ON TWO MULTIPLICATIVE FUNCTIONS DEFINED BY THE NUMBER OF SOLUTIONS TO $X_{1} X_{2} \cdots X_{K}=N$

Dorin Andrica and George C. Ţurcaş

Abstract

In this short note we present two arithmetic functions related to the number of solutions of a certain Diophantine equation and we show that these satisfy some interesting properties. In particular, we show that the two functions are multiplicative and that they are related to other well-known arithmetic functions. Upper bounds and formulas involving binomial coefficients for these functions are also provided. In the last section, we give a link between the Dirichlet series of the two functions and the well-known Riemann zeta function.

2010 Mathematics Subject Classification: 11N99, 11N37, 11D99.
Keywords: multiplicative function, prime divisor, Dirichlet series, Riemann zeta function, convolution product.

1. Introduction

The following interesting multiplicative function $S: \mathbb{N}^{*} \rightarrow \mathbb{N}$ caught our eye in Problem O124 proposed in Mathematical Reflections 3(2009). For a positive integer n, the quantity $S(n)$ is defined as the number of pairs consisting of positive integers (x, y) such that $x y=n$ and $\operatorname{gcd}(x, y)=1$. The problem asks to show the relation

$$
\begin{equation*}
\sum_{d \mid n} S(d)=\tau\left(n^{2}\right) \tag{1}
\end{equation*}
$$

holds, where $\tau(s)$ is the number of divisors of the positive integer s. A simple proof of the equality (1) relies on the observation that the function S is multiplicative, that is for any relatively prime integers m and n we have $S(m n)=S(m) S(n)$. Using this, it is sufficient to note that for any prime p and any positive integer $\alpha, S\left(p^{\alpha}\right)=2$, hence we get $S(n)=2^{s}$, where $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$ is the prime factorization of n.

Another problem published in the same journal, namely J108 in Mathematical Reflections $\mathbf{1}$ (2009), asks to show that the number of ordered pairs (a, b) of relatively
prime positive divisors of n is equal to $\tau\left(n^{2}\right)$, the number of divisors of n^{2}. The function which counts these pairs is obviously related to S.

After this introductory section, the paper starts with the study some of the properties of arithmetic multiplicative functions $S_{k}, k \geq 1$, a family of functions which naturally extend the multiplicative function S above. The functions appear sporadically through the literature, as if some authors rediscovered them at different times. The curious reader can consult the articles [3], [7] or the books [5] and [6], where these functions appear under different notations. Some properties of the function S_{k} are also presented in [2]. There is an immense literature on the theory of multiplicative functions. For some details, one could consult [1] and [6].

In section 3, we fix the positive integer k and present some upper bounds for $S_{k}(n)$ which are related to upper bounds on the function counting the prime divisors of n. Section 4 is dedicated to the exploration of the properties of another arithmetic family of functions M_{k}, closely related to S_{k}, where $k \in \mathbb{N} \backslash\{0\}$. Finally, in the last section we prove identities relating the Dirichlet series of S_{k} and M_{k} to the wellknown Riemann zeta function.

2. The multiplicative functions S_{k}

Denote by $S_{k}(n)$ the number of representations of the positive integer n as a product of k positive integers, that is the number of solutions in positive integers of the equation

$$
\begin{equation*}
x_{1} x_{2} \cdots x_{k}=n \tag{2}
\end{equation*}
$$

In this way, for a fixed positive integer k, we define the arithmetic function

$$
n \mapsto S_{k}(n) .
$$

It is clear that $S_{1}=\mathbf{1}$, the constant function 1 . A first result concerning the function S_{k} is the following.

Theorem 1. The function S_{k} is multiplicative.
Proof. Let m and n be two relatively prime integers. Consider $\left(x_{1}, \cdots, x_{k}\right)$ and (y_{1}, \cdots, y_{k}) solutions in positive integers of the corresponding equations to m and n, that is we have the relations $x_{1} x_{2} \cdots x_{k}=m$ and $y_{1} y_{2} \cdots y_{k}=n$. Then by multiplication we get $\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right) \cdots\left(x_{k} y_{k}\right)=m n$, that is the product of two solutions (component by component) gives a solution to the corresponding equation to mn . Conversely, let $\left(z_{1}, \cdots, z_{k}\right)$ be any solution to the equation $z_{1} z_{2} \cdots z_{k}=m n$. Define $x_{i}=\operatorname{gcd}\left(z_{i}, m\right)$ and $y_{i}=\operatorname{gcd}\left(z_{i}, n\right), i=1, \cdots, k$. It is clear that $x_{1} x_{2} \cdots x_{k}=m$, $y_{1} y_{2} \cdots y_{k}=n$ and $\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right) \cdots\left(x_{k} y_{k}\right)=m n$, hence $S_{k}(m n)=S_{k}(m) S_{k}(n)$.

