POMPEIU'S THEOREM IN AN INNER PRODUCT SPACES

D. Ş. Marinescu and M. Monea

Abstract. The aim of this paper to present a version for an inner product space of the classical theorem of Pompeiu.

2010 Mathematics Subject Classification: 46C05.
Keywords: inner product space, Pompeiu's Theorem.

1. Introduction

Pompeiu's theorem is considered one of the most "elegant triangle theorem"[3]. It is said that the segements $M A, M B$ and $M C$ could be the sides lenght of a triangle, for any point M not situated on the circumcircle of the equilateral triangle $A B C$. Today, we find more references about this theorem. (e.g. [2], [5])

Recently [1], it was presented and proved a n-dimensional generalization of Pompeiu's theorem.
Proposition 1.1. ([1], Theorem 4) Let $n \geq 2$, and let $S=\left[A_{1}, A_{2}, \ldots, A_{n+1}\right]$ be a regular n-simplex of edge length a. Let B be a point in the afine hull of S, and let $b_{1}, b_{2}, \ldots, b_{n+1}$ be the distances from B to the vertices of S.

If $n=2$, i.e., if S is a triangle, then b_{1}, b_{2}, b_{3} can serve as the side lengths of a triangle if and only if B does not lie on the circumcircle of S.

If $n \geq 3$, then $b_{1}, b_{2}, \ldots, b_{n+1}$ can serve as the facet contents of an n-simplex if and only if B is not a vertex of S.

Motivated by this result and the relation from [6], we intend to present a new viewpoint related to Pompeiu's Theorem. The main result are included in third section and contains a generalization for an inner product space of this theorem. For the proof we need some useful results. These are some relations that hold for any inner product space, some of these being generalizations of similar relations from [1].

To the end of this section, we recall a tool that helps us to complete our proof.

Proposition 1.2. ([4], Theorem 3.1) Let X a real inner product space. Then

$$
\begin{equation*}
\left\|x-\sum_{k=1}^{n} a_{k} x_{k}\right\|^{2}=\sum_{k=1}^{n} a_{k}\left\|x-x_{k}\right\|^{2}-\sum_{1 \leq k<l \leq n} a_{k} a_{l}\left\|x_{l}-x_{k}\right\|^{2}, \tag{1}
\end{equation*}
$$

for all integer $n, n \geq 2$, for all $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$ with $\sum_{k=1}^{n} a_{k}=1$, and for any $x, x_{1}, x_{2}, \ldots, x_{n} \in X$.

2. Some useful results

In this section X represents a real inner product spaces. Let $n \in \mathbb{N}, n \geq 2$ and $x_{1}, x_{2}, \ldots, x_{n} \in X$, distingues, and $t_{0} \in(0, \infty)$ such that $\left\|x_{i}-x_{j}\right\|=t_{0}$, for any $i, j \in$ $\{1,2, \ldots, n\}, i \neq j$. Let affin $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ the set $\left\{\sum_{k=1}^{n} a_{k} x_{k} \mid a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}, \quad \sum_{k=1}^{n} a_{k}=1\right\}$.

First result is a generalization of Theorem 2 from [1].
Proposition 2.1. For any $x \in \operatorname{affin}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ we denote $t_{k}=\left\|x-x_{k}\right\|, k \in$ $\{1,2, \ldots, n\}$. Then

$$
\begin{equation*}
\left(\sum_{k=0}^{n} t_{k}^{2}\right)^{2}=n\left(\sum_{k=0}^{n} t_{k}^{4}\right) \tag{2}
\end{equation*}
$$

