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Gradient estimates and blow-up analysis
for stationary harmonic maps

By Fang-Hua Lin

Abstract

For stationary harmonic maps between Riemannian manifolds, we provide
a necessary and sufficient condition for the uniform interior and boundary
gradient estimates in terms of the total energy of maps. We also show that
if analytic target manifolds do not carry any harmonic S2, then the singular
sets of stationary maps are m ≤ n− 4 rectifiable. Both of these results follow
from a general analysis on the defect measures and energy concentration sets
associated with a weakly converging sequence of stationary harmonic maps.

Introduction

This paper studies some general properties of a sequence of weakly con-
verging stationary harmonic maps between compact Riemannian manifolds.
In this part I of the paper we shall examine mainly two issues, the gradient
estimates and the compactness of stationary maps in the H1-norm. In Part
II of this paper, we shall study asymptotic behavior at infinity of stationary
harmonic maps from Rn into a compact Riemannian manifold with bounded
normalized energies. We shall also discuss there the analogous results as de-
scribed in this paper for the heat flow case. The main results were announced
in [Li].

Let u : M → N be a stationary harmonic map (cf. §1 below for the
precise definition). Here M,N are compact, smooth Riemannian manifolds
(with possible nonempty, smooth boundary ∂M). We are interested in the
following question:

Under what conditions on the target manifold N is an estimate of the
form

(0.1) ‖∇u‖L∞(M) ≤ C(M,N,E), where E =
∫
M
|∇u|2(x)dx,

valid?
Naturally (0.1) contains both local interior and local near the boundary

estimates. In the latter case, the right-hand side of (0.1) should also depend



     

786 FANG-HUA LIN

on a certain norm of u |∂M . Trivial examples, such as conformal maps be-
tween spheres, or finite energy harmonic maps from R2 into S2, show there
are obstructions for (0.1). One of the main results of the present paper is the
following.

Theorem A. An interior gradient estimate of the form (0.1) is true
for stationary maps provided that N does not carry any harmonic spheres,
Sl, l = 2, . . . , n− 1, n = dimM ≥ 3.

Here we say N does not carry harmonics Sl if there is no smooth, non-
constant harmonic map from Sl into N . We note that, for n = 2, the estimate
(0.1) follows rather easily from the proof of the well-known theorem of Sacks-
Uhlenbeck [SaU] provided that N does not carry any harmonic S2.

Theorem A generalizes the earlier results by Schoen-Uhlenbeck [SchU]
and, independently, by Giaquinta-Giusti [GG] for energy minimizing maps.
Note that, for energy minimizing maps, the boundary regularity is always true
(see [SU2]) and this combined with the compactness of energy minimizing maps
in H1-norms imply the uniform boundary regularity for energy minimizing
maps (cf. [M]). Such uniform boundary regularity can easily be seen to fail
for smooth harmonic maps (cf. §4 below). Nevertheless, we have the following
boundary regularity theorem.

Theorem B. Let M be a smooth, compact Riemannian manifold with
smooth boundary ∂M , and let φ : ∂M → N be a C2-map. Suppose u : M → N

is a smooth harmonic map with u |∂M= φ. Then there is a positive con-
stant δ0 = δ0(M,N, φ,E) such that |∇u(x)| ≤ C(M,N, φ,E), for all x ∈ M ,
dist(x, ∂M) ≤ δ0, provided that N does not carry any harmonic S2. Here

E =
∫
M
|∇u|2dx.

As a consequence of Theorems A and B, we have:

Corollary. If the universal cover Ñ of N supports a pointwise convex
function, then under the same assumptions as Theorem B,

‖∇u‖L∞(M) ≤ C(M,N, φ,E).

This latter result implies the well-known theorems of Eells and Sampson
[ES] and of Hamilton [H] for nonpositively curved targets N . It also generalizes
results of [GH] and [Sch] (cf. [DL] for related discussions.)

