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Abstract. In this paper, we introduce a new class of monotone generalized
nonexpansive mappings and we establish some weak and strong convergence theorem
for a newly proposed iterative process in the frame work of an ordered Banach
space. This class of mappings is wider than the class of nonexpansive mappings,
mean nonexpansive mappings and mappings satisfying condition (C). In addition,
we establish that our newly proposed iterative process is faster than some existing
iterative process in the literature. Finally, we provide an application to the space
of L1([0, 1]) and to nonlinear integral equations. The results obtained in this paper
improve, extend and unify some related results in the literature.
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1. Introduction

Banach contraction principle can be seen as the pivot of the theory of fixed points
and its applications. The theory of fixed points plays an important role in nonlinear
functional analysis and it is very useful for showing the existence and uniqueness
theorems for nonlinear differential and integral equations. The importance of Ba-
nach contraction principle [4] cannot be over emphasized in the study of fixed point
theory and its applications. The Banach contraction principle has been extended
and generalized by researchers in this area. Researchers in this area, generalize the
well celebrated Banach contraction principle by considering a class of nonlinear map-
pings and spaces which are more general than the class of a contraction mappings
and metric spaces (see [2, 11] and the references therein). One of the generalization
of a contraction mapping in the sense of Banach is the well-known nonexpansive
mapping. In 1965, Browder [9], Gohde [15] and Kirk [17] gave some existence re-
sults for nonexpansive mappings. Thereafter, the generalization of nonexpansive
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mappings have been greatly explored by researchers in this field (see, [23, 26, 28]
and the reference therein).

In 1975, Zhang [28] introduced and studied the class of mean nonexpansive map-
pings in Banach spaces, he proved the unique existence of fixed points for this class
of mappings in Banach spaces with normal structure. We recall that, a mapping
T : C → C is said to be mean nonexpasive if there exist a, b ≥ 0 with a+ b ≤ 1 such
that

‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖, (1)

for all x, y ∈ C.
In 2007, Wu [27] proved that if a + b < 1, then the mean nonexpansive mapping
T has a unique fixed point. Zuo in [30] proved that a mean nonexpansive mapping
has approximate fixed point sequence, and under some suitable conditions he got
some existence and uniqueness theorems of fixed points of the mean nonexpansive
mapping.

In 2008, Suzuki [26] introduced the concept of mappings satisfying condition
(C) which is also known as Suzuki generalized nonexpansive mapping and he proved
some fixed point theorems for such class of mappings.

Definition 1. Let C be a nonempty subset of a Banach space X, a mapping T :
C → C is said to satisfy condition (C) on C if for all x, y ∈ C,

1

2
‖Tx− x‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

In 2010, Nakprasit [20] gave an example of a mapping that is mean nonexpansive
but not Suzuki generalized nonexpansive and also gave an example of a mapping
that is Suzuki generalized nonexpansive but not mean nonexpansive. He also estab-
lished that an increasing mean nonexpansive mappings implies Suzuki generalized
nonexpansive mappings.

Remark 1. We note from the results obtained in [20] that the class of mean nonex-
panisve mappings and the class of Suzuki generalized nonexpansive mappings are two
different classes of mappings. It is therefore natural to ask whether we can define
a class of mappings that will generalize these classes of mappings (thereby bridging
the gap between these two classes of mappings)?

Zhou and Cui in [29] studied the existence of fixed points for mean nonexpansive
mappings in CAT(0) spaces. They also obtain the demiclosed principle for mean
nonexpansive mappings in CAT(0) spaces. In addition, they proved a ∆-convergence
theorem and a strong convergence theorem of the Ishikawa iteration process for mean
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nonexpansive mappings under the proper restrictions in CAT(0) spaces. For some
recent generalization of mean nonexpansive mappings, the reader should see ([10, 19]
and the reference therein).

After Browder [9] established that the class of nonexpansive self mappings on a
closed and bounded subset of a uniformly convex Banach space has a fixed point,
researchers in this area have developed different iterative processes to approximate
fixed points of nonexpansive mappings and a host of other nonlinear mappings. In
general developing a faster and more efficient iterative algorithms for approximating
fixed points of nonlinear mappings is still an active area of research. The follow-
ing are some well known iterative algorithm in literature for approximating fixed
points of nonlinear mappings. The Mann iterative process [18] is one of the oldest
and fundamental iterative process used to approximate the fixed point of nonlinear
mappings, which is defined by{

x0 ∈ C,
xn+1 = (1− αn)xn + αnTxn, n ≥ 0,

(2)

where {αn} is a sequence in (0, 1), C is a nonempty subset of a Banach space and
T is any nonlinear mapping on C.

The Ishikawa iteration [12] is another iterative process that is used to approxi-
mate fixed point of nonlinear mappings, this iteration is defined by

x0 ∈ C,
yn = (1− αn)xn + αnTxn,

xn+1 = (1− βn)xn + βnTyn, n ≥ 0,

(3)

where {αn} and {βn} are sequences in (0, 1), C is a nonempty subset of a Banach
space and T is any nonlinear mapping on C. It was establish in [12, 24] that the
Ishikawa iteration improves the rate of convergence of Mann iteration process for an
increasing function.

In [3] Agrawal et al. modified the Ishikawa iterative process and established that
their newly proposed iterative process converges faster than the Mann iteration for
some contractions. The iterative process is defined by

x0 ∈ C,
yn = (1− αn)xn + αnTxn,

xn+1 = (1− βn)Txn + βnTyn, n ≥ 0,

(4)

where {αn} and {βn} are sequences in (0, 1), C is a nonempty subset of a Banach
space and T is any nonlinear mapping on C.
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In 2000, Noor in [21] introduced a new iteration process, which is defined as
follows: Given a convex subset C of a normed space E and a nonlinear mapping
T : C → C. For each x0 ∈ C, the sequence {xn} in C is defined by

zn = (1− αn)xn + αnTxn,

yn = (1− βn)xn + βnTzn

xn+1 = (1− γn)xn + γnTyn, n ≥ 0,

(5)

where {αn} and {βn} are sequences in (0, 1). They proved that this iterative process
converges faster than Mann [18], Ishikawa [12].

Remark 2. Since it is more desirable to construct iterative processes that are more
efficient and have higher rate of convergence, it is therefore natural to ask if we con-
struct a more efficient iterative process for approximating the fixed points of nonlin-
ear mappings.