Proof. If $x \in \operatorname{affin}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ there exists $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$ with $\sum_{k=1}^{n} a_{k}=1$ such that $x=\sum_{i=1}^{n} a_{i} x_{i}$. Then, for any $k \in\{1,2, \ldots, n\}$, we have

$$
\begin{aligned}
t_{k}^{2} & =\left\|x_{k}-x\right\|^{2}=\left\|x_{k}-\sum_{i=1}^{n} a_{i} x_{i}\right\|^{2} \\
& =\sum_{i=1}^{n} a_{i}\left\|x_{k}-x_{i}\right\|^{2}-\sum_{1 \leq i<l \leq n} a_{i} a_{l}\left\|x_{l}-x_{i}\right\|^{2} \\
& =\left(1-a_{k}\right) t_{0}^{2}-\frac{\left(\sum_{i=1}^{n} a_{i}\right)^{2}-\sum_{i=1}^{n} a_{i}^{2} t_{0}^{2}}{2} \\
& =\left(1-a_{k}-\frac{1-\sum_{i=1}^{n} a_{i}^{2}}{2}\right) t_{0}^{2}=\frac{1+\sum_{i=1}^{n} a_{i}^{2}-2 a_{k}}{2} t_{0}^{2} .
\end{aligned}
$$

With the notation $A=\frac{1+\sum_{i=1}^{n} a_{i}^{2}}{2}$, we obtain $t_{k}^{2}=\left(A-a_{k}\right) t_{0}^{2}$. Then

$$
\left(\sum_{k=0}^{n} t_{k}^{2}\right)^{2}=t_{0}^{4}\left(1+\sum_{k=1}^{n}\left(A-a_{k}\right)\right)^{2}=t_{0}^{4}\left(1+n A-\sum_{k=1}^{n} a_{k}\right)^{2}=n^{2} A^{2} t_{0}^{4}
$$

and

$$
\begin{aligned}
n\left(\sum_{k=0}^{n} t_{k}^{4}\right) & =n\left(t_{0}^{4}+\sum_{k=1}^{n}\left(A-a_{k}\right)^{2} t_{0}^{4}\right)=n t_{0}^{4}\left(1+n A^{2}-2 A \sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} a_{k}^{2}\right) \\
& =n\left(1+n A^{2}-2 A+2 A-1\right)=n^{2} A^{2} t_{0}^{k},
\end{aligned}
$$

that concludes the proof.
Proposition 2.2. For any $x \in \operatorname{affin}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ we denote $t_{k}=\left\|x-x_{k}\right\|, k \in$ $\{1,2, \ldots, n\}$. Then

$$
\begin{equation*}
\left(\sum_{k=1}^{n} t_{k}^{2}\right)^{2}-(n-1)\left(\sum_{k=1}^{n} t_{k}^{4}\right)=\frac{(n-1)^{2}}{n}\left(t_{0}^{2}-\frac{1}{n-1} \sum_{k=1}^{n} t_{k}^{2}\right)^{2} . \tag{3}
\end{equation*}
$$

Proof. Let $U=\sum_{k=1}^{n} t_{k}^{2}$ and $V=\sum_{k=1}^{n} t_{k}^{4}$. From previous proposition we have $\left(t_{0}^{2}+U\right)^{2}=n\left(t_{0}^{4}+V\right)$. Then $t_{0}^{4}+2 U t_{0}^{2}+U^{2}=n t_{0}^{4}-n V$, also $U^{2}-n V=(n-1) t_{0}^{4}-$ $2 U t_{0}^{2}$.

Further

$$
U^{2}+\frac{1}{n-1} U^{2}-n V=(n-1) t_{0}^{4}-2 U t_{0}^{2}+\frac{1}{n-1} U^{2}-n V,
$$

so

$$
\frac{n}{n-1} U^{2}-n V=(n-1)\left(t_{0}^{2}-\frac{1}{n-1} U\right)^{2}
$$

Now, we obtain the conclusion if we multiply with $\frac{n-1}{n}$.
Further, let $g=\frac{1}{n} \sum_{k=1}^{n} x_{k}$ and $R=t_{0} \sqrt{\frac{n-1}{2 n}}$. The next two propositions present some properties of g.
Proposition 2.3. For any $k \in\{1,2, \ldots, n\}$ we have $\left\|g-x_{k}\right\|=R$.
Proof. We apply Proposition 1.2 for $a_{1}=a_{2}=\ldots .=a_{n}=\frac{1}{n}$. We obtain

$$
\begin{aligned}
\left\|g-x_{k}\right\|^{2} & =\left\|x_{k}-\frac{1}{n} \sum_{i=1}^{n} x_{i}\right\|^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\|x_{k}-x_{i}\right\|^{2}-\frac{1}{n^{2}} \sum_{1 \leq i<l \leq n} a_{i} a_{l}\left\|x_{l}-x_{i}\right\|^{2} \\
& =\frac{n-1}{n} t_{0}^{2}-\frac{n(n-1)}{2 n^{2}} t_{0}^{2}=\frac{n-1}{2 n} t_{0}^{2} .
\end{aligned}
$$