Theorem 2. S_{k} is the summation function of S_{k-1}, that is for any positive integer n the following relation holds:

$$
\begin{equation*}
S_{k}(n)=\sum_{d \mid n} S_{k-1}(d) \tag{3}
\end{equation*}
$$

Proof. For a fixed divisor d of n consider all solutions $\left(x_{1}, \cdots, x_{k}\right)$ to equation (2) such that $x_{1}=d$. The number of such solutions is $S_{k-1}\left(\frac{n}{d}\right)$. It follows that

$$
S_{k}(n)=\sum_{d \mid n} S_{k-1}\left(\frac{n}{d}\right)=\sum_{d \mid n} S_{k-1}(d)
$$

and we are done.
From the theorem above it follows that $S_{2}(n)=\sum_{d \mid n} S_{1}(d)=\sum_{d \mid n} \mathbf{1}(d)=$ $\sum_{d \mid n} 1=\tau(n)$, following that $S_{2}=\tau$, the well-known number of divisors function.

Theorem 3. If p is a prime and α is a positive integer, then

$$
\begin{equation*}
S_{k}\left(p^{\alpha}\right)=\binom{\alpha+k-1}{k-1} \tag{4}
\end{equation*}
$$

Proof. We proceed by induction on k. Clearly, we have $S_{1}\left(p^{\alpha}\right)=1$. From the previously proved equality (3) we obtain

$$
S_{2}\left(p^{\alpha}\right)=\sum_{d \mid p^{\alpha}} S_{1}(d)=1+\cdots+1=\alpha+1=\binom{\alpha+1}{1}
$$

so the desired property holds.
Assume that $S_{k}\left(p^{\alpha}\right)=\binom{\alpha+k-1}{k-1}$. Using the same relation, it follows

$$
S_{k+1}\left(p^{\alpha}\right)=\sum_{j=0}^{\alpha} S_{k}\left(p^{j}\right)=\binom{k-1}{k-1}+\binom{k}{k-1}+\cdots+\binom{\alpha+k-1}{k}=\binom{\alpha+k}{k}
$$

where we have used the well-known combinatorial identity

$$
\binom{s}{s}+\binom{s+1}{s}+\cdots+\binom{s+l}{s}=\binom{s+l+1}{s+1}
$$

We present two proofs for the following corollary.

Corollary 4. Assume that $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$ is the prime factorization of the positive integer n. Then

$$
\begin{equation*}
S_{k}(n)=\binom{\alpha_{1}+k-1}{k-1} \cdots\binom{\alpha_{s}+k-1}{k-1} . \tag{5}
\end{equation*}
$$

First proof. Taking into account that the function S_{k} is multiplicative it follows

$$
S_{k}(n)=S_{k}\left(p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}\right)=S_{k}\left(p_{1}^{\alpha_{1}}\right) \cdots S_{k}\left(p_{s}^{\alpha_{s}}\right)=\binom{\alpha_{1}+k-1}{k-1} \cdots\binom{\alpha_{s}+k-1}{k-1}
$$

hence the desired conclusion.

Second proof. Alternatively, we can prove this by using the summation formula in Theorem 2 and together with Euler's product formula. We have

$$
\begin{gathered}
S_{k}(n)=\sum_{d \mid n} S_{k-1}(d)=\prod_{i=1}^{s}\left(1+S_{k-1}\left(p_{i}\right)+\cdots+S_{k-1}\left(p_{i}^{\alpha_{i}}\right)\right)= \\
\prod_{i=1}^{s}\left(\binom{k-1}{0}+\binom{k-1}{1}+\binom{k}{2} \cdots+\binom{\alpha_{i}+k-3}{\alpha_{i}-1}+\binom{\alpha_{i}+k-2}{\alpha_{i}}\right)= \\
\prod_{i=1}^{s}\left(\binom{k}{1}+\binom{k}{2}+\cdots+\binom{\alpha_{i}+k-3}{\alpha_{i}-1}+\binom{\alpha_{i}+k-2}{\alpha_{i}}\right)= \\
\prod_{i=1}^{s}\left(\binom{k+1}{2}+\cdots+\binom{\alpha_{i}+k-3}{\alpha_{i}-1}+\binom{\alpha_{i}+k-2}{\alpha_{i}}\right)=\cdots= \\
\prod_{i=1}^{s}\left(\binom{\alpha_{i}+k-2}{\alpha_{i}-1}+\binom{\alpha_{i}+k-2}{\alpha_{i}}\right)=\prod_{i=1}^{s}\binom{\alpha_{i}+k-2}{\alpha_{i}}
\end{gathered}
$$

