem B. [4] Let f1 and f2 be two analytic functions in ∆. Then, for p ∈ N we
have

(i) ρ̃p(af1) = ρ̃p(f1)(a ∈ C∗).
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(ii) ρ̃p(f
′
1) = ρ̃p(f1).

(iii) max{ρ̃p(f1 + f2), ρ̃p(f1 f2)} ≤ max{ρ̃p(f1), ρ̃p(f2)}.

(iv) If ρ̃p(f1) < ρ̃p(f2), then ρ̃p(f1 + f2) = ρ̃p(f2).

Latreuch-Beläıdi [16] obtained under some conditions similar results for the usual
type (p = 1).
Theorem C. [16] If f1 and f2 are two analytic functions in ∆ satisfying 0 <
ρ̃(f1) = ρ̃(f2) = ρ < +∞ and τ̃(f1) 6= τ̃(f2), then ρ̃(f1 + f2) = ρ and τ̃(f1 + f2) =
max{τ̃(f1), τ̃(f2)}.

As it is shown by Chyzhykov-Semochko in [6, Example 1.4], the iterated p-order
does not cover an arbitrary growth of entire solutions of equation (1) and the concept
of the ϕ-order (cf. [20]) was investigated in the same paper. This concept is quickly
adopted by Semochko [18] and by Beläıdi [1, 2], where the ϕ-type’s concept is given.

Definition 3. [18] Let ϕ be an increasing unbounded function in the unit disc ∆.
The ϕ-orders of an analytic function f in ∆ are defined by

ρ̃0
ϕ(f) = lim sup

r−→1−

ϕ(M(r, f))

− log(1− r)
, ρ̃1

ϕ(f) = lim sup
r−→1−

ϕ(logM(r, f))

− log(1− r)
.

If f is meromorphic in ∆, then the ϕ-orders are defined by

ρ0
ϕ(f) = lim sup

r−→1−

ϕ(eT (r,f))

− log(1− r)
, ρ1

ϕ(f) = lim sup
r−→1−

ϕ(T (r, f))

− log(1− r)
.

We can see that if ϕ(r) = log+
p r, p ∈ N and f is an analytic function in ∆, then

ρ̃1
ϕ(f) = ρ̃p(f). By Φ we define the class of positive unbounded increasing functions

in the unit disc ∆ such that ϕ(et) is slowly growing, i.e., ∀c > 0 : lim
t→+∞

ϕ(ect)

ϕ(et)
= 1.

As examples, ϕ(r) = log+
p r, (p ≥ 2) belongs to the class Φ and ϕ(r) = log+ r /∈ Φ.

Now, we introduce by analogous manner the definitions of the ϕ-types in the
unit disc ∆ related to the ϕ-order.

Definition 4. Let ϕ be an increasing unbounded function in the unit disc ∆. We
define the ϕ-types of an analytic function f in ∆ with 0 < ρ̃iϕ(f) < +∞ (i = 0, 1)
by

τ̃0
ϕ(f) = lim sup

r−→1−
(1− r)ρ̃0ϕ(f) exp{ϕ(M(r, f))},

τ̃1
ϕ(f) = lim sup

r−→1−
(1− r)ρ̃1ϕ(f) exp{ϕ(logM(r, f))}.
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M. A. Kara and B. Beläıdi – The ϕ-order and the ϕ-type in the unit disc

If f is meromorphic in ∆, then we define the ϕ-types with 0 < ρiϕ(f) < +∞ (i = 0, 1)
by

τ0
ϕ(f) = lim sup

r−→1−
(1− r)ρ0ϕ(f) exp{ϕ(eT (r,f))},

τ1
ϕ(f) = lim sup

r−→1−
(1− r)ρ1ϕ(f) exp{ϕ(T (r, f))}.

2. Main results

The main purpose of this paper is to investigate under suitable conditions the ϕ-order
and the ϕ-type of f1 + f2 , f1 f2 and f ′1, where f1, f2 are analytic or meromorphic
functions in ∆.

Theorem 1. Let ϕ ∈ Φ and f1, f2 be two meromorphic functions in ∆. Then

(i) ρjϕ(f1 + f2) ≤ max{ρjϕ(f1), ρjϕ(f2)} , (j = 0, 1).