We obtain $\left\|g-x_{k}\right\|^{2}=R^{2}$ and the conclusion follows now.

Proposition 2.4. For any $x \in X$ we denote $t_{k}=\left\|x-x_{k}\right\|, k \in\{1,2, \ldots, n\}$. Then $\|x-g\|=R$ if and only if

$$
(n-1) t_{0}^{2}=t_{1}^{2}+t_{2}^{2}+\ldots+t_{n}^{2}
$$

Proof. The equality $\|x-g\|=R$ is equivalent with $\|x-g\|^{2}=\frac{n-1}{2 n} t_{0}^{2}$. By other hand, (1) lead us to

$$
\begin{aligned}
\|x-g\|^{2} & =\left\|x-\frac{1}{n} \sum_{k=1}^{n} x_{k}\right\|^{2} \\
& =\frac{1}{n} \sum_{k=1}^{n}\left\|x-x_{k}\right\|^{2}-\frac{1}{n^{2}} \sum_{1 \leq i<l \leq n} a_{i} a_{l}\left\|x_{l}-x_{i}\right\|^{2} \\
& =\frac{1}{n} \sum_{k=1}^{n} t_{k}^{2}-\frac{n-1}{2 n} t_{0}^{2} .
\end{aligned}
$$

We obtain $\frac{n-1}{2 n} t_{0}^{2}=\frac{1}{n} \sum_{k=1}^{n} t_{k}^{2}-\frac{n-1}{2 n} t_{0}^{2}$ and the conclusion follows now.

3. The Pompeiu's theorem

This section is reserved to the generalization of Pompeiu's theorem. Let $x_{1}, x_{2}, x_{3} \in$ X distingues such that $\left\|x_{1}-x_{2}\right\|=\left\|x_{2}-x_{3}\right\|=\left\|x_{3}-x_{1}\right\|=t_{0}$. Let $g=\frac{x_{1}+x_{2}+x_{3}}{3}$. From Proposition 2.3 we have $\left\|x_{k}-g\right\|=\frac{1}{\sqrt{3}} t_{0}=R$. We denote $\mathcal{C}(g, R)$ the set $\{y \in X \mid\|y-g\|=R\}$.This set represent the analogues of the circumcircle from triangle geometry.
Theorem 3.1. For any $x \in \operatorname{affin}\left[x_{1}, x_{2}, x_{3}\right]$, denote $t_{1}=\left\|x-x_{1}\right\|, t_{2}=\left\|x-x_{2}\right\|$ and $t_{3}=\left\|x-x_{3}\right\|$. Then t_{1}, t_{2}, t_{3} could be the side lengths of a triangle if only if $x \notin C(g, R)$.

Proof. We will use the following identity that holds for any $a, b, c \in \mathbb{R}$:

$$
\begin{equation*}
(a+b+c)(-a+b+c)(a-b+c)(a+b-c)=\left(a^{2}+b^{2}+c^{2}\right)^{2}-2\left(a^{4}+b^{4}+c^{4}\right) \tag{4}
\end{equation*}
$$

If t_{1}, t_{2}, t_{3} are the side lengths of a triangle then

$$
\begin{equation*}
\left(t_{1}+t_{2}+t_{3}\right)\left(-t_{1}+t_{2}+t_{3}\right)\left(t_{1}-t_{2}+t_{3}\right)\left(t_{1}+t_{2}-t_{3}\right)>0 . \tag{5}
\end{equation*}
$$

From (4) we obtain $\left(t_{1}^{2}+t_{2}^{2}+t_{3}^{2}\right)^{2}>2\left(t_{1}^{4}+t_{2}^{4}+t_{3}^{4}\right)$. For $n=3$, the identity (3) led us to conclusion $t_{0}^{2} \neq \frac{1}{2}\left(t_{1}^{2}+t_{2}^{2}+t_{3}^{2}\right)$ and, with Proposition 2.4, we obtain $x \notin$ $C(g, R)$.