It is well-known that nonexpansive mappings are continuous on their domain
and the continuity nature of this class of mappings make it less important in theo-
retical and application wise. On the other hand it has been established that mean
nonexpansive mappings and Suzuki generalized nonexpansive mappings need not
to be continuous on their domain. As such, these classes of mappings have great
importance in theoretical and application wise compare to nonexpansive mappings.
To the best of our knowledge, there is no discussion so far concerning the extension
or generalization of the concept of mean nonexpansive mappings using the idea of
Suzuki [26]. Motivated by the research work described above and the research work
in this direction, our purpose in this paper is to introduce a new class of monotone
Suzuki-mean nonexpansive mapping which is wider than the class of monotone non-
expansive mappings, the class of monotone mean nonexpansive mappings, monotone
mappings satisfying condition (C) and a host of other mappings in the literature.
In addition, we introduce a new three steps iteration process for approximating a
fixed point of a this new class of mappings in the frame work of an ordered Banach
spaces. Using our iteration process, we state and prove some convergence results
for approximating fixed point of our new class of mappings. As an application, we
apply our result to the space of L1([0, 1]) and to nonlinear integral equations.

2. Preliminaries

Let X be a Banach space with norm ‖ · ‖ and the partial order ≤ . A Banach space
X with dimension greater than or equal to 2. The function δX(ε) : (0, 2] → [0, 1]
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defined by

δX(ε) = inf

{
1− ‖1

2
(x+ y)‖ : ‖x‖ = 1; ‖y‖ = 1, ε = ‖x− y‖

}
is called the modulus of convexity of X. If δX(ε) > 0 for all ε ∈ (0, 2], then X is
called uniformly convex.

Definition 2. A Banach space X is said to be uniformly convex in every direction
if for each ε ∈ (0, 2] and z ∈ X with ‖z‖ = 1, there exists δ(ε, z) > 0 such that∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ(ε, z)

for all x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ ∈ {tz : t ∈ [−2,−ε] ∪ [ε, 2]}.
X is said to be uniformly convex if X is uniformly convex in every direction and
inf{δ(ε, z) : ‖z‖ = 1} > 0.

It is well-known that the class of uniformly convex Banach space is smaller than
the class of uniformly convex Banach space in every direction.

Definition 3. A Banach space X is said to have Opial property [22] if for every
weakly convergent sequence {xn} in X with weak limit y, we have

lim inf
n→∞

‖xn − y‖ < lim inf
n→∞

‖xn − z‖∀z ∈ X

with y 6= z.

Let C be a nonempty subset of a Banach space X and {xn} a bounded sequence
in X. For all x, y ∈ X, we define

1. asymptotic radius of {xn} at x by r(x, {xn}) = lim supn→∞ ‖xn − x‖;

2. asymptotic radius of {xn} relative to C by r(C, {xn}) = inf{r, (x, {xn}) : x ∈
C};

3. asymptotic center of {xn} relative to C byA(C, {xn}) = {r(x, {xn}) = r(C, {xn}) :
x ∈ C}.

We note that A(C, {xn}) is not empty and more so, if X is uniformly convex, then
A(C, {xn}) has exactly one point (see [14]).

Throughout this paper, we suppose that order intervals are closed and convex
subset of an ordered Banach space (X,≤). We denote these as follows

[a,→) := {x ∈ X; a ≤ x}
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and

[←, b) := {x ∈ X;x ≤ b}

for any a, b ∈ X.

Definition 4. Let C be a subset of a normed space X. A mapping T : C → C is said
to satisfy condition (I) if there exists a nondecreasing function f : [0,∞) → [0,∞)
such that f(0) = 0 and f(t) > 0 ∀ t ∈ (0,∞) and that ‖x−Tx‖ ≥ f(d(x, F (T ))) for
all x ∈ C, where d(x, F (T )) denotes distance from x to F (T ).

Definition 5. Let (X,≤) be a partially ordered Banach and T : X → X be a
mapping. The mapping T is said to be monotone if for all x, y ∈ X,

x ≤ y ⇒ Tx ≤ Ty.

Definition 6. [7] Let C be a nonempty subset of a Banach space X. A function
φ : C → [0,∞) is said to be a type function, if there exists a bounded sequence {xn}
in X such that φ(x) = lim supn→∞ ‖xn − x‖, for any x ∈ C.

Lemma 1. [7] Let C be a weakly compact nonempty convex subset of a uniformly
convex in every direction Banach space X and φ : C → [0,∞) a type function. Then
there exists a unique minimum point v ∈ C such that φ(v) = inf{φ(x) : x ∈ C}.

Lemma 2. [25] Let X be a uniformly convex Banach space and 0 < p ≤ tn ≤ q < 1
for all n ∈ N. Let {xn} and {yn} be two sequences of X such that lim supn→∞ ‖xn‖ ≤
c, lim supn→∞ ‖yn‖ ≤ c and limn→∞ ‖tnxn + (1 − tn)yn‖ = c holds for some c ≥ 0.
Then limn→∞ ‖xn − yn‖ = 0.

3. Some basic properties for Monotone Suzki-Mean Nonexpansive
Mappings

In this section, we introduce the notion of monotone Suzuki-mean nonexpansive and
establish some basic properties regarding this class of mappings.

Definition 7. Let C be a nonempty subset of an ordered Banach space (X,≤) and let
T : C → C be a monotone mapping. Then T will be called a monotone Suzuki-mean
nonexpansive mapping, if there exist a, b ∈ [0, 1), with a+ b ≤ 1, such that

1

2
‖Tx− x‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖ (6)

for all x, y ∈ C with x ≤ y,
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Proposition 3.

1. Every monotone nonexpansive mapping is a monotone Suzuki-mean nonex-
pansive mapping.

2. Every monotone mapping satisfying condition (C) is a monotone Suzuki-mean
nonexpansive mapping.

3. Every monotone mean nonexpansive mapping is a monotone Suzuki-mean non-
expansive mapping.

The following example shows that the converse of these statements are not true.

Example 1. Let C = {(0, 0), (0, 1), (1, 0), (0, 2), (2, 0)} be a subset of R2 with dic-
tionary order. Define a norm ‖ · ‖ on C by ‖(x1, x2)‖ = |x1| + |x2|. Then (C, ‖ · ‖)
is a Banach space. Define a mapping T : C → C by

T :

(
(0, 0), (0, 1), (1, 0), (0, 2), (2, 0)
(0, 0), (0, 0), (0, 0), (0, 0), (0, 2)

)
.

It is easy to see that T is monotone and for a = b = 1
2 ,

1

2
‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖,

but, we note that for x = y 6= (0, 0), and x = (2, 0), y = (1, 0), we have that

1

2
‖x− Tx‖ > ‖x− y‖, (7)

as such, we have nothing to show. For example let x = (1, 0) and y = (1, 0, ) we
have that

1

2
‖x− Tx‖ =

1

2
|(1, 0)− (0, 0)| = 1

2
> 0 = ‖x− y‖, (8)

as such, we have nothing to show.
However, for x = (1, 0) and y = (2, 0), we have

1

2
‖x− Tx‖ =

1

2
|(1, 0)− (0, 0)| = 1

2
≤ 1 = ‖x− y‖,

but

‖Tx− Ty‖ = |(0, 0)− (0, 2)| = 2 > 1 = ‖x− y‖.
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Thus, T is not a monotone Suzuki generalized nonexpansive mapping. It also easy
to see that T is not nonexpansive.