(ii) ρjϕ(f1 f2) ≤ max{ρjϕ(f1), ρjϕ(f2)} , (j = 0, 1).

(iii) ρjϕ(af1) = ρjϕ(f1) and τ jϕ(af1) = τ jϕ(f1), (a ∈ C∗; j = 0, 1).

(iv) ρjϕ
(

1
f1

)
= ρjϕ(f1) and τ jϕ

(
1
f1

)
= τ jϕ(f1), (f1 6≡ 0; j = 0, 1).

Theorem 2. Let ϕ ∈ Φ and f1, f2 be two meromorphic functions in ∆. If ρjϕ(f1) <
ρjϕ(f2) , (j = 0, 1), then ρjϕ(f1 + f2) = ρjϕ(f1 f2) = ρjϕ(f2) , (j = 0, 1).

Theorem 3. Let ϕ ∈ Φ and f1, f2 be two analytic functions in ∆. Then

(i) ρ̃jϕ(af1) = ρ̃jϕ(f1) and τ̃ jϕ(af1) = τ̃ jϕ(f1), (a ∈ C∗; j = 0, 1).

(ii) max{ρ̃jϕ(f1 + f2), ρ̃jϕ(f1 f2)} ≤ max{ρ̃jϕ(f1), ρ̃jϕ(f2)}, (j = 0, 1).

(iii) If ρ̃jϕ(f1) < ρ̃jϕ(f2), then ρ̃jϕ(f1 + f2) = ρ̃jϕ(f2), (j = 0, 1).

Theorem 4. Let ϕ ∈ Φ and f1, f2 be two meromorphic functions in ∆. Then

(i) If 0 < ρjϕ(f1) < ρjϕ(f2) < +∞ and τ jϕ(f1) < τ jϕ(f2), (j = 0, 1), then

τ jϕ(f1 + f2) = τ jϕ(f1f2) = τ jϕ(f2), j = 0, 1. (2)

(ii) If 0 < ρjϕ(f1) = ρjϕ(f2) = ρjϕ(f1 + f2) < +∞, (j = 0, 1), then

τ jϕ(f1 + f2) ≤ max{τ jϕ(f1), τ jϕ(f2)}.

Moreover, if τ jϕ(f1) 6= τ jϕ(f2) , (j = 0, 1), then

τ jϕ(f1 + f2) = max{τ jϕ(f1), τ jϕ(f2)}. (3)
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(iii) If 0 < ρjϕ(f1) = ρjϕ(f2) = ρjϕ(f1 f2) < +∞, (j = 0, 1), then

τ jϕ(f1 f2) ≤ max{τ jϕ(f), τ jϕ(f2)}.

Moreover, if τ jϕ(f1) 6= τ jϕ(f2), (j = 0, 1), then

τ jϕ(f1 f2) = max{τ jϕ(f1), τ jϕ(f2)}. (4)

Theorem 5. Let ϕ ∈ Φ and f1, f2 be two meromorphic functions in ∆. If 0 <
ρjϕ(f1) = ρjϕ(f2) = ρ < +∞ and τ jϕ(f1) < τ jϕ(f2), (j = 0, 1), then

ρjϕ(f1 + f2) = ρjϕ(f1 f2) = ρ, (5)

τ jϕ(f1 + f2) = τ jϕ(f1 f2) = τ jϕ(f2). (6)

Theorem 6. Let ϕ ∈ Φ and f1, f2 be two analytic functions in ∆. Then

(i) If 0 < ρ̃jϕ(f1) < ρ̃jϕ(f2) < +∞ and τ̃ jϕ(f1) < τ̃ jϕ(f2), (j = 0, 1), then

τ̃ jϕ(f1 + f2) = τ̃ jϕ(f2). (7)

(ii) If 0 < ρ̃jϕ(f1) = ρ̃jϕ(f2) = ρ̃jϕ(f1 + f2) < +∞, (j = 0, 1), then

τ̃ jϕ(f1 + f2) ≤ max{τ̃ jϕ(f1), τ̃ jϕ(f2)}.

Moreover, if τ̃ jϕ(f1) 6= τ̃ jϕ(f2), then τ̃ jϕ(f1 + f2) = max{τ̃ jϕ(f1), τ̃ jϕ(f2)}.