To prove Theorem A and Theorem B, we have to consider a weakly con-
verging sequence of stationary harmonic maps on a geodesic ball Br(p) ⊂ M .
We let {ui}∞i=1 be a sequence of stationary maps from Br(p) into N with∫

Br(p)
|∇ui|2(x)dx ≤ Λ.
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Suppose ui ⇀ u weakly in H1(Br(p), N). Then we define the energy concen-
tration set Σ (as in [Sch] for smooth maps) as follows:

(0.2) Σ = ∩r>0

{
x ∈ Br(p) : lim inf

i→∞
r2−n

∫
Br(x)

|∇ui|2(y)dy ≥ ε0

}
.

Here ε0 = ε0(M,n,N) is a suitable positive constant. We also introduce a
nonnegative Radon measure ν such that µ = |∇u|2(x)dx + ν; here µ is the
weak limit of Radon-measures |∇ui|2(x)dx on Br(p). We then show that

Σ = sptν ∪ singu;(0.3)

ν(x) = Θ(x)Hn−2bΣ,(0.4)

for an Hn−2-measurable function Θ(x) such that ε0 ≤ Θ(x), and Θ(x) is locally
uniformly bounded on Br(p);

(0.5) Hn−2(Σ ∩Bρ(p)) ≤ C(ε0,M,N,Λ, ρ),

for any 0 < ρ < r.
Therefore ui → u strongly in H1

loc(Br(p), N) if and only if |∇ui|2dx ⇀

|∇u|2dx if and only if ν = 0 if and only if Hn−2(Σ) = 0.
Next we identify Br(p) (for r small, one can always do that) with a ball

B1+δ0(0) in Rn endowed with some nice metric. We letM be the set of all such
Radon measures µ described above. That is, there is a sequence of stationary
harmonic maps {ui} (with respect to suitable metrics on B1+δ0) from B1+δ0

into N , such that |∇ui|2dx ⇀ µ. Note that |∇ui|2dx is the energy density with
respect to a metric (may depend on i, but uniformly nice). We then show M
has the following properties.

(0.6) µ ∈M, x ∈ B1, 0 < λ < δ0, then µx,λ ∈M.

Here µx,λ(A) = µ(x+ λA), for Borel measurable A ⊂ B1+δ0 ;

(0.7)
µ ∈M, x ∈ B1, {λk} ↘ 0 there is a subsequence {λk′}

such that µx,λk‘
⇀ η ∈M.

Moreover, η0,λ = η, for all λ > 0.

The main result concerning M is the following.

Theorem C. For any µ ∈M,

µ = |∇u|2dx+ ν, and

π(µ) = Σ = (sptν ∪ sing u),

Σ is an Hn−2-rectifiable set. Thus ν is also Hn−2-rectifiable.

The above theorem follows from the arguments of D. Priess [P], and earlier
contributions by Besicovitch, Federer, Marstrand and Mattila. See references
in [P]. Here we present a self-contained direct proof.
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The next key step towards the proof of Theorem A and Theorem B is
Lemma 3.1 (cf. also Lemma 4.11) that says: If Hn−2(Σ) > 0, then there is a
nonconstant, smooth harmonic map from S2 into N . We therefore obtain the
following characterization:

Any sequence of weakly converging stationary harmonic maps converges
strongly in the H1-norm if and only if ν = 0 for all µ ∈ M, if and only if
Hn−2(Σ) = 0, π(µ) = Σ, for any µ ∈ M, if and only if there is no smooth,
nonconstant harmonic map from S2 into N .

The above statements lead to the following.

Theorem D. If there is no smooth, nonconstant harmonic map from S2

into N , then the singular set of any stationary harmonic map has dimension
m ≤ n − 4. Moreover, if N is, in addition, analytic, then the singular set of
any stationary harmonic map is m ≤ n− 4 rectifiable.

The proof of Theorem D follows from the work of L. Simon [S3] and our
characterization above.