To show that T is not a monotone mean nonexpansive. We suppose that T is
a monotone mean nonexpansive mapping, so therefore, there exists nonnegative real
numbers a and b, such that a+ b ≤ 1 and ‖Tx−Ty‖ ≤ a‖x− y‖+ b‖x−Ty‖ for all
x, y ∈ C. Now suppose x = (0, 0) and y = (0, 1), we then have that

‖Tx− Ty‖ = 0

≤ a‖x− y‖+ b‖x− Ty‖
= a.

So a ≤ 1 and b = 0. So therefore, T is a nonexpansive mapping, which is a contra-
diction.

Proposition 4. Let C be a nonempty closed convex subset of an ordered Banach
space (X,≤) and T : C → C be a monotone Suzuki-mean nonexpansive mapping
with a fixed point x ∈ C and y ≤ x. Then T is monotone quasi-nonexapansive.

Proof. Let x ∈ F (T ) and y ∈ C.

1

2
‖x− Tx‖ = 0 ≤ ‖x− y‖,

so, by definition of monotone Suzuki-mean nonexpansive, we have

‖x− Ty‖ = ‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖
⇒ (1− b)‖x− Ty‖ ≤ (1− b)‖x− y‖

⇒ ‖x− Ty‖ ≤ ‖x− y‖.

Hence, T is monotone quasi-nonexpansive.

Lemma 5. Let C be a nonempty closed convex subset of an ordered Banach space
(X,≤) and T : C → C be a monotone Suzuki-mean nonexpansive mapping. Then
F (T ) is closed. Moreover, if X is strictly convex and C is convex, then F (T ) is also
convex.

Proof. The proof follows similar argument as in Lemma 4 in [26].

Lemma 6. Let C be a nonempty closed convex subset of an ordered Banach space
(X,≤) and T : C → C be a monotone Suzuki-mean nonexpansive mapping. Then
for all x, y ∈ C with x ≤ y :

1. ‖T 2x− Tx‖ ≤ ‖Tx− x‖,
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2. either 1
2‖x− Tx‖ ≤ ‖x− y‖ or 1

2‖Tx− T
2x‖ ≤ ‖Tx− y‖,

3. either ‖Tx−Ty‖ ≤ a‖x−y‖+b‖x−Ty‖ or ‖2x−Ty‖ ≤ a‖Tx−y‖+b‖Tx−Ty‖.

Proof. 1. For all x ∈ C, we have that 1
2‖Tx− x‖ ≤ ‖Tx− x‖, which implies that

‖T 2x− Tx‖ = ‖T (Tx)− Tx‖ ≤ a‖Tx− x‖+ b‖Tx− Tx‖ ≤ ‖Tx− x‖.

2. Suppose, on the contrary 1
2‖x− Tx‖ > ‖x− y‖ or 1

2‖T
2x− Tx‖ > ‖Tx− y‖,

for some x, y ∈ C. Now, using (1), observe that

‖x− Tx‖ ≤ ‖x− y‖+ ‖y − Tx‖

<
1

2
‖x− Tx‖+

1

2
‖Tx− T 2x‖

≤ 1

2
‖x− Tx‖+

1

2
‖x− Tx‖

= ‖x− Tx‖,

which is a contradiction. Thus, we obtain the desired result.

3. The proof of (3) follows from (2). Thus, we omit it.

Lemma 7. Let C be a nonempty closed convex subset of an ordered Banach space
(X,≤) and T : C → C be a monotone Suzuki-mean nonexpansive mapping. Then
for all x, y ∈ C with x ≤ y,

‖x− Ty‖ ≤ (2 + a+ b)

(1− b)
‖x− Tx‖+ ‖x− y‖.

Proof. From Lemma 6, we have for all x, y ∈ C, that ‖Tx−Ty‖ ≤ a‖x−y‖+b‖x−Ty‖
or ‖T 2x− Ty‖ ≤ a‖Tx− y‖+ b‖Tx− Ty‖.

Considering ‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖, we obtain that

‖x− Ty‖ ≤ ‖x− Tx‖+ ‖Tx− Ty‖
≤ ‖x− Tx‖+ a‖x− y‖+ b‖x− Ty‖
≤ ‖x− Tx‖+ (1− b)‖x− y‖+ b‖x− Ty‖

⇒‖x− Ty‖ ≤ 1

(1− b)
‖x− Tx‖+ ‖x− y‖ ≤ (2 + a+ b)

(1− b)
‖x− Tx‖+ ‖x− y‖.
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Also, considering ‖T 2x−Ty‖ ≤ a‖Tx− y‖+ b‖Tx−Ty‖, using (1) of Lemma 6, we
obtain that

‖x− Ty‖ ≤ ‖x− Tx‖+ ‖Tx− T 2x‖+ ‖T 2x− Ty‖
≤ ‖x− Tx‖+ ‖x− Tx‖+ a‖Tx− y‖+ b‖Tx− Ty‖
≤ 2‖x− Tx‖+ a‖Tx− x‖+ a‖x− y‖+ b‖Tx− x‖+ b‖x− Ty‖
≤ (2 + a+ b)‖x− Tx‖+ (1− b)‖x− y‖+ b‖x− Ty‖

⇒‖x− Ty‖ ≤ (2 + a+ b)

(1− b)
‖x− Tx‖+ ‖x− y‖.

Thus in both cases, we obtain the desired result.

Theorem 8. Let C be a nonempty closed convex subset of a uniformly convex or-
dered Banach space (X,≤). Suppose that T : C → C is a monotone Suzuki-mean
nonexpansive mapping on C. Then F (T ) 6= ∅ if and only if {Tn(x)} is a bounded
sequence for some x ∈ C provided that Tnx ≤ y and x ≤ T (x) for some y ∈ C.

Proof. Suppose that {Tn(x)} is a bounded sequence for some x ∈ C. Since x ≤ T (x)
and using the monotonicity of T, we have that Tx ≤ T 2x ≤ T 3x ≤ · · · . We define
{xn} = {Tn(x)} for all n ∈ N. By the asymptotic center of {xn} with respect to C,
we have A(C, {xn}) = {v} such that xn ≤ v for all n ∈ N, where v is unique. Since

1

2
‖Txn − xn‖ =

1

2
‖xn+1 − xn‖ ≤ ‖xn+1 − xn‖,

we obtain that

‖xn+2 − xn+1‖ = ‖Txn+1 − Txn‖
≤ a‖xn+1 − xn‖+ b‖xn+1 − Txn‖
= a‖xn+1 − xn‖+ b‖xn+1 − xn+1‖
≤ ‖xn+1 − xn‖.

That is ‖xn+2 − xn+1‖ ≤ ‖xn+1 − xn‖.