Remark. Assume that $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$. From Theorem 2 and the corollary above we have
$S_{k+1}(n)=\sum_{d \mid n} S_{k}(d)=\sum_{0 \leq r_{i} \leq \alpha_{i}} S_{k}\left(p_{1}^{r_{1}} \cdots p_{s}^{r_{s}}\right)=\sum_{0 \leq r_{i} \leq \alpha_{i}}\binom{r_{1}+k-1}{k-1} \cdots\binom{r_{s}+k-1}{k-1}$,
hence we derived the following combinatorial identity involving the decomposition of a product of binomial coefficients as a sum of terms of the same form:

$$
\begin{equation*}
\binom{\alpha_{1}+k-1}{k-1} \cdots\binom{\alpha_{s}+k-1}{k-1}=\sum_{0 \leq r_{i} \leq \alpha_{i}}\binom{r_{1}+k-1}{k-1} \cdots\binom{r_{s}+k-1}{k-1} . \tag{6}
\end{equation*}
$$

3. Some upper bounds for $S_{k}(n)$

The asymptotic behavior of the function $S_{k}(n)$ when $n \rightarrow \infty$ is difficult to establish. One reason for this is that is very hard to estimate the asymptotics of the function $\omega(n)$, which counts the number of distinct prime divisors of n. To see the connection between these two functions recall that Corollary 4 asserts that

$$
S_{k}(n)=\binom{\alpha_{1}+k-1}{k-1} \cdots\binom{\alpha_{s}+k-1}{k-1}
$$

where $s=\omega(n)$ and $n=p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}$. It is therefore obvious that for k fixed and $n \rightarrow \infty$ that asymptotics of $S_{k}(n)$ is influenced by $\omega(n)$ and by the exponents α_{i}, where $i \in\{1, \ldots, s\}$.

Lemma 1 proved in the appendix of [8] asserts that for fixed $k, \lim _{n \rightarrow \infty} \frac{S_{k}(n)}{n}=0$. If correct, the proof given in loc. cit. would generalize mutatis mutandis to a proof of the following fact: Given fixed $k \in \mathbb{N} \backslash\{0\}$ and $\epsilon>0$, the limit $\lim _{n \rightarrow \infty} \frac{S_{k}(n)}{n^{\epsilon}}=0$ holds. In our opinion, this is not the case for the proof given in the aforementioned article. We would like to mention that Lemma 1 is not a central result in [8].

From Proposition 7.10 of [4], it follows that there exists a positive integer n_{0} such that for any $n \geq n_{0}$ we have

$$
\begin{equation*}
\omega(n)<\frac{2 \ln n}{\ln \ln n} \tag{7}
\end{equation*}
$$

It can be easily observed that the exponents α_{i} are bounded above by $\log _{2} n$ for any $i \in\{1, \ldots, n\}$. At the same time, we will make use of the following upper bound for binomial coefficients $\binom{m}{j}$. First, one notices that

$$
\binom{m}{j} \leq \frac{m^{j}}{j!}=\frac{m^{j}}{j^{j}} \cdot \frac{j^{j}}{j!}
$$

For any positive integer integer j, from the Taylor expansion of the exponential function we can deduce that $\frac{j^{j}}{j!}<e^{j}$. Using this in the bound above, we obtain that for any positive integers $1 \leq j \leq m$, we have

$$
\binom{m}{j}<\left(\frac{m \cdot e}{j}\right)^{j}
$$

Applying the latter bound, we find that the inequality

$$
\begin{equation*}
\binom{\alpha_{i}+k-1}{k-1}<\left(\frac{\left(\alpha_{i}+k-1\right) \cdot e}{k-1}\right)^{k-1} \tag{8}
\end{equation*}
$$

holds for $k \geq 2$ and for all $i \in\{1, \ldots, n\}$.
Taking into the inequalities (7) and (8), we deduce that for k fixed, there exists an absolute constant $C>0$ such that for n large enough we have

$$
S_{k}(n)<(C \cdot \ln n)^{\frac{2(k-1) \ln n}{\ln \ln n}}=n^{2(k-1)+\frac{2(k-1) \ln C}{\ln \ln n}} .
$$

