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SOME PROPERTIES OF TUBULAR SURFACES IN E3
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Abstract. In this article, we consider tubular surfaces in Euclidean 3-space. We
obtain the necessary and sufficient conditions for tubular surfaces in Euclidean 3-
space to be semi-parallel and of the first kind of pointwise 1-type Gauss map. Also
we study the tubular surface in Euclidean 3-space such that its mean curvature
vector ~H satisfies ∆ ~H = λH for some differentiable functions λ.

2010 Mathematics Subject Classification: 53A05, 53B25.

Keywords: Tubular surfaces, Gauss map, semi-parallel, pointwise 1-type.

1. Introduction

The notion of finite type submanifolds introduced by B. Y. Chen during the late
1970’s has become an useful tool for investigating and characterizing submanifolds of
Euclidean or pseudo-Euclidean space ([1],[3]). Afterwards, the notion was extended
to differential maps, in particular, to the Gauss map of submanifolds. Especially,
if an oriented submanifold M has 1-type Gauss map G, then G satisfies 4G =
λ (G+ C) for a non-zero constant λ and a constant vector C, where 4 is the Laplace
operator. Extending this kind of property which is a typical character valid on
helicoids, catenoids and several rotational surfaces, Y. H. Kim defined the notion of
submanifolds of Euclidean space with pointwise 1-type Gauss map as follows:

Definition 1. [10] An oriented submanifold M of Euclidean space is said to have
pointwise 1-type Gauss map if its Gauss map G satisfies

4G = f (G+ C) (1)

for a non-zero smooth function f and a constant vector C.

A submanifold with pointwise 1-type Gauss map is said to be of the first kind
if the vector C in (1) is the zero vector. Otherwise, a submanifold with pointwise
1-type Gauss map is said to be of the second kind. Many interesting submanifolds
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with pointwise 1-type Gauss map have been studied from different viewpoint and
different spaces ([4], [5], [6], [8], [9]).

On the other hand, the submanifold M is called semi-parallel (semi-symmetric
[11]) if R ·h = 0 where R denotes the curvature tensor of Vander Waerden-Bortoletti
connection 5 of M and h is the second fundamental form of M . This notion is an
extrinsic analogue for semi-symmetric spaces, i.e. Riemannian manifolds for which
R ·R = 0 and a direct generalization of parallel submanifolds, i.e. submanifolds for
which 5h = 0 [7], [12].

In the present paper, we consider tubular surfaces in Euclidean 3-space to be
semi-parallel and to have the first kind of pointwise 1-type Gauss map. We prove
the following theorems:

Theorem 1. Let M be a tubular surface in E3. Then M has the first kind of
pointwise 1-type Gauss map if and only if M is a cylindrical surface.

Theorem 2. Let M be a tubular surface in E3. Then M is semi-parallel if and only
if M is a cylindrical surface.

Also we consider the tubular surface in Euclidean 3-space such that its mean
curvature vector ~H satisfies ∆ ~H = λH for some differentiable functions λ and we
prove the following theorems:

Theorem 3. Let M be a tubular surface in E3. Then the mean curvature vector ~H
of M satisfying ∆ ~H = λH for some differentiable functions λ if and only if M is a
cylindrical surface.

2. Preliminaries

We recall some well-known formulas for the surfaces in E3. Let M be a surface of
E3, the standard connection D on E3 induces the Levi-Civita connection 5 on M .
We have the following Gauss formula

DXY = ∇XY + h (X,Y ) ,

and the Weingarten formula

DXξ = −AξX + ⊥∇X ξ,

where X,Y ∈ Γ (TM) and ξ ∈ Γ
(
TM⊥

)
. Then ∇ is the Levi-Civita connection

of M , h is the second fundamental form, Aξ is the shape operator, and ⊥∇ is the
normal connection. We note that

〈h (X,Y ) , ξ〉 = 〈AξX,Y 〉 .
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The normal curvature tensor ⊥R is defined by

⊥R (X,Y ) ξ = ⊥∇X ⊥∇Y ξ − ⊥∇Y ⊥∇X ξ − ⊥∇[X,Y ]ξ ,

where X,Y ∈ Γ (TM) and ξ ∈ Γ
(
TM⊥

)
. Taking the normal part of the following

equation
DXDY ξ −DYDXξ −D[X,Y ]ξ = 0

where X,Y ∈ Γ (TM) and ξ ∈ Γ
(
TM⊥

)
, we get the Ricci equation〈

⊥R (X,Y ) ξ, η
〉

= 〈AηX,AξY 〉 − 〈AξX,AηY 〉

where η ∈ Γ
(
TM⊥

)
.