(iii) If 0 < ρ̃jϕ(f1) = ρ̃jϕ(f2) = ρ̃jϕ(f1 f2) < +∞, (j = 0, 1), then

τ̃ jϕ(f1 f2) ≤ max{τ̃ jϕ(f1), τ̃ jϕ(f2)}.

Theorem 7. Let ϕ ∈ Φ and f1, f2 be two analytic functions in ∆. If 0 < ρ̃jϕ(f1) =
ρ̃jϕ(f2) < +∞ and τ̃ jϕ(f1) < τ̃ jϕ(f2), (j = 0, 1), then

ρ̃jϕ(f1 + f2) = ρ̃jϕ(f1) = ρ̃jϕ(f2), (8)

τ̃ jϕ(f1 + f2) = τ̃ jϕ(f2). (9)

Theorem 8. If f is a meromorphic function in ∆ and ϕ ∈ Φ, then ρjϕ(f ′) = ρjϕ(f),
(j = 0, 1).

Theorem 9. If f is an analytic function in ∆ and ϕ ∈ Φ, then ρ̃jϕ(f ′) = ρ̃jϕ(f),
(j = 0, 1).

Remark 1. For some related results in the complex plane, see [12].
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3. Basic properties and lemmas

In this section, we recall some basic properties of functions from the class Φ and
give only lemmas that we need to prove our results.

Proposition 1. [6] If ϕ ∈ Φ, then

∀m > 0, ∀k ≥ 0 :
ϕ−1(log xm)

xk
−→ +∞, x −→ +∞, (10)

∀δ > 0 :
logϕ−1((1 + δ)x)

logϕ−1(x)
−→ +∞, x −→ +∞. (11)

Remark 2. [6] One can show that (11) implies that

∀c > 0, ϕ(ct) ≤ ϕ(tc) ≤ (1 + o(1))ϕ(t), t −→ +∞. (12)

Proposition 2. [18] Let ϕ ∈ Φ and f be an analytic function in the unit disc ∆.
Then ρ1

ϕ(f) = ρ̃1
ϕ(f).

Remark 3. For an analytic function f in the unit disc ∆ and ϕ ∈ Φ, the equality
ρ0
ϕ(f) = ρ̃0

ϕ(f) is not always verified. As a counter-example, we consider the function
ϕ(.) = log2(.) = log log(.) which belongs to the class Φ and satisfies ρ0

log2
(f) = ρ1(f)

and ρ̃0
log2

(f) = ρ̃1(f). Since ρ1(f) ≤ ρ̃1(f) ≤ ρ1(f) + 1 (see [21] or [15, Proposition

2.2.2]), then ρ0
log2

(f) ≤ ρ̃0
log2

(f) ≤ ρ0
log2

(f) + 1.

Lemma 10. [11] Let g : (0, 1)→ R and h : (0, 1)→ R be monotone non-decreasing
functions such that g(r) ≤ h(r) outside of an exceptional set F ⊂ [0, 1) with

∫
F

dr
1−r <

+∞. Then, there exists a constant d ∈ (0, 1) such that if s(r) = 1 − d(1 − r), then
g(r) ≤ h(s(r)) for all r ∈ [0, 1).

Lemma 11. [11, 21] Let f be a meromorphic function in the unit disc ∆ and k ∈ N.
Then we have

m

(
r,
f (k)

f

)
= O

(
log+ T (r, f) + log

1

1− r

)
possibly outside of an exceptional set F ⊂ [0, 1) with

∫
F

dr
1−r < +∞. If ρ1(f) < +∞,

then

m

(
r,
f (k)

f

)
= O

(
log

1

1− r

)
.
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4. Proofs of the main results

Proof of Theorem 1. (i) The definition of ρ1
ϕ-order implies that for any given ε > 0

and for r sufficiently large in [0, 1) , we have

T (r, fi) ≤ ϕ−1

(
(ρ1
ϕ(fi) + ε) log

1

1− r

)
, (i = 1, 2). (13)

Hence
T (r, f1 + f2) ≤ T (r, f1) + T (r, f2) +O(1)

= O

(
ϕ−1

(
(max{ρ1

ϕ(f1), ρ1
ϕ(f2)}+ ε) log

1

1− r

))
.

