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NUMBER OF SOLUTIONS TO X1X2 · · ·XK = N
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Abstract. In this short note we present two arithmetic functions related to
the number of solutions of a certain Diophantine equation and we show that these
satisfy some interesting properties. In particular, we show that the two functions are
multiplicative and that they are related to other well-known arithmetic functions.
Upper bounds and formulas involving binomial coefficients for these functions are
also provided. In the last section, we give a link between the Dirichlet series of the
two functions and the well-known Riemann zeta function.
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1. Introduction

The following interesting multiplicative function S : N∗ → N caught our eye in
Problem O124 proposed in Mathematical Reflections 3(2009). For a positive integer
n, the quantity S(n) is defined as the number of pairs consisting of positive integers
(x, y) such that xy = n and gcd(x, y) = 1. The problem asks to show the relation∑

d|n

S(d) = τ(n2) (1)

holds, where τ(s) is the number of divisors of the positive integer s. A simple proof
of the equality (1) relies on the observation that the function S is multiplicative, that
is for any relatively prime integers m and n we have S(mn) = S(m)S(n). Using this,
it is sufficient to note that for any prime p and any positive integer α, S(pα) = 2,
hence we get S(n) = 2s, where n = pα1

1 · · · pαss is the prime factorization of n.
Another problem published in the same journal, namely J108 in Mathematical

Reflections 1(2009), asks to show that the number of ordered pairs (a, b) of relatively
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prime positive divisors of n is equal to τ(n2), the number of divisors of n2. The
function which counts these pairs is obviously related to S.

After this introductory section, the paper starts with the study some of the
properties of arithmetic multiplicative functions Sk, k ≥ 1, a family of functions
which naturally extend the multiplicative function S above. The functions appear
sporadically through the literature, as if some authors rediscovered them at different
times. The curious reader can consult the articles [3], [7] or the books [5] and [6],
where these functions appear under different notations. Some properties of the
function Sk are also presented in [2]. There is an immense literature on the theory
of multiplicative functions. For some details, one could consult [1] and [6].

In section 3, we fix the positive integer k and present some upper bounds for
Sk(n) which are related to upper bounds on the function counting the prime divisors
of n. Section 4 is dedicated to the exploration of the properties of another arithmetic
family of functions Mk, closely related to Sk, where k ∈ N \ {0}. Finally, in the last
section we prove identities relating the Dirichlet series of Sk and Mk to the well-
known Riemann zeta function.

2. The multiplicative functions Sk

Denote by Sk(n) the number of representations of the positive integer n as a product
of k positive integers, that is the number of solutions in positive integers of the
equation

x1x2 · · ·xk = n (2)

In this way, for a fixed positive integer k, we define the arithmetic function

n 7→ Sk(n).

It is clear that S1 = 1, the constant function 1. A first result concerning the function
Sk is the following.

Theorem 1. The function Sk is multiplicative.

Proof. Let m and n be two relatively prime integers. Consider (x1, · · · , xk) and
(y1, · · · , yk) solutions in positive integers of the corresponding equations to m and
n, that is we have the relations x1x2 · · ·xk = m and y1y2 · · · yk = n. Then by mul-
tiplication we get (x1y1)(x2y2) · · · (xkyk) = mn, that is the product of two solutions
(component by component) gives a solution to the corresponding equation to mn.
Conversely, let (z1, · · · , zk) be any solution to the equation z1z2 · · · zk = mn. Define
xi = gcd(zi,m) and yi = gcd(zi, n), i = 1, · · · , k. It is clear that x1x2 · · ·xk = m,
y1y2 · · · yk = n and (x1y1)(x2y2) · · · (xkyk) = mn, hence Sk(mn) = Sk(m)Sk(n). �
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Theorem 2. Sk is the summation function of Sk−1, that is for any positive integer
n the following relation holds:

Sk(n) =
∑
d|n

Sk−1(d) (3)

Proof. For a fixed divisor d of n consider all solutions (x1, · · · , xk) to equation (2)
such that x1 = d. The number of such solutions is Sk−1(

n
d ). It follows that

Sk(n) =
∑
d|n

Sk−1(
n

d
) =

∑
d|n

Sk−1(d),

and we are done. �
From the theorem above it follows that S2(n) =

∑
d|n S1(d) =

∑
d|n 1(d) =∑

d|n 1 = τ(n), following that S2 = τ , the well-known number of divisors function.