The paper is organized as follows. In Section 1 we gather together various
facts concerning stationary harmonic maps. In addition, we also establish a
few preliminary results concerning the defect measures ν for µ ∈ M and the
concentration sets. In particular, we establish the properties of µ ∈M so that
Federer and Almgren’s dimension-reducing principle can be applied.

The rectifiability of Σ and ν are established by three key lemmas in Sec-
tion 2. In Sections 3 and 4 we prove Theorem A and Theorem B, respectively.
The final section contains other discussions and describes some necessary modi-
fications required in order to generalize all proofs in Sections 1 through 4, which
are for the Euclidean domains, to the general Riemannian domains.

1. Preliminaries

Here we gather together some basic facts about stationary harmonic maps
and related notions which are needed for the sequel. For a more detailed
discussion of the facts reviewed here, we refer the reader to various articles
cited below, and also monographs [Sim], and [J].

First, Ω will denote a bounded smooth domain of Rn endowed with the
standard Euclidean metric. We shall briefly discuss in Section 5 the exten-
sion of the results here to the case where Ω is equipped with an arbitrary
smooth Riemannian metric. This extension involves purely routine technical
modifications of the arguments which we develop below for the Euclidean case.

Note that N denotes a smooth compact Riemannian manifold, which,
by Nash’s isometric embedding theorem, we assume is isometrically embed-
ded in some Euclidean space Rk. Also, H1(Ω, N) denotes the set of maps
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u ∈ H1(Ω,Rk) such that u(x) ∈ N for a.e. x ∈ Ω. For a measurable subset
A ⊂ Ω,

E(u,A) =
∫
A
|∇u|2dx.

Now u ∈ H1(Ω, N) is said to be energy-minimizing in Ω if E(u,Ω) ≤ E(v,Ω)
whenever v ∈ H1(Ω, N) with v = u on ∂Ω.

If u ∈ H(Ω, N) is energy-minimizing, then u is stationary (cf. [Sch]) in the
sense that

(1.1)
d

ds
E(Ω, us)

∣∣∣∣
s=0

= 0

whenever the derivative on the left exists, provided that u0 = u and us ∈
H1(Ω, N) with us(x) ≡ u(x) for x ∈ ∂Ω and s ∈ (−ε, ε) for some ε > 0. In
particular, by considering a family us = Π(u+sξ), where Π denotes the nearest
point projection of an Rk neighborhood of N onto N , and ξ ∈ C∞0 (Ω,Rk), we
obtain the system of equations

(1.2) ∆u+A(u)(∇u,∇u) = 0 weakly in Ω.

Here ∆ is the usual Laplacian on Ω;A(u) denotes the second fundamental form
of N at point u. A map u ∈ H1(Ω, N) which satisfies (1.2) is called a weakly
harmonic map.

On the other hand if us(x) = u(x + sξ(x)), where ξ ∈ C∞0 (Ω,Rn), then
(1.1) implies the integral identity

(1.3)
∫

Ω

n∑
i,j=1

(
δij |∇u|2 − 2DiuDju

)
Diξ

jdx, ξ = (ξ1, · · · , ξk) ∈ C∞0 (Ω,Rn).

Notice that (1.3) implies (for a.e. ρ such that Bρ(z) ⊂ Ω)∫
Bρ(z)

n∑
i,j=1

(
δij |∇u|2 − 2DiuDju

)
Diξ

jdx(1.4)

=
∫
∂Bρ(z)

n∑
i,j=1

(
δij |Du|2 − 2DiuDju

)
νiξ

j

for any ξ = (ξ1, · · · , ξn) ∈ C∞(B̄ρ(z),Rn), where ν = (x − z)/|x − z| is the
outward pointing unit normal for ∂Bρ(z). In particular ξ(x) = x− z and then
(1.4) implies

(1.5) (n− 2)
∫
Bρ(z)

|∇u|2dx = ρ

∫
∂Bρ(z)