> D. Ş. Marinescu and M. Monea - Pompeiu's theorem ...

For the only if part, we consider $x \notin C(g, R)$. By reversing the previous calculus we obtain (5), also

$$
\left(-t_{1}+t_{2}+t_{3}\right)\left(t_{1}-t_{2}+t_{3}\right)\left(t_{1}+t_{2}-t_{3}\right)>0 .
$$

We assume that two factors are negative. Let $t_{1}-t_{2}+t_{3}<0$ and $t_{1}+t_{2}-t_{3}<0$. Then $t_{1}<t_{2}-t_{3}$ and $t_{1}<t_{3}-t_{2}$ that is false. Then all three factors are positive and t_{1}, t_{2}, t_{3} could be the side lengths of a triangle.

We conclude this paper with the next proposition.
Proposition 3.2. Let $n \in \mathbb{N}, n \geq 4$ and $x_{1}, x_{2}, \ldots, x_{n} \in X$, distingues, and $t_{0} \in(0, \infty)$ such that $\left\|x_{i}-x_{j}\right\|=t_{0}$, for any $i, j \in\{1,2, \ldots, n\}, i \neq j$. For any $x \in \operatorname{affin}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ we denote $t_{k}=\left\|x-x_{k}\right\|, k \in\{1,2, \ldots, n\}$. Then $t_{1}, t_{2}, \ldots, t_{n}$ could be the side lengths of a n-side poligon if and only if $x \notin\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.

Proof. If $t_{1}, t_{2}, \ldots, t_{n}$ are the side lengths of a n-side poligon, then $t_{k}>0$, for any $k \in\{1,2, \ldots, n\}$. Then $\left\|x-x_{k}\right\|>0$, so $x \neq x_{k}$. We obtain $x \notin\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.

Now, if $x \notin\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ then $\left(\sum_{k=1}^{n} t_{k}^{2}\right)^{2}-(n-1)\left(\sum_{k=1}^{n} t_{k}^{4}\right) \geq 0$ from (2). Now thw conclusion is consequence of Theorem 2 from [1].

References

[1] G. Al-Afifi, M. Hajja \& A. Hamdan, Another n-dimensional generalization of Pompeiu's theorem, Amer. Math. Monthly, 125(2019), 7, 612-622, DOI: 10.1080/00029890.2018.1466609.
[2] M. Fiedler, Isodynamic systems in Euclidean spaces and an n-dimensional analogue of a theorem by Pompeiu. Časopis Pro Pěstování Matematiky, 102 (1977), 370381.
[3] M. Gardner, Elegant triangle theorems not to be found in Euclid, Mathematical Games. Sci. Amer, 222 (1979), 6,132-141.
[4] D. Ş. Marinescu, M. Monea, M. Opincariu, M. Stroe, Some equivalent characterizations of inner product spaces and their consequences, Filomat, 29 (2015), 1587-1599.
[5] G. R. Veldkamp, Still another generalisation of Pompeiu's theorem, Nieuw Tijdschr. Wisk, 45 (1957/1958), 197-225.
[6] F. Zachary, Problem 12139, Amer. Math. Monthly, 126 (2019), 9, 850-858, DOI: 10.1080/00029890.2019.1647063.

Dan Ştefan Marinescu
National College "IANCU DE HUNEDOARA",
D. Ş. Marinescu and M. Monea - Pompeiu's theorem ...

Hunedoara, Romania
email: marinescuds@gmail.com
Mihai Monea
National College "DECEBAL",
Deva, Romania
email: mihaimonea@yahoo.com