Theorem 3. If p is a prime and α is a positive integer, then

Sk(p
α) =

(
α+ k − 1

k − 1

)
. (4)

Proof. We proceed by induction on k. Clearly, we have S1(p
α) = 1. From the

previously proved equality (3) we obtain

S2(p
α) =

∑
d|pα

S1(d) = 1 + · · ·+ 1 = α+ 1 =

(
α+ 1

1

)
,

so the desired property holds.
Assume that Sk(p

α) =
(
α+k−1
k−1

)
. Using the same relation, it follows

Sk+1(p
α) =

α∑
j=0

Sk(p
j) =

(
k − 1

k − 1

)
+

(
k

k − 1

)
+ · · ·+

(
α+ k − 1

k

)
=

(
α+ k

k

)
,

where we have used the well-known combinatorial identity(
s

s

)
+

(
s+ 1

s

)
+ · · ·+

(
s+ l

s

)
=

(
s+ l + 1

s+ 1

)
.

�
We present two proofs for the following corollary.
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Corollary 4. Assume that n = pα1
1 · · · pαss is the prime factorization of the positive

integer n. Then

Sk(n) =

(
α1 + k − 1

k − 1

)
· · ·
(
αs + k − 1

k − 1

)
. (5)

First proof. Taking into account that the function Sk is multiplicative it follows

Sk(n) = Sk(p
α1
1 · · · p

αs
s ) = Sk(p

α1
1 ) · · ·Sk(pαss ) =

(
α1 + k − 1

k − 1

)
· · ·
(
αs + k − 1

k − 1

)
,

hence the desired conclusion.

�

Second proof. Alternatively, we can prove this by using the summation formula in
Theorem 2 and together with Euler’s product formula. We have

Sk(n) =
∑
d|n

Sk−1(d) =

s∏
i=1

(1 + Sk−1(pi) + · · ·+ Sk−1(p
αi
i )) =

s∏
i=1

((
k − 1

0

)
+

(
k − 1

1

)
+

(
k

2

)
· · ·+

(
αi + k − 3

αi − 1

)
+

(
αi + k − 2

αi

))
=

s∏
i=1

((
k

1

)
+

(
k

2

)
+ · · ·+

(
αi + k − 3

αi − 1

)
+

(
αi + k − 2

αi

))
=

s∏
i=1

((
k + 1

2

)
+ · · ·+

(
αi + k − 3

αi − 1

)
+

(
αi + k − 2

αi

))
= · · · =

s∏
i=1

((
αi + k − 2

αi − 1

)
+

(
αi + k − 2

αi

))
=

s∏
i=1

(
αi + k − 2

αi

)
.

�
Remark. Assume that n = pα1

1 · · · pαss . From Theorem 2 and the corollary above
we have

Sk+1(n) =
∑
d|n

Sk(d) =
∑

0≤ri≤αi

Sk(p
r1
1 · · · p

rs
s ) =

∑
0≤ri≤αi

(
r1 + k − 1

k − 1

)
· · ·
(
rs + k − 1

k − 1

)
,

hence we derived the following combinatorial identity involving the decomposition
of a product of binomial coefficients as a sum of terms of the same form:(

α1 + k − 1

k − 1

)
· · ·
(
αs + k − 1

k − 1

)
=

∑
0≤ri≤αi

(
r1 + k − 1

k − 1

)
· · ·
(
rs + k − 1

k − 1

)
. (6)
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3. Some upper bounds for Sk(n)

The asymptotic behavior of the function Sk(n) when n→∞ is difficult to establish.
One reason for this is that is very hard to estimate the asymptotics of the function
ω(n), which counts the number of distinct prime divisors of n. To see the connection
between these two functions recall that Corollary 4 asserts that

Sk(n) =

(
α1 + k − 1

k − 1

)
· · ·
(
αs + k − 1

k − 1

)
,

where s = ω(n) and n = pα1
1 . . . pαss . It is therefore obvious that for k fixed and

n → ∞ that asymptotics of Sk(n) is influenced by ω(n) and by the exponents αi,
where i ∈ {1, . . . , s}.

Lemma 1 proved in the appendix of [8] asserts that for fixed k, lim
n→∞

Sk(n)
n = 0.