Indeed, the last equality can be explained by the intermediary

$$
(C \cdot \ln n)^{\frac{\ln n}{\ln \ln n}}=e^{\ln n \cdot \frac{\ln C}{\ln \ln n}} \cdot e^{\ln \ln n \cdot \frac{\ln n}{\ln \ln n}}=n^{\frac{\ln C}{\ln \ln n}} \cdot n
$$

which has to be raised at the power $2(k-1)$.
The upper bound deduced above is not strong enough to imply that $\lim _{n \rightarrow \infty} \frac{S_{k}(n)}{n}=$ 0 . However, we remark that when $k=2$, from Proposition 7.12 of [4] it follows that the number of divisors function $S_{2}(n)=n^{O(1 / \ln \ln n)}$. This implies that for any fixed $\epsilon>0$, the limit $\lim _{n \rightarrow \infty} \frac{S_{2}(n)}{n^{\epsilon}}=0$ holds. The last equality can be proved using the Sandwich Theorem, following the observation that for any fixed constants $C, \epsilon>0$ we have $\lim _{n \rightarrow \infty} e^{\frac{C \ln n}{\ln \ln n}-\epsilon \ln n}=0$.

In what follows, we will prove that for any fixed k and any $\epsilon>0$, the quantity $S_{k}(n)$ is asymptotically smaller than n^{ϵ}, for almost all n. To be precise, let us consider the following definition.

Definition 1. We say that a set of positive integers has asymptotic density λ if

$$
\lambda=\lim _{x \rightarrow \infty} \frac{|A \cap[1, x]|}{x} .
$$

We will make use of the following result.
Lemma 5 (Lemma 7.18 in [4]). Let $\delta>0$ and write

$$
A_{\delta}=\left\{n:\left|\frac{\omega(n)}{\ln \ln n}-1\right|>\delta\right\} .
$$

Then A_{δ} is of asymptotic density zero.
Setting $\delta=1$, we see that the inequality

$$
\begin{equation*}
\omega(n) \leq 2 \ln \ln n \tag{9}
\end{equation*}
$$

holds for all $n \in \mathbb{N} \backslash A_{1}$, where A_{1} is a set of asymptotic density zero.
Theorem 6. For a fixed positive integer k, there is an absolute constant $C>0$ such that for all $n \in \mathbb{N} \backslash A_{1}$, the following inequality holds

$$
S_{k}(n) \leq C^{(\ln \ln n)^{2}+\ln \ln n}
$$

Proof. Let $n=p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}$, where $s=\omega(n)$ and recall that

$$
S_{k}(n)=\binom{\alpha_{1}+k-1}{k-1} \cdots\binom{\alpha_{s}+k-1}{k-1}
$$

Denote by $\alpha=\max \left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$ and recall that $\alpha \leq \log _{2} n$. We have seen that for every $k \geq 2$, we have

$$
\binom{\alpha+k-1}{k-1} \leq\left(\frac{(\alpha+k-1) \cdot e}{k-1}\right)^{k-1}
$$

As k is fixed, there is a constant $K>0$ such that

$$
\binom{\alpha+k-1}{k-1} \leq K^{k-1} \cdot \ln n^{k-1} .
$$

We now have that $S_{k}(n) \leq\left(K^{k-1} \cdot \ln ^{k-1} n\right)^{\omega(n)}$ which together with the inequality (9) implies that for $n \in \mathbb{N} \backslash A_{1}$ the following holds

$$
S_{k}(n) \leq K^{(k-1) \ln \ln n}(\ln n)^{(k-1) \ln \ln n}=\left(e^{(k-1) \ln K}\right)^{\ln \ln n} \cdot e^{(k-1) \cdot(\ln \ln n)^{2}}
$$

The conclusion now follows by setting $C=\max \left(e^{(k-1) \ln K}, e^{(k-1)}\right)$.