We claim that ‖xn+1− xn‖ ≤ 2‖xn− v‖ or ‖xn+2− xn+1‖ ≤ 2‖xn+1− v‖, for all
n ∈ N.
proof of claim: Suppose the contrary that 2‖xn−v‖ < ‖xn+1−xn‖ or 2‖xn+1−v‖ <
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‖xn+2 − xn+1‖. Now, observe that

‖xn+1 − xn‖ ≤ ‖xn+1 − y‖+ ‖y − xn‖

<
1

2
‖xn+2 − xn+1‖+

1

2
‖xn+1 − xn‖

≤ 1

2
‖xn+1 − xn‖+

1

2
‖xn+1 − xn‖

≤ ‖xn+1 − xn‖.

Thus we have a contradiction. Hence for all n ∈ N, we have that 1
2‖xn+1 − xn‖ ≤

‖xn − v‖ or 1
2‖xn+2 − xn+1‖ ≤ ‖xn+1 − v‖.

Now, considering the first case 1
2‖xn+1−xn‖ = 1

2‖Txn−xn‖ ≤ ‖xn−v‖, by definition,
we have that

‖Txn − Tv‖ ≤ a‖xn − v‖+ b‖xn − Tv‖
≤ (1− b)‖xn − v‖+ b‖xn − Tv‖

⇒ lim sup
n→∞

‖Txn − Tv‖ ≤ (1− b) lim sup
n→∞

‖xn − v‖+ b lim sup
n→∞

‖xn − Tv‖

⇒ lim sup
n→∞

‖xn − Tv‖ ≤ lim sup
n→∞

‖xn − v‖.

Thus, we have T (v) ∈ A(C, {xn}), so that Tv = v. Using similar approach we also
obtain that Tv = v for the second case.

Conversely, suppose that F (T ) 6= ∅. Then, there exists say v ∈ F (T ) such that
Tv = v and by induction we have that Tnv = v for all n ∈ N. As such, we have that
{Tn(v)} is a constant sequence and so bounded.

Theorem 9. Let C be a nonempty closed convex subset of a uniformly convex or-
dered Banach space (X,≤) and T : C → C be a monotone Suzuki-mean nonexpansive
mapping. Let {xn} be a sequence defined by (9) is bounded with xn ≤ y for some
y ∈ C and lim supn→∞ ‖xn − Txn‖ = 0. Then F (T ) 6= ∅.

Proof. Suppose that {xn} is a bounded sequence and lim supn→∞ ‖xn − Txn‖ = 0.
Then there exists a subsequence {xni} of {xn} such that lim supi→∞ ‖xni−Txni‖ =
0. The asymptotic center of {xni} with respect to C is A(C, {xi}) = {v} such that
xni ≤ v, such that v is unique. Using the definition of asymptotic center, Lemma 7
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and our hypothesis, we have that

r(Tv) = lim sup
i→∞

‖xni − Tv‖

≤ lim sup
i→∞

[
(2 + a+ b)

(1− b)
‖xni − Txni‖+ ‖xni − v‖

]
= lim sup

i→∞
‖xni − v‖

= r(v).

Thus, we have that T (v) = v, from the from the uniqueness of v. Hence, F (T ) 6= ∅.

Theorem 10. Let C be a weakly compact nonempty closed convex subset of a uni-
formly convex in every direction ordered Banach space (X,≤) and T : C → C be a
monotone Suzuki-mean nonexpansive mapping. Let {xn} be a sequence defined by
(9) and lim supn→∞ ‖xn − Txn‖ = 0. Then F (T ) 6= ∅.

Proof. Suppose that {xn} is a bounded sequence and lim supn→∞ ‖xn − Txn‖ = 0.
Then there exists a subsequence {xni} of {xn} such that lim supi→∞ ‖xni−Txni‖ =
0. Using the fact that C is weakly compact and the way {xni} is defined, we have

C∞ =
∞⋂
i=1

[xni ,→) ∩ C =
∞⋂
i=1

{x ∈ C : xni ≤ x} 6= ∅.

It follows that C∞ is closed convex subset of C. Let x ∈ C∞, then xni ≤ x for all
i ∈ N. Using the fact that T is monotone, we get that

xni ≤ Txni ≤ Tx.

Thus, we obtain that T (C∞) is a subset of C∞. We define a type function φ : C∞ →
[0,∞) generated by {xni}; that is

φ(x) = lim sup
i→∞

‖xni − x‖.

From Lemma 1 we can find a unique element say v ∈ C∞ such that φ(v) = inf{φ(x) :
x ∈ C∞}. Using the definition of φ, we obtain that

φ(Tv) = lim sup
i→∞

‖xni − Tv‖.
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Now, using Lemma 7 and our hypothesis, we have that

φ(Tv) = lim sup
i→∞

‖xni − Tv‖

≤ lim sup
i→∞

[
(2 + a+ b)

(1− b)
‖xni − Txni‖+ ‖xni − v‖

]
= lim sup

i→∞
‖xni − v‖

= φ(v).

Thus, we have that T (v) = v, from the fact that minimum points are unique. Hence,
F (T ) 6= ∅.

4. Convergence Result

In this section, we establish some convergence results for a monotone Suzuki-mean
nonexpansive mapping via our newly proposed three steps iterative algorithm. We
define our iterative process as follows: For each x0 ∈ C, the sequence {xn} in C is
defined by 

zn = (1− γn)xn + γnTxn,

yn = T [(1− αn)xn + αnzn],

xn+1 = (1− βn)Tzn + βnTyn, n ≥ 0,

(9)

where {αn}, {βn} and {γn} are sequences in [0, 1].

Lemma 11. Let C be a nonempty closed convex subset of an ordered Banach space
(X,≤) and T : C → C be a monotone mapping and suppose that x1 ∈ C be such
that x1 ≤ Tx1 (Tx1 ≤ x1). Then, for sequence {xn} defined by (9), we have

1. xn ≤ Txn ≤ xn+1 (xn+1 ≤ Txn ≤ xn);

2. {xn} has at most one weak-cluster point say x ∈ C.
Moreover, xn ≤ x for all n ∈ N provided that {xn} weakly converges to a point
x ∈ C.

Proof. 1. We shall proof (1) using mathematical induction. Note that if c1, c2 ∈
C, such that c1 ≤ c2, then c1 ≤ λc1 + (1 − λ)c2 ≤ c2. This holds because
of the convex property defined on order interval. Using our hypothesis that
(x1 ≤ Tx1), we have that

x1 ≤ (1− γ1)x1 + γ1Tx1 = z1

≤ (1− γ1)Tx1 + γ1Tx1

= Tx1.
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We obtain that

x1 ≤ z1 ≤ Tx1. (10)

Since T is monotone, we have that Tx1 ≤ Tz1. We also obtain

Tx1 = T [(1− α1)x1 + α1x1]

≤ T [(1− α1)x1 + α1z1] = y1

≤ T [(1− α1)z1 + α1z1] = Tz1.