If correct, the proof given in loc. cit. would generalize mutatis mutandis to a proof
of the following fact: Given fixed k ∈ N \ {0} and ε > 0, the limit lim

n→∞
Sk(n)
nε = 0

holds. In our opinion, this is not the case for the proof given in the aforementioned
article. We would like to mention that Lemma 1 is not a central result in [8].

From Proposition 7.10 of [4], it follows that there exists a positive integer n0
such that for any n ≥ n0 we have

ω(n) <
2 lnn

ln lnn
. (7)

It can be easily observed that the exponents αi are bounded above by log2 n for
any i ∈ {1, . . . , n}. At the same time, we will make use of the following upper bound
for binomial coefficients

(
m
j

)
. First, one notices that(

m

j

)
≤ mj

j!
=
mj

jj
· j

j

j!
.

For any positive integer integer j, from the Taylor expansion of the exponential

function we can deduce that jj

j! < ej . Using this in the bound above, we obtain that
for any positive integers 1 ≤ j ≤ m, we have(

m

j

)
<

(
m · e
j

)j
.

Applying the latter bound, we find that the inequality(
αi + k − 1

k − 1

)
<

(
(αi + k − 1) · e

k − 1

)k−1
(8)
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holds for k ≥ 2 and for all i ∈ {1, . . . , n}.
Taking into the inequalities (7) and (8), we deduce that for k fixed, there exists

an absolute constant C > 0 such that for n large enough we have

Sk(n) < (C · lnn)
2(k−1) lnn

ln lnn = n2(k−1)+
2(k−1) lnC

ln lnn .

Indeed, the last equality can be explained by the intermediary

(C · lnn)
lnn

ln lnn = elnn·
lnC

ln lnn · eln lnn· lnn
ln lnn = n

lnC
ln lnn · n

which has to be raised at the power 2(k − 1).

The upper bound deduced above is not strong enough to imply that lim
n→∞

Sk(n)
n =

0. However, we remark that when k = 2, from Proposition 7.12 of [4] it follows that
the number of divisors function S2(n) = nO(1/ ln lnn). This implies that for any fixed

ε > 0, the limit lim
n→∞

S2(n)
nε = 0 holds. The last equality can be proved using the

Sandwich Theorem, following the observation that for any fixed constants C, ε > 0

we have lim
n→∞

e
C lnn
ln lnn

−ε lnn = 0.

In what follows, we will prove that for any fixed k and any ε > 0, the quantity
Sk(n) is asymptotically smaller than nε, for almost all n. To be precise, let us
consider the following definition.

Definition 1. We say that a set of positive integers has asymptotic density λ if

λ = lim
x→∞

|A ∩ [1, x]|
x

.

We will make use of the following result.

Lemma 5 (Lemma 7.18 in [4]). Let δ > 0 and write

Aδ =

{
n :

∣∣∣∣ ω(n)

ln lnn
− 1

∣∣∣∣ > δ

}
.

Then Aδ is of asymptotic density zero.

Setting δ = 1, we see that the inequality

ω(n) ≤ 2 ln lnn (9)

holds for all n ∈ N \A1, where A1 is a set of asymptotic density zero.

Theorem 6. For a fixed positive integer k, there is an absolute constant C > 0 such
that for all n ∈ N \A1, the following inequality holds

Sk(n) ≤ C(ln lnn)2+ln lnn.
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Proof. Let n = pα1
1 . . . pαss , where s = ω(n) and recall that

Sk(n) =

(
α1 + k − 1

k − 1

)
· · ·
(
αs + k − 1

k − 1

)
.

Denote by α = max{α1, . . . , αs} and recall that α ≤ log2 n. We have seen that for
every k ≥ 2, we have (

α+ k − 1

k − 1

)
≤
(

(α+ k − 1) · e
k − 1

)k−1
.

As k is fixed, there is a constant K > 0 such that(
α+ k − 1

k − 1

)
≤ Kk−1 · lnnk−1.

We now have that Sk(n) ≤
(
Kk−1 · lnk−1 n

)ω(n)
which together with the inequality

(9) implies that for n ∈ N \A1 the following holds

Sk(n) ≤ K(k−1) ln lnn(lnn)(k−1) ln lnn =
(
e(k−1) lnK

)ln lnn
· e(k−1)·(ln lnn)2 .

