Annals of Mathematics, 149 (1999), 535-543

A positive solution to
the Busemann-Petty problem in R*

By GAOYONG ZHANG*

Introduction

Motivated by basic questions in Minkowski geometry, H. Busemann and
C. M. Petty posed ten problems about convex bodies in 1956 (see [BP]). The
first problem, now known as the Busemann-Petty problem, states:

If K and L are origin-symmetric convex bodies in R™, and for each hy-
perplane H through the origin the volumes of their central slices satisfy

VOlnfl(K N H) < VOlnfl(L N H),
does it follow that the volumes of the bodies themselves satisfy

vol, (K) < vol,(L)?

The problem is trivially positive in R?. However, a surprising negative
answer for n > 12 was given by Larman and Rogers [LR] in 1975. Subsequently,
a series of contributions were made to reduce the dimensions to n > 5 by a
number of authors (see [Ba], [Bo|, [G2], [Gi], [Pa], and [Z1]). That is, the
problem has a negative answer for n > 5. See [G3] for a detailed description.
It was proved by Gardner [G1] that the problem has a positive answer for
n = 3. The case of n = 4 was considered in [Z1]. But the answer to this case
in [Z1] is not correct. This paper presents the correct solution, namely, the
Busemann-Petty problem has a positive solution in R*, which, together with
results of other cases, brings the Busemann-Petty problem to a conclusion.

A key step to the solution of the Busemann-Petty problem is the discovery
of the relation of the problem to intersection bodies by Lutwak [Lu]. An origin-
symmetric convex body K in R" is called an intersection body if its radial
function pg is the spherical Radon transform of a nonnegative measure pu on
the unit sphere S"~1. The value of the radial function of K, pg(u), in the
direction v € S™7!, is defined as the distance from the center of K to its
boundary in that direction. When g is a positive continuous function, K is
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called the intersection body of a star body. The notion of intersection body
was introduced by Lutwak [Lu] who proved that the Busemann-Petty problem
has a positive answer if K is an intersection body in R™. Based on this relation,
a positive answer to the Busemann-Petty problem in R? was given by Gardner
[G1] who showed that all origin-symmetric convex bodies in R? are intersection
bodies.

The relation of the Busemann-Petty problem to intersection bodies proved
by Lutwak can be formulated as: A negative answer to the Busemann-Petty
problem is equivalent to the existence of convex nonintersection bodies (see
[G2] and [Z2]). The author attempted in [Z1] to give a negative answer for all
dimensions > 4 by trying to show that cubes in R™ (n > 4) are not intersection
bodies (see Theorem 5.3 in [Z1]). However, there is an error in Lemma 5.1
of [Z1]. It affects only Theorems 5.3 and 5.4 there. The correct version of
Theorem 5.3 is that no cube in R” (n > 4) is an intersection body. This
follows immediately from Theorem 6.1 of [Z1] which says that no generalized
cylinder in R™ (n > 4) is an intersection body. Note that the proof of Theorem
6.1 in [Z1] holds for intersection bodies, although the definition of intersection
body of a star body was the one used in [Z1]. Therefore, Theorem 5.4 in [Z1]
should have stated: The Busemann-Petty problem has a negative solution in
R™ for n > 4.

In his important work [K1], Koldobsky applied the Fourier transform to
the study of intersection bodies. In [K2], he showed that cubes in R* are inter-
section bodies. It was this result that exposed the error mentioned above and
led to the present paper, which presents the correct solution to the Busemann-
Petty problem in R*. One of the key ideas in the proof, previously employed
by Gardner [G1], is the use of cylindrical coordinates in computing the inverse
spherical Radon transform.

1. The inverse Radon transform on S°
and intersection bodies in R*

The radial function py, of a star body L is defined by
pr(u) =max{r >0:ru €L}, uecS" L

It is required in this paper that the radial function is continuous and even. For
basic facts about star bodies and convex bodies, see [G3] and [S].

For a continuous function f on S™~!, the spherical Radon transform R f
of f is defined by

®@= [ fwd. wes
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where u' is the (n — 1)-dimensional subspace orthogonal to the unit vector .
Since the spherical Radon transform is self-adjoint, one can define the Radon
transform Ry for a measure p on S™"~! by

Ry, f) = (p, RS).

The intersection body IL of star body L is defined by

pir(u) = vol,_1(LNu™) =R <ﬁp2_l> (u), uweS™ L
An origin-symmetric convex body K is called the intersection body of a
star body if there exists a star body L so that K = IL. That is, the inverse
spherical Radon transform R™!pg is a positive continuous function. A slight
extension of this definition is that an origin-symmetric convex body K is called
an intersection body if the inverse spherical Radon transform R™!px is a non-
negative measure.