The mean curvature vector field
−→
H, the mean curvature H and the Gauss cur-

vature of M are given respectively by

−→
H =

1

2
traceh and K = detA.

A surface is called minimal if H = 0 identically. A surface is called flat if K = 0
identically ([2]).

Let R · h be the product tensor of the curvature tensor R with the second
fundamental form h. The surface M is said to be semi-parallel if R · h = 0, i.e.
R (Xi, Xj) · h = 0 ([11]). Now, we give the following result.

Lemma 4. ([7]) Let M ⊂ En be a smooth surface given with the patch M (u, v).
Then the following equalities are hold:

(
R (X1, X2) · h

)
(X1, X1) =

(
n−2∑
α=1

hα11 (hα22 − hα11) + 2K

)
h (X1, X2)

+
n−2∑
α=1

hα11h
α
12 (h (X1, X1)− h (X2, X2)) ,

(
R (X1, X2) · h

)
(X1, X2) =

(
n−2∑
α=1

hα12 (hα22 − hα11)

)
h (X1, X2)

+

(
n−2∑
α=1

hα12h
α
12 −K

)
(h (X1, X1)− h (X2, X2)) ,

(
R (X1, X2) · h

)
(X2, X2) =

(
n−2∑
α=1

hα22 (hα22 − hα11)− 2K

)
h (X1, X2)

+

n−2∑
α=1

hα22h
α
12 (h (X1, X1)− h (X2, X2))
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where K is the Gauss curvature of the surface.

The Laplacian 4 on M is given by

4 = − 1√
det (gij)

n∑
i,j=1

∂

∂xi

(√
det (gij)gij

∂

∂xj

)
(2)

where
(
gij
)

is the inverse matrix of (gij) , which is the local components of the metric
on M .

3. Tubular surface in E3

In this section, we study some geometrical properties of tubular surfaces in E3. We
prove the main theorems theorem 1 and theorem 2 and related results.

A canal surface M in E3 is an immersed surface swept out by a sphere moving
along a curve α = α (s) or by a particular circular cross-section of the sphere along
the same path ([13]). Due to the generating process of canal surfaces, the parametric
formula of M can be given as follows:

M (s, u) = α (s)− r′ (s) r (s)T (s)

+r (s)

√
1− (r′ (s))2 (cosuN (s) + sinuB (s))

where the curve α (s)is called the spine curve (center curve) parametrized by arc-
length s and r (s) is called the radial function of M . Here {T,N,B} is Frenet frame
of α (s). In particular, if r (s) is a constant, then M is called a tubular surface.

Let α : I → E3 be a unit-speed planar curve satisfying

T ′ (s) = κ (s)N (s) ,

N ′ (s) = −κ (s)T (s)

and M be a tubular surface whose spine curve is α as follows

M (s, u) = α (s) + r ((cosu)N (s) + (sinu)B) (3)

where B is constant vector in E3. Differentiating (3) with respect to s and u,
respectively, we get

Ms (s, u) = (1− rκ cosu)T, (4)

Mu (s, u) = −r (sinu)N + r (cosu)B. (5)
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Here without lost of generality, we assume that 1− rκ cosu > 0 for the regularity of
the surface M . Thus, an orthonormal tangent bases on M is given by

e1 =
Ms

‖Ms‖
= T (s) , (6)

e2 =
Mu

‖Mu‖
= − (sinu)N (s) + (cosu)B. (7)

From (6) and (7), we find

e3 = e1 × e2 = − (cosu)N (s)− (sinu)B. (8)

By covariant differentiation with respect to e1 and e2, a straightforward calculation
gives

De1e1 =
1

‖Ms‖
DMse1 =

κ

1− rκ cosu
N,

De1e2 =
1

‖Ms‖
DMse2 =

κ sinu

1− rκ cosu
T

De2e2 =
1

‖Mu‖
DMue2 =

1

r
(− cosuN − sinuB)

Then we find,

h11 = 〈De1e1, e3〉 =
−κ cosu

1− rκ cosu
, h12 = 〈De1e2, e3〉 = 0

h22 = 〈De2e2, e3〉 =
1

r
Then we have the following theorem.