The conclusion now follows by setting C = max
(
e(k−1) lnK , e(k−1)

)
.

�
Remark. We remark that for any ε > 0,

lim
n→∞

C(ln lnn)2+ln ln)

nε
=
C(ln lnn)2+ln lnn

eε lnn
= 0,

hence we can conclude that given a fixed k, for almost all n, the value of the function
Sk(n) is indeed asymptotically smaller than any positive power of n.

4. A new multiplicative function related to Sk

Let us recall that for positive integers n and k, the multiplicative function Sk(n)
was defined as the number of solutions in positive integers of the equation

x1x2 · · ·xk = n. (10)

It is natural to study the number of solutions in positive integers to (10) that
are subject to various conditions, such as the gcd(x1, x2, . . . , xk) = d for some fixed
value of d.

7



Dorin Andrica and George C. Ţurcaş – Number of solutions to x1x2 · · ·xk = n

It is easy to see that if the k-tuple (x1, x2, . . . , xk) ∈ (N \ {0})k is a solution to
(10) such that gcd(x1, x2, . . . , xk) = d, then gcd(x1/d, x2/d . . . , xk/d) = 1 and dk | n.
Moreover, the k-tuple (x1/d, x2/d, . . . , xk/d) ∈ (N \ {0})k is also a solution to an
equation of the type (10), where the right hand side is equal to n/dk.

For the values of d for which there is a solution to (10), the previous statement
gives a bijection between the set of solutions to (10) satisfying gcd(x1, x2, . . . , xk) = d
and the set of solutions to

x1x2 · · ·xk =
n

dk

subject to gcd(x1, x2, . . . , xk) = 1.
We define Mk(n) as the number of k-tuples (x1, x2, . . . , xk) ∈ (N\{0})k satisfying

x1x2 · · ·xk = n

and gcd(x1, x2, . . . , xk) = 1. Remark that M1(n) = 1, if n = 1 and M1(n) = 0
otherwise.

In what follows, we write ω(n) for the number of distinct prime divisors and
τ(n) for the number of distinct positive divisors of n. Both ω and τ are well-
studied arithmetic functions. It is worth mentioning that ω is additive and τ is
multiplicative.

The following theorem gives a link between the function n 7→ M3(n) and the
more familiar arithmetic functions ω, τ : N \ {0} → N.

Theorem 7. For every positive integer n ≥ 2, we have that M3(n) = 3ω(n) · τ(n).

Proof. Let us write n =
ω(n)∏
i=1

pαii for the factorisation of n into distinct prime factors.

For each i, there is at least one j ∈ {1, 2, 3} such that pi - xj . Fixing j, there are
αi+1 ways in which one can distribute the powers of pi to the remaining two terms.
As for every i ∈ {1, . . . , ω(n)} the choices described above are independent, we have

M3(n) =

ω(n)∏
i=1

3(αi + 1) = 3ω(n) · τ(n).

�
More generally, we have the following result which gives a relation between the

functions Mk, Sk−1 and the number of prime divisors function ω.

Theorem 8. For any positive integers n, k ≥ 2, we have Mk(n) = kω(n)Sk−1(n).

8
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Proof. Write n =
ω(n)∏
i=1

pαii for the factorisation of n into distinct prime factors. For

every i, there is at least one j ∈ {1, 2, . . . , k} such that pi - xj . Choosing such
an index j, we must distribute the remaining powers of pi into {x1, x2, . . . , xk} \
{xj}. The number of ways in which we can do this is Sk−1(p

αi
i ). As for every

i ∈ {1, . . . , ω(n)} the choices we make are independent, we have

Mk(n) =

ω(n)∏
i=1

kSk−1(p
αi
i ) = kω(n)Sk−1(n).

In the last step above we have used that Sk−1 : N→ N is multiplicative, result that
was proved in Section 2. �

An immediate corollary which follows easily from the preceding theorem and
from the additive property of ω is the following

Corollary 9. For any k ∈ N \ {0}, the function Mk : N \ {0} → N is multiplicative.

The next corollary can be proved with argument very similar to the one given
in the previous section.

Corollary 10. For a fixed positive integer k, there is an absolute constant C > 0
such that the inequality

Mk(n) ≤ C(ln lnn)2+ln lnn

holds for every n ∈ N except a set of asymptotic density zero.