Let A be the Laplacian on the unit sphere S3. Helgason’s inversion for-
mula for the Radon transform R on S3 is (see [H, p. 161])

1
——(1-A =1.
167T2( JRR
It implies that
1
1 g =—=R(1-A
(1) R™px = —R(1 - A)p

for an origin-symmetric convex body K in R*. This formula shows that R™!px
is continuous when pg is of class C?. The following lemma provides an inver-
sion formula which gives the positivity of R™!px.

Let K be an origin-symmetric convex body in R*, and let A,(z) be the
volume of K N (zu + u'), where z is real and u € S°.

LEMMA 1. If K is an origin-symmetric convex body in R* whose boundary
is of class C?, then
1

(2) (R~ pxc)(u) = —1—5 AL(0), u € S°.

Proof. By rotation, it suffices to prove (2) for the north pole of S%. From
Helgason’s inversion formula (1), the inverse spherical Radon transform of pg,
f =R pg, is a continuous function when pg is of class C2. Let

u=u(v,p) = (vsing,cos¢), uesS® veS? 0<¢p<m,
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and let pg (v, ¢) = px(u) be the radial function of K. Define
pi(9) = [ picv,0)d,

=/ »
S
o) = [ st
(v, ¢) = pr (v, ¢)sin &,
H(6) = prc(6) sin .

Consider px and f as functions on S® which are SO(3) invariant. Since
the spherical Radon transform is intertwining, we have px = Rf (for a simple
proof, see [G3, Th C.2.8]). From this and Lemma 2.1 in [Z1], or Theorem C.2.9
in [G3], we obtain

_ A LR i od
(o) = 5 [ Fwsimviy

Taking the derivative on both sides of this equation gives

(P (¢)sin @) = 4 (5 — ¢)sin(F - 9).

It follows that

4 f(0) = Jimy (Pre(9) sin g} (i):(;n P _ —f”(g).

1 _
Since e f(0) is the value of f at the north pole, we obtain
T

1, =
o2 ()

3) fuwo) =

where u is the north pole of S3.
Consider the variable z defined by z = pg cos¢. Then tan ¢ = " Differ-
z

1 2
entiating this equation and using —— = 1+tan®¢ =1+ T give
cos? ¢ 22
d d
(4) 22+r2:z£—r£.
This yields
dz m
5 i - _ Y
( ) d¢ ¢:£ T(,U7 2)
2
Differentiating (4) gives
d d d? d?
(6) 2:°2 4 op L2z

dp " dp ~ Tdp? T dg
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From (5),
. ar| iz dr)
10) g=1 dz d¢ g=1 dz|,_,
From (6) and (7),
® Tl o=t
¢ ¢p=1 dz|.—o

From (5), (8), and
&r  dPr <dz>2 dr d%z

d¢? ~ d2 \d¢) " dzdg?’
we have
d?r d?r T 7 (dr\>
(9) i w37+ 20 5 (4
dp? |sn  d2?| 2 2°\dz) _,
d?r dr\ 2
2
J— - 2 _
() (= ()
- z=0
1 d?r3
dz? z:0‘

Integrating both sides of (9) over S? with respect to v gives

d?r 1 d?r3
bl dv = = >0
/52 d¢? (@, ¢)'¢g ! 3 /S2 dz2 (v,2)

Since K has C? boundary, one can interchange the second order derivative and
the integral on each side of the last equation. We obtain

d? & (1 3
WT‘(qb)LZ% =3 <§ /827“ (v,z)dv) s

dv.
z=0

Note that the 3-dimensional volume of the intersection of the hyperplane x4 = z
with the convex body K, denoted by A,,(z), is given by

1
Ay (z) = —/ (v, z)dv.
3 /o
Therefore, we have
(10) 7(5) = A1, (0).

Formula (2) follows from (3) and (10). O
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Recently, Gardner, Koldobsky and Schlumprecht [GKS] have generalized
the formula (2) to n dimensions by using techniques of the Fourier transform.

A different proof of their formulas is given by Barthe, Fradelizi and Maurey
[BFM].

THEOREM 2. If K is an origin-symmetric convex body in R* whose bound-
ary is of class C% and has positive curvature, then K is an intersection body
of a star body.