Remark. We remark that for any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{C^{\left.(\ln \ln n)^{2}+\ln \ln \right)}}{n^{\epsilon}}=\frac{C^{(\ln \ln n)^{2}+\ln \ln n}}{e^{\epsilon \ln n}}=0,
$$

hence we can conclude that given a fixed k, for almost all n, the value of the function $S_{k}(n)$ is indeed asymptotically smaller than any positive power of n.

4. A new multiplicative function related to S_{k}

Let us recall that for positive integers n and k, the multiplicative function $S_{k}(n)$ was defined as the number of solutions in positive integers of the equation

$$
\begin{equation*}
x_{1} x_{2} \cdots x_{k}=n \tag{10}
\end{equation*}
$$

It is natural to study the number of solutions in positive integers to (10) that are subject to various conditions, such as the $\operatorname{gcd}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=d$ for some fixed value of d.

It is easy to see that if the k-tuple $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in(\mathbb{N} \backslash\{0\})^{k}$ is a solution to (10) such that $\operatorname{gcd}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=d$, then $\operatorname{gcd}\left(x_{1} / d, x_{2} / d \ldots, x_{k} / d\right)=1$ and $d^{k} \mid n$. Moreover, the k-tuple $\left(x_{1} / d, x_{2} / d, \ldots, x_{k} / d\right) \in(\mathbb{N} \backslash\{0\})^{k}$ is also a solution to an equation of the type (10), where the right hand side is equal to n / d^{k}.

For the values of d for which there is a solution to (10), the previous statement gives a bijection between the set of solutions to (10) satisfying $\operatorname{gcd}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=d$ and the set of solutions to

$$
x_{1} x_{2} \cdots x_{k}=\frac{n}{d^{k}}
$$

subject to $\operatorname{gcd}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=1$.
We define $M_{k}(n)$ as the number of k-tuples $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in(\mathbb{N} \backslash\{0\})^{k}$ satisfying

$$
x_{1} x_{2} \cdots x_{k}=n
$$

and $\operatorname{gcd}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=1$. Remark that $M_{1}(n)=1$, if $n=1$ and $M_{1}(n)=0$ otherwise.

In what follows, we write $\omega(n)$ for the number of distinct prime divisors and $\tau(n)$ for the number of distinct positive divisors of n. Both ω and τ are wellstudied arithmetic functions. It is worth mentioning that ω is additive and τ is multiplicative.

The following theorem gives a link between the function $n \mapsto M_{3}(n)$ and the more familiar arithmetic functions $\omega, \tau: \mathbb{N} \backslash\{0\} \rightarrow \mathbb{N}$.

Theorem 7. For every positive integer $n \geq 2$, we have that $M_{3}(n)=3^{\omega(n)} \cdot \tau(n)$.
Proof. Let us write $n=\prod_{i=1}^{\omega(n)} p_{i}^{\alpha_{i}}$ for the factorisation of n into distinct prime factors. For each i, there is at least one $j \in\{1,2,3\}$ such that $p_{i} \nmid x_{j}$. Fixing j, there are $\alpha_{i}+1$ ways in which one can distribute the powers of p_{i} to the remaining two terms. As for every $i \in\{1, \ldots, \omega(n)\}$ the choices described above are independent, we have

$$
M_{3}(n)=\prod_{i=1}^{\omega(n)} 3\left(\alpha_{i}+1\right)=3^{\omega(n)} \cdot \tau(n) .
$$

More generally, we have the following result which gives a relation between the functions M_{k}, S_{k-1} and the number of prime divisors function ω.

Theorem 8. For any positive integers $n, k \geq 2$, we have $M_{k}(n)=k^{\omega(n)} S_{k-1}(n)$.

Proof. Write $n=\prod_{i=1}^{\omega(n)} p_{i}^{\alpha_{i}}$ for the factorisation of n into distinct prime factors. For every i, there is at least one $j \in\{1,2, \ldots, k\}$ such that $p_{i} \nmid x_{j}$. Choosing such an index j, we must distribute the remaining powers of p_{i} into $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \backslash$ $\left\{x_{j}\right\}$. The number of ways in which we can do this is $S_{k-1}\left(p_{i}^{\alpha_{i}}\right)$. As for every $i \in\{1, \ldots, \omega(n)\}$ the choices we make are independent, we have

$$
M_{k}(n)=\prod_{i=1}^{\omega(n)} k S_{k-1}\left(p_{i}^{\alpha_{i}}\right)=k^{\omega(n)} S_{k-1}(n) .
$$

In the last step above we have used that $S_{k-1}: \mathbb{N} \rightarrow \mathbb{N}$ is multiplicative, result that was proved in Section 2.