By the monotonicity of ϕ and (12), we obtain

ϕ(T (r, f1 + f2))

log 1
1−r

≤ max{ρ1
ϕ(f1), ρ1

ϕ(f2)}+ ε.

Since ε > 0 is arbitrary, then we get ρ1
ϕ(f1 + f2) ≤ max{ρ1

ϕ(f1), ρ1
ϕ(f2)}.

(ii)− (iv) follow immediately from the properties

T (r, f1 f2) ≤ T (r, f1) + T (r, f2),

T (r, af1) = T (r, f1) +O(1), (a ∈ C∗),

T

(
r,

1

f1

)
= T (r, f1) +O(1)

and the definitions of ϕ-order and ϕ-type. Similar proofs for j = 0.

Proof of Theorem 2. By Theorem 1, we have ρjϕ(f1 + f2) ≤ ρjϕ(f2) and then

ρjϕ(f2) = ρjϕ(f1 + f2 − f1) ≤ max{ρjϕ(f1 + f2), ρjϕ(f1)}.

Suppose that ρjϕ(f1) > ρjϕ(f1 + f2), then

ρjϕ(f2) = ρjϕ(f1 + f2 − f1) ≤ max{ρjϕ(f1 + f2), ρjϕ(f1)} = ρjϕ(f1)

this contradicts the hypothesis ρjϕ(f1) < ρjϕ(f2). Then ρjϕ(f2) ≤ ρjϕ(f1 + f2) and
therefore ρjϕ(f1 + f2) = ρjϕ(f2), (j = 0, 1). Similarly, again by Theorem 1 and the
fact that

ρjϕ(f2) = ρjϕ

(
f1 f2

1

f1

)
≤ max{ρjϕ(f1 f2), ρjϕ(f1)} = ρjϕ(f1),
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we obtain ρjϕ(f1 f2) = ρjϕ(f2), (j = 0, 1).

Proof of Theorem 3. (i) It is obvious from the definitions of ρ̃jϕ(f1) and τ̃ jϕ(f1),
(j = 0, 1). (ii) holds by using the known inequalities |f1 + f2| ≤ 2 max{|f1|, |f2|}
and |f1 f2| ≤ [max{|f1|, |f2|}]2 and applying (12). We can obtain (iii) by analogous
discussion as in the proof of the first part of Theorem 2.

Proof of Theorem 4. We only give the proofs for j = 1, the proofs for j = 0
are analogous. (i) The definition of τ1

ϕ-type implies that there exists a sequence

{rn, n ≥ 1} tending to 1− satisfying 1 − (1 − 1
n)(1 − rn) < rn+1 such that for any

given ε > 0 we have

T (rn, f2) ≥ ϕ−1

(
log

(
τ1
ϕ(f2)− ε

(1− rn)ρ
1
ϕ(f2)

))
(14)

and for r −→ 1− there holds

T (r, fi) ≤ ϕ−1

(
log

(
τ1
ϕ(fi) + ε

(1− r)ρ1ϕ(fi)

))
, (i = 1, 2). (15)

By Proposition 1 and the fact that

T (r, f1 + f2) ≥ T (r, f2)− T (r, f1)− log 2, (16)

we obtain

T (rn, f1 + f2) ≥ ϕ−1

(
log

(
τ1
ϕ(f2)− ε

(1− rn)ρ
1
ϕ(f2)

))
−ϕ−1

(
log

(
τ1
ϕ(f1) + ε

(1− rn)ρ
1
ϕ(f1)

))
− log 2

≥ ϕ−1

(
log

(
τ1
ϕ(f2)− 2ε

(1− rn)ρ
1
ϕ(f2)

))
(17)

provided ε such that 0 < 2ε < τ1
ϕ(f2) − τ1

ϕ(f1). It follows from Theorem 2 that
ρ1
ϕ(f1 + f2) = ρ1

ϕ(f2). Then, by (17) and the monotonicity of ϕ, we have

(1− rn)ρ
1
ϕ(f1+f2) exp{ϕ(T (rn, f1 + f2))} ≥ τ1

ϕ(f2)− 2ε.