Proof. By the Brunn-Minkowski inequality and the strict convexity of K,
A(z)% is strictly concave. When one slices a symmetric convex body by parallel
hyperplanes, the central section has maximal volume. Hence, A’(0) = 0. It
follows that

A"(0) = 3A(0)5 (A(2)5)"_, <.

By Lemma 1, R™'px is a positive continuous function. Therefore, K is the
intersection body of a star body. O

When a convex body is identified with its radial function, the class of
intersection bodies is closed under the uniform topology. Since every origin-
symmetric convex body can be approximated by origin-symmetric convex bod-
ies whose boundaries are of class C? and have positive curvatures, we obtain:

THEOREM 3. All origin-symmetric convex bodies in R* are intersection
bodies.

Theorem 3 is proved for convex bodies of revolution by Gardner [G2] and
by Zhang [Z1], and is proved for cubes and other special cases by Koldobsky
[K2]. In higher dimensions, the situation is different. For example, it is proved
by Zhang [Z1] that generalized cylinders in R™ (n > 4) are not intersection
bodies, and is proved by Koldobsky [K1] that the unit balls of finite dimen-
sional subspaces of an L, space, 1 < p < 2, are intersection bodies. In three
dimensions, Gardner [G1] proved that all origin-symmetric convex bodies in
R3 are intersection bodies. One can also prove this by Theorem 3 and a result
of Fallert, Goodey and Weil [FGW] which says that central sections of inter-
section bodies are again intersection bodies. An intersection body may not
be the intersection body of a star body. It is shown by Zhang [Z4] that no
polytope in R™ (n > 3) is an intersection body of a star body. Campi [C] is
able to prove a complete result which says that no polytope in R (n > 2) is
an intersection body of a star body.
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2. A positive solution to the Busemann-Petty problem in R*

The following relation of the Busemann-Petty problem to intersection bod-
ies was proved by Lutwak [Lu].

THEOREM 4 (Lutwak). The Busemann-Petty problem has a positive so-
lution if the convex body with smaller cross sections is an intersection body.

From Theorems 3 and 4, we conclude:
THEOREM 5. The Busemann-Petty problem in R* has a positive solution.

From Theorem 3 and Corollary 2.19 in [Z2], we have the following corollary
about the maximal cross section of a convex body.

COROLLARY 6. If K is an origin-symmetric convex body in R*, then

(\/iﬂ)% max volz(K Nub)

3
11 I (K)1 <
(1) voly () < max

| w

with equality if and only if K is a ball.

Inequality (11) implies that, in R?*, balls attain the minmax of the volume
of central hyperplane sections of origin-symmetric convex bodies with fixed
volume. The corresponding inequality in R? to inequality (11) was proved by
Gardner (see [G3, Th. 9.4.11]). However, it is no longer the case in higher di-
mensions at least for n > 7. Ball [Ba] showed that cubes are counterexamples
for n > 10. Giannopoulos [Gi] showed that certain cylinders are counterexam-
ples for n > 7. The following question, known as the slicing problem, has been
of interest (see [MP] for details):

Does there exist a positive constant ¢ independent of the dimension n so
that

Voln(K)%1 < ¢ max vol, (K Nut)
ueSn—1

for every origin-symmetric convex body K in R™?

3. The generalized Busemann-Petty problem

Besides considering hyperplane sections, one can also consider intermedi-
ate sections of convex bodies. For a fixed integer 1 < ¢ < n, the Busemann-
Petty problem has the following generalization (see Problem 8.2 in [G3]):

If K and L are origin-symmetric convex bodies in R™, and for every i-
dimensional subspace H the volumes of sections satisfy

vol;(K N H) < vol;(LN H),



542 GAOYONG ZHANG

does it follow that the volumes of the bodies themselves satisfy

vol, (K) < vol,(L)?

When ¢ = n — 1, this is the Busemann-Petty problem. It turns out that
the solution to the generalized Busemann-Petty problem depends strongly on
the dimension i of the sections of convex bodies. It is proved by Bourgain and
Zhang [BoZ| that the solution is negative when 3 < i < n. The generalized
Busemann-Petty problem has a positive solution when K belongs to a certain
class of convex bodies, called i-intersection bodies, which contains all intersec-
tion bodies (see Theorem 5 in [Z3] and Lemma 6.1 in [GrZ]). In particular,
when K is an intersection body, the generalized Busemann-Petty problem has
a positive solution. From this fact and Theorem 3, we have:

THEOREM 7. The generalized Busemann-Petty problem in R* has a pos-
itive solution.

It might be still true that the generalized Busemann-Petty problem has a
positive solution when ¢ = 2,3, and n > 5. This remains open.
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