An immediate corollary which follows easily from the preceding theorem and from the additive property of ω is the following

Corollary 9. For any $k \in \mathbb{N} \backslash\{0\}$, the function $M_{k}: \mathbb{N} \backslash\{0\} \rightarrow \mathbb{N}$ is multiplicative.
The next corollary can be proved with argument very similar to the one given in the previous section.

Corollary 10. For a fixed positive integer k, there is an absolute constant $C>0$ such that the inequality

$$
M_{k}(n) \leq C^{(\ln \ln n)^{2}+\ln \ln n}
$$

holds for every $n \in \mathbb{N}$ except a set of asymptotic density zero.

5. The associated Dirichlet series

Let f and g be two arithmetic functions. Their convolution product is defined as

$$
(f * g)(n):=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)
$$

The convolution product has interesting algebraic properties, for instance it is commutative and associative (see [1, pp. 108-111]).

Given an arithmetic function f, the series

$$
\begin{equation*}
F(z)=\sum_{n=1}^{\infty} \frac{f(n)}{n^{z}} \tag{11}
\end{equation*}
$$

Dorin Andrica and George C. Ţurcaş - Number of solutions to $x_{1} x_{2} \cdots x_{k}=n$
is called the Dirichlet series associate with f. A Dirichlet series can be regarded as a purely formal infinite series, or as a function of the complex variable z, defined in the region in which the series converges.

When the function f is multiplicative we have the following formula involving the associated Euler product

$$
\begin{equation*}
F(z)=\sum_{n=1}^{\infty} \frac{f(n)}{n^{z}}=\prod_{p}\left(1+\frac{f(p)}{p^{z}}+\frac{f\left(p^{2}\right)}{p^{2 z}}+\frac{f\left(p^{3}\right)}{p^{3 z}}+\cdots\right) \tag{12}
\end{equation*}
$$

where the product is over all primes.
Let f and g be arithmetic functions with associated Dirichlet series $F(z)$ and $G(z)$. Let $h=f * g$ be the convolution product of f and g, and let $H(z)$ be its associated Dirichlet series. If $F(z)$ and $G(z)$ converge absolutely at some point z, then so does $H(z)$, and we have $H(z)=F(z) G(z)$. Indeed, we have

$$
\begin{gathered}
F(z) G(z)=\left(\sum_{l=1}^{\infty} \frac{f(l)}{l^{z}}\right)\left(\sum_{m=1}^{\infty} \frac{g(m)}{m^{z}}\right)= \\
\sum_{l=1}^{\infty} \sum_{m=1}^{\infty} \frac{f(l) g(m)}{l^{z} m^{z}}=\sum_{n=1}^{\infty} \frac{1}{n^{z}}\left(\sum_{l m=n} f(l) g(m)\right)=\sum_{n=1}^{\infty} \frac{(f * g)(n)}{n^{z}},
\end{gathered}
$$

where the rearranging of the terms in the double sum is justified by the absolute convergence of the series $F(z)$ and $G(z)$.

The most famous Dirichlet series is the Riemann zeta function $\zeta(z)$, defined as the Dirichlet series associated with constant function 1, that is $\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}$, converging absolutely in the half-plane $\operatorname{Re}(z)>1$.

For the rest of this section k will denote a positive integer. The next theorem concerns the Dirichlet series of the multiplicative function S_{k}.

Theorem 11. The following relations hold:

1. $S_{k}=1 * 1 * \cdots * 1$, where there are k factors appearing in the convolution product.
2. $\sum_{n=1}^{\infty} \frac{S_{k}(n)}{n^{z}}=(\zeta(z))^{k}, \operatorname{Re}(z)>1$, where ζ is the Riemann zeta function.