By arbitrariness of ε (0 < 2ε < τ1
ϕ(f2)− τ1

ϕ(f1)), we obtain

τ1
ϕ(f1 + f2) ≥ τ1

ϕ(f2). (18)
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On the other hand, since ρ1
ϕ(f1 + f2) = ρ1

ϕ(f2) > ρ1
ϕ(f1) = ρ1

ϕ(−f1), then it follows
from (18) that τ1

ϕ(f2) = τ1
ϕ(f1 + f2 − f1) ≥ τ1

ϕ(f1 + f2) and therefore τ1
ϕ(f1 + f2) =

τ1
ϕ(f2).

By a similar discussion as in the above proof such that

T (r, f1 f2) ≥ T (r, f1)− T (r, f2) +O(1), (19)

we obtain
τ1
ϕ(f1 f2) ≥ τ1

ϕ(f2). (20)

Since ρ1
ϕ(f1 f2) = ρ1

ϕ(f2) > ρ1
ϕ(f1) = ρ1

ϕ

(
1
f1

)
, then by (20) we have τ1

ϕ(f2) =

τ1
ϕ

(
f1 f2

1
f1

)
≥ τ1

ϕ(f1 f2) and therefore τ1
ϕ(f1 f2) = τ1

ϕ(f2).

(ii) It follows from the assumption 0 < ρ1
ϕ(f1) = ρ1

ϕ(f2) = ρ1
ϕ(f1 + f2) < +∞, (15)

and Proposition 1 that

T (r, f1 + f2) ≤ T (r, f1) + T (r, f2) +O(1)

≤ ϕ−1

(
log

(
τ1
ϕ(f1) + ε

(1− r)ρ1ϕ(f1)

))
+ ϕ−1

(
log

(
τ1
ϕ(f2) + ε

(1− r)ρ1ϕ(f2)

))
+O(1)

≤ ϕ−1

(
log

(
max{τ1

ϕ(f1), τ1
ϕ(f2)}+ 3ε

(1− r)ρ1ϕ(f1+f2)

))
.

By the monotonicity of ϕ and arbitrariness of ε > 0 we obtain

τ1
ϕ(f1 + f2) ≤ max{τ1

ϕ(f1), τ1
ϕ(f2)}. (21)

Moreover, we may suppose without loss of generality that τ1
ϕ(f1) < τ1

ϕ(f2). Then,
by (21) and since ρ1

ϕ(f1 + f2) = ρ1
ϕ(f1) = ρ1

ϕ(−f1), we have

τ1
ϕ(f2) = τ1

ϕ(f1 + f2 − f1) ≤ max{τ1
ϕ(f1 + f2), τ1

ϕ(f1)} = τ1
ϕ(f1 + f2)

and therefore τ1
ϕ(f1 + f2) = max{τ1

ϕ(f1), τ1
ϕ(f2)}.

(iii) Since T (r, f1 f2) ≤ T (r, f1) + T (r, f2), we obtain by a similar discussion as in
(21) that

τ1
ϕ(f1 f2) ≤ max{τ1

ϕ(f1), τ1
ϕ(f2)}. (22)

Moreover, if we suppose that τ1
ϕ(f1) < τ1

ϕ(f2), then by (22) and since ρ1
ϕ(f1 f2) =

ρ1
ϕ(f1) = ρ1

ϕ

(
1
f1

)
, we obtain

τ1
ϕ(f2) = τ1

ϕ

(
f1 f2

1

f1

)
≤ max{τ1

ϕ(f1 f2), τ1
ϕ(f1)} = τ1

ϕ(f1 f2).
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Hence, τ1
ϕ(f1 f2) = max{τ1

ϕ(f1), τ1
ϕ(f2)}.

Proof of Theorem 5. We have from Theorem 1 that

ρjϕ(f1 + f2) ≤ ρjϕ(f1) = ρjϕ(f2) and ρjϕ(f1 f2) ≤ ρjϕ(f1) = ρjϕ(f2).

Analogous reasoning as in the proof of Theorem 4 especially (16) and (19) leads to

ρjϕ(f1 + f2) ≥ ρjϕ(f2) = ρjϕ(f1) and ρjϕ(f1 f2) ≥ ρjϕ(f2) = ρjϕ(f1).

Hence, (5) holds. On the other hand, (6) is obvious from (5) and Theorem 4.