5. The associated Dirichlet series

Let f and g be two arithmetic functions. Their convolution product is defined as

(f ∗ g)(n) :=
∑
d|n

f(d)g(
n

d
)

The convolution product has interesting algebraic properties, for instance it is com-
mutative and associative (see [1, pp. 108–111]).

Given an arithmetic function f , the series

F (z) =

∞∑
n=1

f(n)

nz
, (11)

9
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is called the Dirichlet series associate with f . A Dirichlet series can be regarded as
a purely formal infinite series, or as a function of the complex variable z, defined in
the region in which the series converges.

When the function f is multiplicative we have the following formula involving
the associated Euler product

F (z) =
∞∑
n=1

f(n)

nz
=
∏
p

(
1 +

f(p)

pz
+
f(p2)

p2z
+
f(p3)

p3z
+ · · ·

)
(12)

where the product is over all primes.
Let f and g be arithmetic functions with associated Dirichlet series F (z) and

G(z). Let h = f ∗ g be the convolution product of f and g, and let H(z) be its
associated Dirichlet series. If F (z) and G(z) converge absolutely at some point z,
then so does H(z), and we have H(z) = F (z)G(z). Indeed, we have

F (z)G(z) = (
∞∑
l=1

f(l)

lz
)(
∞∑
m=1

g(m)

mz
) =

∞∑
l=1

∞∑
m=1

f(l)g(m)

lzmz
=
∞∑
n=1

1

nz

(∑
lm=n

f(l)g(m)

)
=

∞∑
n=1

(f ∗ g)(n)

nz
,

where the rearranging of the terms in the double sum is justified by the absolute
convergence of the series F (z) and G(z).

The most famous Dirichlet series is the Riemann zeta function ζ(z), defined as
the Dirichlet series associated with constant function 1, that is ζ(z) =

∑∞
n=1

1
nz ,

converging absolutely in the half-plane Re(z) > 1.
For the rest of this section k will denote a positive integer. The next theorem

concerns the Dirichlet series of the multiplicative function Sk.

Theorem 11. The following relations hold:

1. Sk = 1 ∗ 1 ∗ · · · ∗ 1, where there are k factors appearing in the convolution
product.

2.
∑∞

n=1
Sk(n)
nz = (ζ(z))k, Re(z) > 1, where ζ is the Riemann zeta function.

Proof. 1. Using the assertion of Theorem 2, we obtain

Sk(n) =
∑
d|n

Sk−1(d) =
∑
d|n

Sk−1(d)1(
n

d
) = (Sk−1 ∗ 1)(n),

10
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hence Sk = Sk−1∗1. Since S1 = 1, from the associativity property of the convolution
product, it follows Sk = 1 ∗ 1 ∗ · · · ∗ 1, where in the convolution product there are k
factors, and we are done.

2. The second part follows easily from the first. Indeed, using the general result
concerning the Dirichlet series of a convolution product described above, we have

∞∑
n=1

Sk(n)

nz
=
∞∑
n=1

(1 ∗ 1 ∗ · · · ∗ 1)(n)

nz
= (ζ(z))k.

�
Regarding the Dirichlet series FMk

(z) of the multiplicative function Mk, we
present the following result.

Theorem 12. Let FMk
(z) be the Dirichlet series of Mk. The following equality

holds

FMk
(z) = ζ(z)k−1

∏
p

Qk

(
1− 1

pz

)
,

where ζ(z) is the Riemann zeta function and Qk(z) = k − (k − 1)zk−1.

Proof. In the previous section we proved that Mk is multiplicative. It follows that
we can apply the Euler product formula (12) and obtain

FMk
(z) =

∏
p

(
1 +

Mk(p)

pz
+
Mk(p

2)

p2z
+ · · ·

)
=
∏
p

(
1 + k

(
Sk−1(p)

pz
+
Sk−1(p

2)

p2z
+ · · ·

))
=

=
∏
p

(
1 + k

((
k−1
k−2
)

pz
+

(
k
k−2
)

p2z
+ · · ·

))
.

Using the well-known relation

∞∑
α=0

(
α+ k − 2

k − 2

)
zα =

1

(1− z)k−1
,

we obtain

FMk
(z) =

∏
p

(
1 + k

(
1

(1− 1
pz )k−1

− 1

))
= ζ(z)k−1

∏
p

Qk(1−
1

pz
).

�
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