Proof. 1. Using the assertion of Theorem 2, we obtain

$$
S_{k}(n)=\sum_{d \mid n} S_{k-1}(d)=\sum_{d \mid n} S_{k-1}(d) \mathbf{1}\left(\frac{n}{d}\right)=\left(S_{k-1} * \mathbf{1}\right)(n),
$$

Dorin Andrica and George C. Ţurcaş - Number of solutions to $x_{1} x_{2} \cdots x_{k}=n$
hence $S_{k}=S_{k-1} * \mathbf{1}$. Since $S_{1}=\mathbf{1}$, from the associativity property of the convolution product, it follows $S_{k}=\mathbf{1} * \mathbf{1} * \cdots * \mathbf{1}$, where in the convolution product there are k factors, and we are done.
2. The second part follows easily from the first. Indeed, using the general result concerning the Dirichlet series of a convolution product described above, we have

$$
\sum_{n=1}^{\infty} \frac{S_{k}(n)}{n^{z}}=\sum_{n=1}^{\infty} \frac{(\mathbf{1} * \mathbf{1} * \cdots * \mathbf{1})(n)}{n^{z}}=(\zeta(z))^{k} .
$$

Regarding the Dirichlet series $F_{M_{k}}(z)$ of the multiplicative function M_{k}, we present the following result.

Theorem 12. Let $F_{M_{k}}(z)$ be the Dirichlet series of M_{k}. The following equality holds

$$
F_{M_{k}}(z)=\zeta(z)^{k-1} \prod_{p} Q_{k}\left(1-\frac{1}{p^{z}}\right)
$$

where $\zeta(z)$ is the Riemann zeta function and $Q_{k}(z)=k-(k-1) z^{k-1}$.
Proof. In the previous section we proved that M_{k} is multiplicative. It follows that we can apply the Euler product formula (12) and obtain

$$
\begin{gathered}
F_{M_{k}}(z)=\prod_{p}\left(1+\frac{M_{k}(p)}{p^{z}}+\frac{M_{k}\left(p^{2}\right)}{p^{2 z}}+\cdots\right)=\prod_{p}\left(1+k\left(\frac{S_{k-1}(p)}{p^{z}}+\frac{S_{k-1}\left(p^{2}\right)}{p^{2 z}}+\cdots\right)\right)= \\
=\prod_{p}\left(1+k\left(\frac{\binom{k-1}{k-2}}{p^{z}}+\frac{\binom{k}{k-2}}{p^{2 z}}+\cdots\right)\right)
\end{gathered}
$$

Using the well-known relation

$$
\sum_{\alpha=0}^{\infty}\binom{\alpha+k-2}{k-2} z^{\alpha}=\frac{1}{(1-z)^{k-1}}
$$

we obtain

$$
F_{M_{k}}(z)=\prod_{p}\left(1+k\left(\frac{1}{\left(1-\frac{1}{p^{z}}\right)^{k-1}}-1\right)\right)=\zeta(z)^{k-1} \prod_{p} Q_{k}\left(1-\frac{1}{p^{z}}\right) .
$$

Dorin Andrica and George C. Ţurcaş - Number of solutions to $x_{1} x_{2} \cdots x_{k}=n$

References

[1] T. Andreescu, D. Andrica, Number Theory. Structures, Examples and Problems, Birkhäuser, Boston, 2009.
[2] D. Andrica, M. Piticari, Some Remarks on a Multiplicative Function in Mathematical Reflections: Two More Years (2010-2011) edited by Titu Andreescu, pp. 240-246.
[3] M. G. Beumer, The arithmetical function $\tau_{k}(N)$, Amer. Math. Monthly, 69(1962), pp. 777-781.
[4] J.-M. De Koninck, F. Luca, Analytic number theory: exploring the anatomy of integers, American Mathematical Society, 2012.
[5] S. Dodunenkov, K. Chakvrian, Problems in Number Theory (Bulgarian), Regalia, 1999.
[6] P. J. McCarthy, Introduction to Arithmetical Functions, Springer-Verlag, New York, 1985.
[7] R. Sivarmakrishnan, The arithmetic function $\tau_{k, r}$, Amer. Math. Monthly, 75(1968), pp. 988-989.
[8] R. Vahdani, A. Falahati, An Interference Alignment Design with Higher Multiplexing Gain by the Reduced Channel Extension, IEEE Trans. Veh. Technol., doi: 10.1109/TVT.2015.2410992.

Dorin Andrica
Faculty of Mathematics and Computer Sciences
"Babeş-Bolyai" University,
Cluj-Napoca, Romania
email:dandrica@math.ubbcluj.ro
George C. Ţurcaş
Faculty of Mathematics and Computer Sciences,
"Babeş-Bolyai" University,
Cluj-Napoca, Romania
email: george.turcas@math.ubbcluj.ro