Proof of Theorem 6. We will prove the theorem for j = 0, the proofs for j = 1 are
analogous and follow also from Proposition 2 and Theorem 4. (i) The definition of
the τ̃0

ϕ-type implies that for any ε > 0 there exists a sequence {rn : n ≥ 1} tending

to 1− satisfying 1− (1− 1
n)(1− rn) < rn+1 such that for any given ε > 0 we have

M(rn, f2) ≥ ϕ−1

(
log

(
τ̃0
ϕ(f2)− ε

(1− rn)ρ̃
0
ϕ(f2)

))
(23)

and for all r −→ 1−

M(r, fi) ≤ ϕ−1

(
log

(
τ̃0
ϕ(fi) + ε

(1− r)ρ̃0ϕ(fi)

))
, (i = 1, 2). (24)

We consider a sequence {zn : n ≥ 1} satisfying |f2(zn)| = M(rn, f2) in each circle
|z| = rn. Then, by (23), (24) and Proposition 1 we obtain

M(rn, f1 + f2) ≥ |f1(zn) + f2(zn)| ≥ |f2(zn)| − |f1(zn)|

≥M(rn, f2)−M(rn, f1)

≥ ϕ−1

(
log

(
τ̃0
ϕ(f2)− ε

(1− rn)ρ̃
0
ϕ(f2)

))
− ϕ−1

(
log

(
τ̃0
ϕ(f1) + ε

(1− rn)ρ̃
0
ϕ(f1)

))

≥ ϕ−1

(
log

(
τ̃0
ϕ(f2)− 2ε

(1− rn)ρ̃
0
ϕ(f2)

))
(25)

provided ε such that 0 < 2ε < τ̃0
ϕ(f2)−τ̃0

ϕ(f1) and rn −→ 1−. We have from Theorem
3 that ρ̃0

ϕ(f1+f2) = ρ̃0
ϕ(f2). Thus, by the monotonicity of ϕ, (25) and (12), we obtain

(1− rn)ρ̃
0
ϕ(f1+f2) exp{ϕ(M(rn, f1 + f2))} ≥ τ̃0

ϕ(f2)− 2ε.
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By arbitrariness of ε (0 < 2ε < τ̃0
ϕ(f2)− τ̃0

ϕ(f)), we get

τ̃0
ϕ(f1 + f2) ≥ τ̃0

ϕ(f2). (26)

On the other hand, by applying (26) and since ρ̃0
ϕ(f1 + f2) = ρ̃0

ϕ(f2) > ρ̃0
ϕ(f1) =

ρ̃0
ϕ(−f1), then we obtain

τ̃0
ϕ(f2) = τ̃0

ϕ(f1 + f2 − f1) ≤ τ̃0
ϕ(f1 + f2)

and therefore τ̃0
ϕ(f1 + f2) = τ̃0

ϕ(f2).
(ii) It follows from the assumption 0 < ρ̃0

ϕ(f1) = ρ̃0
ϕ(f2) = ρ̃0

ϕ(f1 + f2) < +∞, (24)
and Proposition 1 that

M(r, f1 + f2) ≤M(r, f1) +M(r, f2)

≤ ϕ−1

(
log

(
τ̃0
ϕ(f1) + ε

(1− r)ρ̃0ϕ(f1+f2)

))
+ ϕ−1

(
log

(
τ̃0
ϕ(f2) + ε

(1− r)ρ̃0ϕ(f1+f2)

))

≤ ϕ−1

(
log

(
max{τ̃0

ϕ(f1), τ̃0
ϕ(f2)}+ 2ε

(1− r)ρ̃0ϕ(f1+f2)

))
.

The monotonicity of ϕ and arbitrariness of ε > 0 yield

τ̃0
ϕ(f1 + f2) ≤ max{τ̃0

ϕ(f1), τ̃0
ϕ(f2)}. (27)

Moreover, we may suppose without loss of generality that τ̃0
ϕ(f1) < τ̃0

ϕ(f2). Since
ρ̃0
ϕ(f1 + f2) = ρ̃0

ϕ(f1) = ρ̃0
ϕ(−f1), then by applying (27) we get

τ̃0
ϕ(f2) = τ̃0

ϕ(f1 + f2 − f1) ≤ max{τ̃0
ϕ(f1 + f2), τ̃0

ϕ(f1)} = τ̃0
ϕ(f1 + f2). (28)

We deduce from (27) and (28) that τ̃0
ϕ(f1 + f2) = max{τ̃0

ϕ(f1), τ̃0
ϕ(f2)}.