(
|∇u|2 − 2|URz |2

)
, a.e.ρ,

such that B̄ρ(z) ⊂ Ω, where

URz =
(x− z)
|x− z| · ∇u = uν .
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The latter can be written

d

dρ

(
ρ2−n

∫
Bρ(z)

|∇u|2dx
)

= 2
∫
∂Bρ(z)

|RzURz |2
Rnz

,

whence by integration

(1.6) ρ2−n
∫
Bρ(z)

|∇u|2dx− σ2−n
∫
Bσ(z)

|∇u|2dx = 2
∫
Bρ(z)/Bσ(z)

|RzURz |2
Rnz

dx

for any 0 < σ < ρ with B̄ρ(z) ⊂ Ω. Here Rz = |x−z|. An obvious consequence
of (1.6) is that

(1.7) ρ2−n
∫
Bρ(z)

|∇u|2dx

is an increasing function of ρ so that the limit

(1.8) Θu(z) = lim
ρ→0

ρ2−n
∫
Bρ(z)

|∇u|2dx

exists at every point z ∈ Ω. Note that Θu(z) is an upper semicontinuous
function of z ∈ Ω in the sense that

(1.9) Θu(z) ≥ lim sup
zi→z

Θu(zi).

Letting σ → 0 in (1.6) we obtain

(1.10) ρ2−n
∫
Bρ(z)

|∇u|2dx−Θu(z) = 2
∫
Bρ(z)

|RzURz |2
Rnz

dx.

By using (1.5) we have the alternative identity

2
∫
Bρ(z)

|RzURz |2
Rnz

dx =
ρ3−n

n− 2

∫
∂Bρ(z)

(|∇u|2 − 2|URz |2)−Θu(z)(1.11)

≤ (n− 2)−1ρ3−n
∫
∂Bρ(z)

|∇u|2 −Θu(z).

For a map u ∈ H1(Ω, N), we define the regular and singular sets, reg u
and sing u, by

reg u = {z ∈ Ω : u ∈ C∞ in a neighborhood of z}
sing u = Ω\reg u.

Notice that by definition reg u is open, and hence sing u is automatically
relatively closed in Ω.

An important consequence of the small energy regularity theorem of Bethuel
[B] (cf. also [E]) for stationary harmonic maps is that the regular set, reg u, of
u can be characterized in terms of density as follows:

z ∈ reg u ⇐⇒ Θu(z) ≤ ε0(n,N) > 0 ⇐⇒ Θu(z) = 0,
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where ε0 = ε0(n,N) > 0 is independent of u; equivalently,

(1.12) z ∈ sing u ⇐⇒ Θu(z) ≥ ε0 ⇐⇒ Θu(z) > 0.

For energy minimizing maps, (1.12) was shown in the earlier work of Schoen-
Uhlenbeck [SU] (cf. also [GG]). In fact, Schoen-Uhlenbeck proved a much
stronger statement that can be described as follows.

Suppose u : Bρ(z)→ N is an energy-minimizing map with

ρ2−n
∫
Bρ(z)

|∇u|2dx ≤ Λ and inf
λ∈Rk

ρ−n
∫
Bρ(z)

|u− λ|2dx ≤ ε.

Then if ε ≤ ε(n,N,Λ) then Bρ/2(z) ⊂ regu and

(1.13)
∑

Bρ/2(z)

ρk|Dku| ≤ Ckε1/2, k ≥ 0.

One of the crucial consequences of the above theorem of Schoen-Uhlenbeck is
that any weakly converging sequence of energy-minimizing maps uj ∈ H1(Ω, N),
uj ⇀ u weakly in H1(Ω, N), converges strongly in H1

loc(Ω, N); cf. [SU]. The
limit u is also an energy-minimizing map. This latter fact was shown by Luck-
haus [Lu] (cf. also [HL]). It is easy to see from examples below that the same
statement cannot be true in general for stationary harmonic maps.