Tx1 ≤ y1 ≤ Tz1. (11)

Combining (10) and (11), we have that

x1 ≤ z1 ≤ Tx1 ≤ y1 ≤ Tz1. (12)

Also, since T is monotone, we have that Tz1 ≤ Ty1. We also obtain

Tz1 ≤ (1− β1)Tz1 + β1Tz1

≤ (1− β1)Tz1 + β1Ty1 = x2

≤ (1− β1)Ty1 + β1Ty1

= Ty1.

We then have that

Tz1 ≤ x2 ≤ Ty1. (13)

Combining (10), (11) and (13), we have that

x1 ≤ z1 ≤ Tx1 ≤ y1 ≤ Tz1 ≤ x2 ≤ Ty1. (14)

Hence (1) is true for n = 1.
We suppose that xn ≤ Txn for n > 1. That is

xn ≤ Txn ≤ xn+1. (15)

Now, using similar approach as for the case n = 1, we obtain that

xn ≤ zn ≤ Txn. (16)
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Since T is monotone, we have that Txn ≤ Tzn. We also obtain

Txn = T [(1− αn)xn + αnxn]

≤ T [(1− αn)xn + α1zn] = yn

≤ T [(1− α1)zn + αnzn] = Tzn.

Txn ≤ yn ≤ Tzn. (17)

Combining (16) and (17), we have that

xn ≤ zn ≤ Txn ≤ yn ≤ Tzn. (18)

Also, since T is monotone, we have that Tzn ≤ Tyn. We also obtain

Tzn ≤ (1− βn)Tzn + βnTzn

≤ (1− βn)Tzn + βnTyn = xn+1

≤ (1− βn)Tyn + βnTyn

= Tyn.

We then have that

Tzn ≤ xn+1 ≤ Tyn. (19)

Combining (16), (17) and (19), we have that

xn ≤ zn ≤ Txn ≤ yn ≤ Tzn ≤ xn+1 ≤ Tyn. (20)

Since T is monotone, we have that Tyn ≤ Txn+1, using similar approach, we
obtain that

xn+1 ≤ zn+1 ≤ Txn+1 (21)

Since T is monotone, we have that Txn+1 ≤ Tzn+1. We also obtain

Txn+1 = T [(1− αn+1)xn+1 + αn+1xn+1]

≤ T [(1− αn+1)xn+1 + αn+1zn+1] = yn+1

≤ T [(1− αn+1)zn+1 + αn+1zn+1] = Tzn+1.

Txn+1 ≤ yn+1 ≤ Tzn+1. (22)
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Combining (21) and (22), we have that

xn+1 ≤ zn+1 ≤ Txn+1 ≤ yn+1 ≤ Tzn+1. (23)

Also, since T is monotone, we have that Tzn+1 ≤ Tyn+1. We also obtain

Tzn+1 ≤ (1− βn+1)Tzn+1 + βn+1Tzn+1

≤ (1− βn+1)Tzn+1 + βn+1Tyn+1 = xn+2

≤ (1− βn+ 1)Tyn+1 + βn+1Tyn+1

= Tyn+1.

We then have that

Tzn+1 ≤ xn+2 ≤ Tyn+1. (24)

Combining (21), (22) and (24), we have that

xn+1 ≤ zn+1 ≤ Txn+1 ≤ yn+1 ≤ Tzn+1 ≤ xn+2 ≤ Tyn+1. (25)

Clearly, we obtain that

xn+1 ≤ Txn+1 ≤ xn+2. (26)

2. The desired conclusion follows from (1) and Lemma 3.1 in [8].

Lemma 12. Let C be a nonempty closed and convex subset of a uniformly convex
ordered Banach space X and T : C → C be a monotone Suzuki-mean nonexpansive
mapping. Suppose that there exists x1 ∈ C such that x1 ≤ Tx1 (or Tx1 ≤ x1).
Assume that F (T ) 6= ∅ and x1 ≤ x∗ for all x∗ ∈ F (T ). Let {xn} be sequence defined
by (9), where {βn}, {γn} and {αn} are sequences in [0, 1]. Then the following hold:

(i) {xn} is bounded.

(ii) limn→∞ ‖xn − x∗‖ and limn→∞ d(xn, F (T )) exists for all x∗ ∈ F (T ), where
d(xn, F (T )) denotes the distance from x to F (T ).

Proof. Let x∗ ∈ F (T ), without loss of generality, we suppose that x1 ≤ x∗. Using
the fact that T is monotone, we have

x1 ≤ Tx1 ≤ Tx∗ = x∗. (27)

Using the fact that T is monotone, (9) and (27), we have
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z1 = (1− γ1)x1 + γnTx1 ≤ x∗

⇒ Tz1 ≤ Tx∗ = x∗,

also,

y1 = T [(1− α1)x1 + α1z1] ≤ Tx∗ = x∗

⇒ Ty1 ≤ Tx∗ = x∗

and

x2 = (1− β1)Tz1 + β1Ty1 ≤ x∗ (28)

⇒ Tx2 ≤ Tx∗ = x∗. (29)

From (35) and (26), for n = 2, we get that

x2 ≤ Tx2 ≤ x∗. (30)

Continuing in this way, we obtain

xn ≤ Txn ≤ x∗. (31)

Now, using (9) and Proposition 4, we have

‖zn − x∗‖ ≤ (1− γn)‖xn − x∗‖+ γn‖Txn − x∗‖
≤ (1− γn)‖xn − x∗‖+ γn‖xn − x∗‖ (32)

≤ ‖xn − x∗‖.

Using (9), (32) and Proposition 4, we have

‖yn − x∗‖ = ‖T [(1− αn)xn + αnzn]− x∗‖
≤ (1− αn)‖xn − x∗‖+ αn‖zn − x∗‖
≤ (1− αn)‖xn − x∗‖+ αn‖xn − x∗‖ (33)

= ‖xn − x∗‖.

Using (9), (33) and Proposition 4, we have

‖xn+1 − x∗‖ = ‖(1− βn)Tzn + βnTyn − x∗‖
≤ (1− βn)‖Tzn − x∗‖+ βn‖Tyn − x∗‖
≤ (1− βn)‖zn − x∗‖+ βn‖yn − x∗‖
≤ (1− βn)‖xn − x∗‖+ βn‖xn − x∗‖ (34)

= ‖xn − x∗‖.
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This shows that {‖xn−x∗‖} is bounded and non-decreasing for all x∗ ∈ F (T ). Thus,
limn→∞ ‖xn − x∗‖ exists. For all x∗ ∈ F (T ) and n ∈ N, we have that d(xn+1, x

∗) ≤
d(xn, x

∗). Taking the infimum over all x∗ ∈ F (T ), we get that dist(xn+1, F (T )) ≤
dist(xn, F (T )) for all n ∈ N. Thus, the sequence {dist(xn, F (T ))} is bounded and
non-decreasing. Thus, limn→∞ dist(xn, F (T )) exists.