(iii) By the assumption 0 < ρ̃0
ϕ(f1) = ρ̃0

ϕ(f2) = ρ̃0
ϕ(f1 f2) < +∞ and (24) it follows

that
M(r, f1 f2) ≤M(r, f1)M(r, f2)

≤ ϕ−1

(
log

(
τ̃0
ϕ(f1) + ε

(1− r)ρ̃0ϕ(f1 f2)

))
ϕ−1

(
log

(
τ̃0
ϕ(f2) + ε

(1− r)ρ̃0ϕ(f1 f2)

))

≤

[
ϕ−1

(
log

(
max{τ̃0

ϕ(f1), τ̃0
ϕ(f2)}+ ε

(1− r)ρ̃0ϕ(f1 f2)

))]2

.
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By the monotonicity of ϕ and (12), we obtain

ϕ(M(r, f1 f2)) ≤ (1 + o(1)) log

(
max{τ̃0

ϕ(f1), τ̃0
ϕ(f2)}+ ε

(1− r)ρ̃0ϕ(f1 f2)

)

≤ log

(
max{τ̃0

ϕ(f1), τ̃0
ϕ(f2)}+ 2ε

(1− r)ρ̃0ϕ(f1 f2)

)
.

Since ε > 0 is arbitrary, we deduce τ̃0
ϕ(f1 f2) ≤ max{τ̃0

ϕ(f1), τ̃0
ϕ(f2)}.

Proof of Theorem 7. We have from Theorem 3 that ρ̃jϕ(f1 + f2) ≤ ρ̃jϕ(f1) = ρ̃jϕ(f2).
To prove the converse inequality, we assume the contrary ρ̃jϕ(f1 + f2) < ρ̃jϕ(f1).
Then, by (7) we have τ̃ jϕ(f1) = τ̃ jϕ(f1 + f2 − f2) = τ̃ jϕ(f2) which contradicts our
hypothesis τ̃ jϕ(f1) < τ̃ jϕ(f2). Hence, ρ̃jϕ(f1 + f2) ≥ ρ̃jϕ(f1) and therefore (8) holds. It
is clear that (9) follows immediately from our assertion (8) and the second part of
Theorem 6.

Proof of Theorem 8. Denote ρ1
ϕ(f) = ρ and ρ1

ϕ(f ′) = ρ′. By (13), Lemma 11 and

(10), for all r −→ 1−, r /∈ F, where F is a set satisfying
∫
F

dr
1−r < +∞, we have

T (r, f ′) = m(r, f ′) +N(r, f ′) ≤ m(r,
f ′

f
) +m(r, f) + 2N(r, f)

≤ m(r,
f ′

f
) + 2T (r, f) = O

(
logϕ−1

(
(ρ+ ε) log

1

1− r

)
+ log

1

1− r

)
+O

(
ϕ−1

(
(ρ+ ε) log

1

1− r

))
= O

(
ϕ−1

(
(ρ+ ε) log

1

1− r

))
.

By the monotonicity of ϕ and (12), we obtain

ϕ(T (r, f ′)) ≤ (1 + o(1))

(
(ρ+ ε) log

1

1− r

)
≤ (ρ+ 2ε) log

1

1− r
, r /∈ F.

By Lemma 10, since ε > 0 is arbitrary, there holds ρ1
ϕ(f ′) ≤ ρ1

ϕ(f) = ρ.
Now, we prove ρ1

ϕ(f) ≤ ρ1
ϕ(f ′). Indeed, by following analogous demonstration

techniques as in [22, Theorem 4.1] or in [5], we can obtain the following estimate

T (r, f) < O

(
T (

1 + r

2
, f ′) + log

1

1− r

)
, r −→ 1−.

76
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By (13) and (10) we have that T (r, f ′) ≤ ϕ−1
(

(ρ′ + ε) log 1
1−r

)
and then

T (r, f) ≤ O
(
ϕ−1

(
(ρ′ + ε) log

2

1− r

)
+ log

1

1− r

)

= O

(
ϕ−1

(
(ρ′ + 2ε) log

1

1− r

))
.