Example 1.1. Let v be a conformal map from S2 into S2. Then v gives
rise to a finite energy harmonic map u from R2 into S2 by composing with the
inverse of the stereographic projection of S2 onto R2. Note that the converse
is also true by Sacks-Uhlenbeck’s theorem [SaU]. Let uλ(x) = u(λx), x ∈ R2;
then uλ ⇀ constant = u(∞) weakly in H1(R2,S2) as λ → ∞. Moreover,
|∇uλ|2dx ⇀ 8πNδ0 as Radon measures. Here N = |deg v| > 0.

Now if we view u, uλ as smooth harmonic maps from Rn into S2 (thus
u, uλ are independent of variables x3, · · · , xn), then uλ ⇀ constant as λ → ∞
and |∇uλ|2dx ⇀ 8πNHn−2b{0} × Rn−2. Here Hn−2b{0} × Rn−2 denotes the
(n − 2) dimensional Hausdorff measure restricted to the (n − 2)-dimensional
plane {0} × Rn−2 in Rn.

Example 1.2. In [HLP], we constructed examples of smooth stationary,
axially symmetric harmonic maps u from B3 into S2 with isolated singularities
of degree zero. For such u, we let the origin 0 ∈ sing u, and sing u∩Bε(0) = {0}
for some ε > 0. Then the degree u : ∂Br(0) → S2 is zero, for all r ∈ (0, ε).
Moreover, for uλ ⇀ constant, uλ(x) = u(λx), and |∇uλ|2dx ⇀ 16πH1b{0} ×
R1, as λ→ 0+.

Example 1.3. In [Po], Poon constructed examples of stationary harmonic
maps u from B3 into S2 such that U |∂B3(x) = x, and that u is smooth ev-
erywhere except at one point on the boundary of B3. On the other hand,
Riviere [R] constructed finite energy weakly harmonic maps u from B3 into S2

such that u is discontinuous everywhere on B3.
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From now on, we should assume B1 ⊂⊂ Ω, and let HΛ be the set of
stationary harmonic maps u from Ω into N such that E(u,Ω) ≤ Λ, for some
Λ > 0. The following result was shown in [Sch] for smooth harmonic maps
(instead of stationary harmonic maps).

Proposition 1.4. Any map u in the weak H1(Ω, N) closure of HΛ is
smooth and harmonic outside a relatively closed subset of Ω with locally finite
Hausdorff (n− 2)-dimensional measure.

Proof. The proof given in [Sch] uses only the energy monotonicity and
“small energy regularity theorem.” Since both of these statements are true
for stationary harmonic maps, the proof can be directly carried over here. In
fact, the following lemma is essentially equivalent to Proposition 1.4. For the
reader’s convenience we provide a proof below.

Lemma 1.5. Let {ui} be a sequence of maps in HΛ, and suppose ui ⇀ u

weakly in H1(Ω, N). Let

Σ = ∩r>0{x ∈ B1 : lim inf
i→∞

r2−n
∫
Br(x)

|∇ui|2dy ≥ ε0}.

Then Σ is closed in B1 and

Hn−2(Σ) ≤ C(ε0,Λ, N, δ0) where δ0 = dist(B1, ∂Ω) > 0.

Proof. Suppose x0 ∈ B1/Σ; then there is r0 > 0 such that

lim inf
i→∞

r2−n
0

∫
Br0 (x0)

|∇ui|2dy < ε0.

That is, there is a sequence ni →∞ such that

sup
ni
r2−n

0

∫
Br0 (x0)

|∇uni |2dy < ε0.

Via the small energy regularity theorem of Bethuel [B] (cf. also [E]), one has

sup
ni

sup
x∈Br0/2(x0)

|∇uni(x)| ≤ C0
√
εor
−1
0 ,

for some constant C0 = C0(n,N). In particular,

sup
ni

sup
x∈Br0/4(x0)

r2−n
∫
Br(x)

|∇uni(x)|dy ≤ ε0

2

whenever r ≤ r1(r0, ε0, N), for some r1 > 0. Therefore Br0/4(x0) ⊂ B1/Σ, and
Σ is closed.