Lemma 13. Let C be a nonempty closed and convex subset of a uniformly convex
ordered Banach space X and T : C → C be a monotone Suzuki-mean nonexpansive
mapping. Suppose that there exists x1 ∈ C such that x1 ≤ Tx1 (or Tx1 ≤ x1).
Assume that F (T ) 6= ∅ and x1 ≤ x∗ for all x∗ ∈ F (T ). Let {xn} be sequence defined
by (9), where {βn}, {γn} and {αn} are sequences in [0, 1]. Then limn→∞ ‖Txn −
xn‖ = 0.

Proof. Since F (T ) 6= ∅, then we can find x∗ ∈ F (T ). We have established in Lemma
12 that {xn} is bounded and limn→∞ ‖xn− x∗‖ exists. Suppose that limn→∞ ‖xn−
x∗‖ = c. If we take c = 0, then we are done. Thus, we consider the case where c > 0.
From (32), we have ‖zn − x∗‖ ≤ ‖xn − x∗‖, it then follows that

lim sup
n→∞

‖zn − x∗‖ ≤ c. (35)

Also, using Proposition 4, we have ‖Txn − x∗‖ ≤ ‖xn − x∗‖, it then follows that

lim sup
n→∞

‖Txn − x∗‖ ≤ c. (36)

Using (33) and (34), we have

‖xn+1 − x∗‖ = ‖(1− βn)Tzn + βnTyn − x∗‖
≤ (1− βn)‖zn − x∗‖+ βn‖yn − x∗‖
≤ (1− βn)‖zn − x∗‖+ βn‖xn − x∗‖.

Taking the lim infn→∞ of both sides and rearranging the inequalities, we have

c ≤ lim inf
n→∞

‖zn − x∗‖. (37)

From (35) and (37), we obtain that limn→∞ ‖zn − x∗‖ = c. That is,

lim
n→∞

‖(1− γn)xn + γnTxn − x∗‖ = c.

Thus, by Lemma 2, we have

lim
n→∞

‖xn − Txn‖ = 0.
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Theorem 14. Let C be a nonempty closed and convex subset of a uniformly convex
ordered Banach space X with Opial property and T : C → C be a monotone Suzuki-
mean nonexpansive mapping. Suppose that there exists x1 ∈ C such that x1 ≤
Tx1 (or Tx1 ≤ x1). Assume that F (T ) 6= ∅ and totally ordered with x1 ≤ x∗ for
all x∗ ∈ F (T ). Suppose that {xn} is defined by (9), where {βn}, {γn} and {αn} are
sequences in [0, 1]. Then {xn} converges weakly to a fixed point of T.

Proof. In Lemma 12 and Theorem 13 we established that {xn} is bounded and
that limn→∞ ‖Txn − xn‖ = 0. Now, since X is uniformly convex, we can find a
subsequence say {xni} of {xn} that converges weakly to some x∗ ∈ C. Using Lemma
11, we obtain that x1 ≤ xni ≤ x∗ for all j ∈ N and using Lemma 7, we obtain that

‖xni − Tx∗‖ ≤
(2 + a+ b)

(1− b)
‖xni − Txni‖+ ‖xni − x∗‖.

This implies

lim inf
n→∞

‖xni − Tx∗‖ ≤ lim inf
n→∞

‖xni − x∗‖.

By the Opial property, we have that Tx∗ = x∗. Thus, x∗ ∈ F (T ). We now establish
that {xn} has a unique weak subsequential limit in F (T ). Let x∗ and v be weak limits
of the subsequences {xni} and {xnj} of {xn} respectively. Using similar approach as
in x∗ ∈ F (T ), we can show that v = Tv. In what follows, we establish uniqueness.
From Lemma 12, we have that limn→∞ ‖xn − v‖ exists. Now, suppose that x∗ 6= v,
then by Opial’s condition,

lim
n→∞

‖xn − x∗‖ = lim
i→∞
‖xni − x∗‖

< lim
i→∞
‖xni − v‖

= lim
n→∞

‖xn − v‖

= lim
j→∞

‖xnj − v‖

< lim
j→∞

‖xnj − x∗‖

= lim
n→∞

‖xn − x∗‖.

This is a contradiction, so x∗ = v. Hence, {xn} converges weakly to x∗ ∈ F (T ) and
this completes the proof.

Theorem 15. Let C be a nonempty closed and convex subset of a uniformly convex
ordered Banach space X with Opial property and T : C → C be a monotone Suzuki-
mean nonexpansive mapping. Suppose that there exists x1 ∈ C such that x1 ≤
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Tx1 (or Tx1 ≤ x1). Assume that F (T ) 6= ∅ and totally ordered with x1 ≤ x∗ for
all x∗ ∈ F (T ). Suppose that {xn} is defined by (9), where {βn}, {γn} and {αn} are
sequences in [0, 1]. Then {xn} converges strongly to a point of F (T ) if and only if
lim infn→∞ d(xn, F (T )) = 0 where d(x, F (T )) = inf{‖x− x∗‖ : x∗ ∈ F (T )}.

Proof. Suppose that {xn} converges to a fixed point, say x∗ of T. Then limn→∞ d(xn, x
∗) =

0, and since 0 ≤ d(xn, F (T )) ≤ d(xn, x
∗), it follows that limn→∞ d(xn, F (T )) = 0.

Therefore, lim infn→∞ d(xn, F (T )) = 0.
Conversely, suppose that lim infn→∞ d(xn, F (T )) = 0. It follows from Lemma 12

that limn→∞ ‖xn−x∗‖ exists and that limn→∞ d(xn, F (T )) exists for all x∗ ∈ F (T ).
By our hypothesis, lim infn→∞ d(xn, F (T )) = 0. Suppose {xnk

} is any arbitrary
subsequence of {xn} and {yk} is a sequence in F (T ) such that for all n ∈ N,

‖xnk
− yk‖ <

1

2k

it follows from (34) that ‖xn+1 − yk‖ ≤ ‖xn − yk‖ < 1
2k
, hence

‖yk+1 − yk‖ ≤ ‖yk+1 − xn+1‖+ ‖xn+1 − yk‖

<
1

2k+1
+

1

2k

<
1

2k−1
.

Thus, we have that {yk} is a Cauchy sequence in F (T ). Also, by Theorem 21, we
have that F (T ) is closed. Thus {yk} is a convergent sequence in F (T ). Now, suppose
that {yk} converges to p ∈ F (T ). Therefore, since

‖xnk
− p‖ ≤ ‖xnk

− yk‖+ ‖yk − p‖ → 0 as k →∞,

we obtain that lim
k→∞

‖xnk
− p‖ = 0 and so {xnk

} converges strongly to p ∈ F (T ).

Since lim
n→∞

‖xn − p‖ exists, it follows that {xn} converges strongly to p.