By the monotonicity of ϕ and (12), we obtain

ϕ(T (r, f)) ≤ (1 + o(1))

(
(ρ′ + 2ε) log

1

1− r

)
≤ (ρ′ + 3ε) log

1

1− r
.

By arbitrariness of ε > 0 we deduce that ρ1
ϕ(f) ≤ ρ1

ϕ(f ′) = ρ′ and therefore Theorem
8 is proved.

Proof of Theorem 9. It is well-known that for an analytic function f we have

f(z) = f(0) +

∫ z

0
f ′(ζ)dζ.

Then, for |z| = r < 1 we obtain

M(r, f) ≤ |f(0)|+ rM(r, f ′) ≤ |f(0)|+M(r, f ′).

Clearly, it follows from the monotonicity of ϕ that ρ̃0
ϕ(f) ≤ ρ̃0

ϕ(f ′). Now, we prove

the reverse inequality. Taking z0 = reiθ for any |z| = r ∈ [0, 1) such that M(r, f ′) =
|f ′(z0)| and R = 1+r

2 . By Cauchy’s integral formula, we have

f ′(z0) =
1

2πi

∮
Γ

f(ζ)

(ζ − z0)2
dζ,

where Γ = {ζ : |ζ − z0| = R − r}. Set ζ − z0 = (R− r) eiθ (0 ≤ θ ≤ 2π) , dζ =
(R− r) ieiθdθ. Since max{|f (ζ) | : ζ ∈ Γ} ≤M(R, f), then we obtain

M(r, f ′) = |f ′(z0)| ≤ 1

2π

∫ 2π

0

|f(ζ)|
|ζ − z0|2

(R− r)dθ

≤ M(R, f)

R− r
=

2

1− r
M(

1 + r

2
, f). (29)

We consider now a set E ⊂ [0, 1) such that

E =

{
r ∈ [0, 1) : log

2

1− r
< logM(

1 + r

2
, f)

}
.
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Then, by the monotonicity of ϕ, (29) and (12) we obtain

ϕ(M(r, f ′))

log 1
1−r

≤
ϕ
(

exp
{

log 2
1−r + logM(1+r

2 , f)
})

log 1
1−r

≤
ϕ
(
exp

{
2 logM(1+r

2 , f)
})

log 1
1−r

=
ϕ (exp {2 logM(R, f)})

log 2
1−R

≤ (1 + o(1))ϕ(M(R, f))

log 1
1−R

.

Thus,

ρ̃0
ϕ(f ′) = lim sup

r−→1−

ϕ(M(r, f ′))

− log(1− r)
≤ lim sup

R−→1−

(1 + o(1))ϕ(M(R, f))

log 1
1−R

= ρ̃0
ϕ(f)

holds on E. It remains to estimate
ϕ(M(r, f ′))

log 1
1−r

on Ec such that

Ec =

{
r ∈ [0; 1) : log

2

1− r
≥ logM(

1 + r

2
, f)

}
.

In fact, by Karamata’s theorem (see [19]) we have ϕ(et) = to(1) as t −→ +∞. Then,
for r −→ 1− there holds

ϕ(M(r, f ′))

log 1
1−r

≤
ϕ
(

exp
{

log 2
1−r + log 2

1−r

})
log 1

1−r
=

(
2 log 2

1−r

)o(1)

log 1
1−r

.

Hence,

ρ̃0
ϕ(f ′) := lim sup

r−→1−

ϕ(M(r, f ′))

− log(1− r)
= 0.

We deduce that ρ̃0
ϕ(f ′) ≤ ρ̃0

ϕ(f) and therefore ρ̃0
ϕ(f ′) = ρ̃0

ϕ(f).
The case for j = 1 follows immediately from Proposition 2 and Theorem 8.

5. Conclusion

In our present paper, we have investigated the concepts of the ϕ-order and the ϕ-type
and discussed their nice properties. We consider our results very helpful and will
certainly contribute in future possible studies of the growth of solutions of equation
(1). Moreover, the general concept of (α, β)-order introduced by Sheremeta [20]
shows that there are still many things can be done in this subject.

Acknowledgements. This paper is supported by University of Mostaganem
(UMAB) (PRFU Project Code C00L03UN270120180005).

78
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