Theorem 5. Let M be a tubular surface given by (3)in E3. Then the Gauss curva-
ture and mean curvature of M is found as follows

K =
−κ cosu

r (1− rκ cosu)
and H =

1− 2rκ cosu

2r (1− rκ cosu)
. (9)

Now we define the Gauss map G (s, u) of M by

G (s, u) = − (cosu)N (s)− (sinu)B. (10)

By using (10) and (2) , we have

∆G =
−κ′ cosu

(1− rκ cosu)3
T +

−2 cosu+ r(1 + 3 cos 2u)κ− 4r2κ2 cos3 u

2r2 (1− rκ cosu)2
N (11)

+
− sinu+ rκ sin 2u

r2 (1− rκ cosu)
B.

Then we give the following theorem.
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Theorem 6. Let M be a tubular surface given by (3) in E3. Then M has the first
kind of pointwise 1-type Gauss map if and only if M is a cylindrical surface.

Proof. Let M be a tubular surface given by (3) in E3 and assume that M has the
first kind of pointwise 1-type Gauss map, that is, the following equation holds

∆G = λG (12)

where λ is a real valued C∞ function. By using (10) and (11) in (12) , we get

λ =
1

r2
and κ = 0,

which implies that the surface M is a cylindrical surface.
Conversely, let M be a cylindrical surface. We will show that M has the first

kind of pointwise 1-type Gauss map. Let us assume that the following holds

∆G = λ (G+ C) (13)

where C = c1T (s)+c2N (s)+c3B. Substituting (10) and (11) in (13), we obtain

∆G = −cosu

r2
N − sinu

r2
B,

λ (G+ C) = λc1T + λ (− cosu+ c2)N + λ (− sinu+ c3)B

Since the set {1, sinu, cosu} is linearly independent, we get λ = 1/r2 and C = 0,
which means that M has the first kind of pointwise 1-type Gauss map.

Then we give the following corollaries.

Corollary 7. Let M be a tubular surface given by (3) in E3. Then M has the first
kind of pointwise 1-type Gauss map if and only if the spine curve of M is a straight
line.

Corollary 8. Let M be a tubular surface given by (3) in E3. Then M does not have
a harmonic Gauss map.

Now, we consider the mean curvature vector ~H of M. The mean curvature vector
~H is given by

~H =
1− 2rκ cosu

2r (1− rκ cosu)
e3.

Then we have

∆ ~H =
(−1 + 4rκ cosu)κ′ cosu

2r (1− rκ cosu)4
T + P (s, u)N +Q (s, u)B
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Ali UÇUM – Some properties of tubular surfaces . . .

where P (s, u) and Q (s, u) are differentiable functions.
Assume that ∆ ~H = λH for some differentiable functions λ. Then from the

coefficients of T, we have
κ′ = 0

which implies that

P (s, u) =

(
2 + 9κ2r2

)
cosu− 8κ3r3 cos4 u+ κr (−2− 8 cos 2u+ 5κr cos 3u)

−4r3 (1− rκ cosu)3

and

Q (s, u) =
2 sinu+ 2κr

(
κr
(
6− 4κr cos3 u+ 5 cos 2u

)
sinu− 4 sin 2u

)
−4r3 (1− rκ cosu)3

.

Since ∆ ~H = λH, we get

κ = 0 and λ =
1

r2
.

Then we get the following theorem.

Theorem 9. Let M be a tubular surface given by (3) in E3. Then the mean curva-
ture vector ~H of M satisfying ∆ ~H = λH for some differentiable functions λ if and
only if M is a cylindrical surface.

Theorem 10. Let M be a tubular surface given by (3) in E3. Then M is semi-
parallel if and only if M is a cylindrical surface.

Proof. Let M be a tubular surface given by (3) in E3. Assume that M is semi-
parallel. Namely, for (1 ≤ i, j ≤ 2),(

R (e1, e2) · h
)

(ei, ej) = 0.

By a straightforward calculation, from Lemma 4, we have

(
R (e1, e2) · h

)
(e1, e1) =

κ2 (3− 2rκ cosu) cos2 u

r (1− rκ cosu)3
e3,(

R (e1, e2) · h
)

(e1, e2) =
−κ cosu

r2 (1− rκ cosu)2
e3,(

R (e1, e2) · h
)

(e2, e2) = 0.

From our assumption, we get κ = 0 which means that M is a cylindrical surface.
The converse of the proof is clear.
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As a result, we have the following corollary.

Corollary 11. Let M be a tubular surface given by (3)in E3. Then the followings
are equivalent:
i. M is a cylindrical surface,
ii. M has the first kind of pointwise 1-type Gauss map,
iii. The mean curvature vector ~H of M satisfying ∆ ~H = λH for some differentiable
functions λ,
iv. M is semi-parallel.
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