Theorem 16. Let C be a nonempty closed and convex subset of a uniformly convex
ordered Banach space X with Opial property and T : C → C be a monotone Suzuki-
mean nonexpansive mapping. Suppose that there exists x1 ∈ C such that x1 ≤
Tx1 (or Tx1 ≤ x1). Assume that F (T ) 6= ∅ and totally ordered with x1 ≤ x∗ for
all x∗ ∈ F (T ). Suppose that {xn} is defined by (9), where {βn}, {γn} and {αn} are
sequences in [0, 1]. Let T satisfy condition (I), then {xn} converges strongly to a
fixed point of T.

72



A.A. Mebawondu, H.A. Abass, K.O. Oyewole, O.K. Aremu, O.K. Narain – . . .

Proof. From Lemma 12, we have limn→∞ d(xn, F (T )) exists and by Theorem 13, we
have limn→∞ ‖xn − Txn‖ = 0. Using the fact that

0 ≤ lim
n→∞

f(d(x, F (T )) ≤ lim
n→∞

‖xn − Txn‖ = 0 ∀x ∈ C,

we have that limn→∞ f(d(xn, F (T ))) = 0. Since f is nondecreasing with f(0) = 0
and f(t) > 0 for t ∈ (0,∞), it then follows that limn→∞ d(xn, F (T )) = 0. Hence, by
Theorem 15 {xn} converges strongly to x∗ ∈ F (T ).

5. Application to L1([0, 1]) space and Nonlinear Integral Equation

In this section, we present an application of our result to nonlinear integral equation
and L1([0, 1]) the Banach space of real valued function defined on [0, 1] with absolute
value Lebesgue integrable.

5.1. Application to L1([0, 1]) space

We recall that f = 0 if and only if the set {x ∈ [0, 1] : f(x) = 0} has a Lebesgue
measure 0, then we say that f = 0 is almost everywhere. An element of L1([0, 1]) is
therefore seen as a class of functions and the norm of any function say f ∈ L1([0, 1])
is defined as

‖f‖ =

∫ 1

0
|f(x)|dx.

It is also worth mentioning that f ≤ g if an only if f(x) ≤ g(x) almost everywhere,
for any f, g ∈ L1([0, 1]). We also recall that an ordered interval is a subset of the
form

[f,→) := {g ∈ L1([0, 1]); f ≤ g}

and

[←, f) := {g ∈ L1([0, 1]); g ≤ f}

for any f, g ∈ L1([0, 1]). More so, ordered intervals are closed for convergence almost
everywhere and convex.

Definition 8. Let C be a nonempty subset of L1([0, 1]) space which is equipped with
a vector order ≤ . A mapping T : C → C is said to be monotone if for all f ≤ g we
have that T (f) ≤ T (g).
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Lemma 17. [6] Let {fn} be a sequence of uniformly Lp-bounded function on a
measure space and fn → f almost everywhere, then

lim inf
n→∞

‖fn‖pp = lim inf
n→∞

‖fn − f‖pp + ‖f‖pp,

for all 0 ≤ p <∞.
Theorem 18. Let C ⊂ L1([0, 1]) be nonempty closed convex and compact for the
convergence almost everywhere and T : C → C be a monotone Suzuki-mean nonex-
pansive mapping. Suppose that there exists f1 ∈ C such that f1 ≤ T (f1) (or T (f1) ≤
f1). Suppose that {fn} is defined by (9), where {βn}, {γn} and {αn} are sequences
in [0, 1]. Then the sequence {fn} converges almost everywhere to some f ∈ C which
is the fixed point of T. Moreover, f1 ≤ f.
Proof. From Theorem 13, we obtain that {fn} converges almost everywhere to some
f ∈ C, where fn → f for all n ∈ N. Since {fn} id uniformly bounded by Lemma 17,
we have that

lim inf
n→∞

‖fn − T (f)‖ = lim inf
n→∞

‖fn − f‖+ ‖f − T (f)‖

and applying Theorem 13, we obtain that

lim inf
n→∞

‖fn − T (fn)‖ = 0.

Therefore, we obtain that

lim inf
n→∞

‖fn − T (f)‖ = lim inf
n→∞

‖fn − f‖+ ‖f − T (f)‖.

Using Lemma 6, Lemma 7 and Theorem 13, we have that

lim inf
n→∞

‖fn − f‖+ ‖f − T (f)‖

= lim inf
n→∞

‖fn − T (f)‖ ≤ lim inf
n→∞

[‖fn − T (fn)‖+ ‖T (fn)− T (f)‖]

≤ lim inf
n→∞

[‖fn − T (fn)‖+ a‖fn − f‖+ b‖fn − T (f)‖]

≤ lim inf
n→∞

[‖fn − T (fn)‖+ a‖fn − f‖+ b
(2 + a+ b)

(1− b)
‖fn − T (fn)‖+ b‖fn − f‖]

≤ lim inf
n→∞

[(1 + b
(2 + a+ b)

(1− b)
)‖fn − T (fn)‖+ ‖fn − f‖],

rearranging the inequality, we obtain that

‖f − T (f)‖ ≤ lim inf
n→∞

[(1 + b
(2 + a+ b)

(1− b)
)‖fn − T (fn)‖+ ‖fn − f‖ − ‖fn − f‖]

= (1 + b
(2 + a+ b)

(1− b)
lim inf
n→∞

‖fn − T (fn)‖

= 0.

74



A.A. Mebawondu, H.A. Abass, K.O. Oyewole, O.K. Aremu, O.K. Narain – . . .

We have that ‖f − T (f)‖ = 0, which implies that T (f) = f.

5.2. Application to Integral Equation

Considering the following nonlinear integral equation:

x(t) = g(t) + λ

∫ b

a
M(t, s)K(t, x(s))ds, (38)

where λ ∈ (0, 1],M : [a, b] × [a, b] → R+, K : [a, b] × R → R and g : [a, b] → R are
continuous functions. Let X = C([a, b],R) be the space of all continuous real valued
functions defined on [a, b] with ordered relation ≤ in X defined as for x, y ∈ X,x ≤ y
if and only if x(s) ≤ y(s) for all s ∈ [a, b]. We defined ‖·, ·‖ : X × X → [0,∞) by
‖x− y‖ = sups∈[a,b] |x(s)− y(s)|.

Theorem 19. Let X = C([a, b],R) and T : X → X the operator given by

Tx(t) = g(t) + λ

∫ b

a
M(t, s)K(t, x(s))ds

for all t, s ∈ [a, b], where M : [a, b]× [a, b]→ R+, K : [a, b]×R→ R and g : [a, b]→ R
are continuous functions. Let X = C([a, b],R) be the space of all continuous real
valued functions defined on [a, b]. Furthermore, suppose the following condition hold:

1. there exists a continuous mapping µ : X ×X → [0,∞) such that

|K(s, x(s))−K(s, y(s))| ≤ µ(x, y)|x(s)− y(s)|

for all s ∈ [a, b] and x, y ∈ X.

2. there exists τ ∈ (0, 1], such that∫ b

a
M(t, s)µ(x, y) ≤ τ.

Then the integral equation (38) has a solution.

Proof. Without loss of generality, we suppose that x ≤ y, so that

sup{|y(s)− x(s)| : s ∈ [a, b]} ≥ sup{|Tx(s)− x(s)| : s ∈ [a, b]},

which implies that

‖y − x‖ ≥ ‖Tx− x‖ ≥ 1

2
‖Tx− x‖.
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Thus, we have that

|Ty(s)− Tx(s)| ≤
(
λ

∫ b

a
|M(t, s)[K(t, y(s))−K(t, x(s))]|ds

)
≤
(
λ

∫ b

a
M(t, s)µ(x, y)|y(s)− x(s)|ds

)
≤
(

sup
s∈[a,b]

|y(s)− x(s)|λ
∫ b

a
M(t, s)µ(x, y)ds

)
≤ ‖y − x‖λτ
≤ ‖y − x‖.

Thus, we have that

1

2
‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Clearly, T is monotone Suzuki generalized nonexpansive mapping and by Proposition
3, T is monotone Suzuki-mean nonexpansive all the conditions in Theorem 9 are
satisfied, as such T has a fixed point, that is the integral equation (38) has a solution.

6. Numerical Example

In this section, we present a numerical example to show the efficiency of new iteration
process.

Example 2. Define a mapping T : [0, 1]→ [0, 1] as

Tx =

{
1− x if x ∈ [0, 1/5),
x+4
5 if x ∈ [1/5, 1].

(39)

Then T is a Suzuki mean nonexpansive mapping, but not mean nonexpansive.

Proof. To show that T is not mean nonexpansive. We suppose that T is mean
nonexpansive, so therefore, there exists nonnegative real numbers a and b, such that
a+ b ≤ 1 and ‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖ for all x, y ∈ [0, 1]. Now suppose
x = 1 and y = 0, we then have that

‖Tx− Ty‖ = 0

≤ a‖x− y‖+ b‖x− Ty‖
= a.
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So a ≤ 1 and b = 0. So therefore, T is a nonexpansive mapping, but this contradicts
the fact that T is not continuous. Hence T is not mean nonexpansive.

To establish that T is a monotone Suzuki mean nonexpansive mapping, it suf-
fices to show that T is a monotone Suzuki generalized nonexpansive mapping. To
do this, we consider the following cases:

Case 1: Let x ∈ [0, 15), as such we have that 1
2‖x − Tx‖ = 1−2x

2 ∈ ( 3
10 ,

1
2 ]. By

definition, for 1
2‖x − Tx‖ ≤ ‖x − y‖, we must have that y ≥ 1

2 , that is y ∈ [12 , 1].
And so, we obtain that

‖Tx− Ty‖ =

∣∣∣∣5x+ y − 1

5

∣∣∣∣ < 1

5

and

‖x− y‖ = |x− y| >
∣∣∣∣15 − 1

2

∣∣∣∣ =
3

10
.

Thus, we have that 1
2‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Case 2: Let x ∈ [15 , 1], as such we have that 1
2‖x−Tx‖ = 2−2x

5 ∈ [0, 45 ]. By definition,
for 1

2‖x−Tx‖ ≤ ‖x− y‖, we must have that 2−2x
5 ≤ |x− y|. Due to |x− y|, we have

two possibilities.
Case 2a: If x < y, we have that 2−2x

5 < y − x, as such we must have that 2+3x
5 ≤

y ⇒ y ∈ [1325 , 1] ⊂ [15 , 1]. And so, we obtain that

‖Tx− Ty‖ =

∣∣∣∣x+ 4

5
− y + 4

5

∣∣∣∣ =
1

5
|x− y| ≤ ‖x− y‖.

Thus, we have that 1
2‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Case 2b: If x ≥ y, we have that 2−2x
5 ≤ x − y, as such we must have that y ≤

7x−2
5 ⇒ y ∈ [−325 , 1]. We only need to consider the case in which y ∈ [0, 1]. For

y ≤ 7x−2
5 , we obtain that x ≥ 5y+2

7 , which implies that x ∈ [27 , 1], as such we going
to consider x ∈ [27 , 1] and y ∈ [0, 1]. For x ∈ [27 , 1] and y ∈ [15 , 1] have been considered
in case 2a. So, we consider x ∈ [27 , 1] and y ∈ [0, 15). To start with suppose x ∈ [27 ,

2
5 ]

and y ∈ [0, 15), we therefore have that

‖Tx− Ty‖ =

∣∣∣∣x+ 4

5
− (1− y)

∣∣∣∣ =

∣∣∣∣x+ 5y − 1

5

∣∣∣∣ ≤ 2

25

and

‖x− y‖ = |x− y| >
∣∣∣∣27 − 1

5

∣∣∣∣ =
3

35
.
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Thus, we have that 1
2‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Also for x ∈ [25 , 1] and y ∈ [0, 15), we therefore have that

‖Tx− Ty‖ =

∣∣∣∣x+ 4

5
− (1− y)

∣∣∣∣ =

∣∣∣∣x+ 5y − 1

5

∣∣∣∣ ≤ 1

5

and

‖x− y‖ = |x− y| >
∣∣∣∣25 − 1

5

∣∣∣∣ =
1

5
.

Thus, we have that 1
2‖x − Tx‖ ≤ ‖x − y‖ ⇒ ‖Tx − Ty‖ ≤ ‖x − y‖. Hence T is a

Suzuki generalized nonexpansive mapping and thus a generalized mean nonexpansive
mapping.

In what follows, we numerically compare our new iteration process with some
existing iterative processes. Taking αn = 2n√

7n+9
, γn = 2

n+9 , βn = 1
3n+7 and x0 = 0.9.

Step Our Algorithm Noor Algorithm

x0 0.9 0.9

x1 0.9853333 0.9182857

x2 0.9977284 0.9316476

x3 0.9996355 0.9417682

x4 0.9999400 0.9496508

x5 0.9999899 0.9559300

x6 0.9999983 0.9610262

x7 1 0.9652278

x8 1 0.9687390

Comparison shows that the iterative processes (9) converges faster than the it-
erative processes (5) and consequently faster than a host of other iterative processes
in the literature.

7. Conclusion

Throughout this paper, we have discussed some fixed point results for the classs of
monotone Suzuki-mean nonexpansive mappings. In addition, we introduce a new
iterative algorithm for approximating a fixed point of our newly proposed class of
mappings in the frame work of uniformly convex ordered Banach spaces. Further-
more, we apply our fixed point result to nonlinear integral equations and L1([0, 1])
spaces. Finally, in Section 6, we establish that our newly proposed iterative process is
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more efficient and converges faster than the Noor iterative process and consequently
faster than a host of other iterative processes in the literature.
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