Next, for any δ0 > δ > 0, we may find a finite collection of balls {Brj (xj)}
that cover Σ so that rj < δ, that the collection {Brj/2(xj)} is disjoint and that
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xj ∈ Σ. For i sufficiently large we then have(
1
2
rj

)2−n ∫
Brj/2(xj)

|∇ui|2dy ≥ ε0 for all j.

Hence ∑
j

rn−2
j ≤ C(n)

εo
E(ui,Ω) ≤ C(n)

ε0
Λ.

It follows that
Hn−2(Σ) ≤ C(n)

ε0
Λ.

Let ui ∈ HΛ be such that ui ⇀ u in H1(Ω, N), and let Σ be as in Lemma
1.5. Consider a sequence of Radon measure µi = |∇ui|2dx, i = 1, 2, . . . ;
without loss of generality, we may assume µi ⇀ µ weakly as Radon measures.
By Fatou’s lemma, we may write

(1.14) µ = |∇u|2dx+ ν

for some nonnegative Radon measure ν on Ω.

Lemma 1.6. On the closed ball B1+δ0 ⊂ Ω,

(i) Σ = spt(ν) ∪ sing u;

(ii) ν(x) = Θ(x)Hn−2bΣ, x ∈ B1 where ε0 ≤ Θ(x) ≤ δ2−n
0 Λ2n−2, for Hn−2-

a.e. x ∈ Σ.

Proof. Suppose x0 ∈ B1/Σ; then the proof of Lemma 1.5 and higher order
estimates (1.13) imply that there is a subsequence {uni} such that uni → u(x)
in C1,α(Br0/2(x0)), for some 0 < r0 < δ0. Thus

µni |Br0/2(x0)⇀ |∇u|2 |Br0/2(x0) as i→∞,

and u ∈ C1,α(Br0/2(x0)). The latter implies x0 6∈ singu and x0 6∈ spt ν as
ν ≡ 0 on Br0/2(x0)).

Suppose now x0 ∈ Σ, then for any r ∈ (0, δ0),

µi(Br(x0))
rn−2

≥ ε0

2
for a sequence of i→∞. Hence

µ(Br(x0))
rn−2

≥ ε0

2
for a.e. r ∈ (0, δ0).

If x0 6∈ singu, then u is smooth near x0, and hence

r2−n
∫
Br(x0)

|∇u|2dx ≤ ε0

4
,
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for all r > 0 sufficiently small. Thus, by the definition of ν, one has

ν(Br(x0))
rn−2

≥ ε0

4
,

for all positive small r. That is x0 ∈ spt ν. This completes the proof of (i).
To show (ii), we observe first the following facts.

(a) r2−nµ(Br(x)) is a monotone increasing function of r ∈ (0,dist(x, ∂Ω)),
for x ∈ Ω; thus the density

Θ(µ, x) = lim
r↘0

r2−nµ(Br(x))

exists for every x ∈ Ω.

(b) x ∈ Σ ⇐⇒ Θ(µ, x) ≥ ε0, x ∈ B1;

(c) for Hn−2 a.e. x ∈ Ω, Θu(x) = 0; here

Θu(x) = lim
r↘0

r2−n
∫
Br(x)

|∇u|2dy.

Indeed, (a) follows from the energy monotonicity (1.7). For the statement (b),
if x ∈ B1 and Θ(µ, x) ≥ ε0, then for any r ∈ (0, δ0), r2−nµ(Br(x)) ≥ ε0 by
(a); thus x ∈ Σ by the definition of Σ. On the other hand, if x ∈ Σ, then, for
any r ∈ (0, δ0), r2−nµ(Br(x)) ≥ ε0; thus, by letting r ↘ 0, Θ(µ, x) ≥ ε0. The
statement (c) is a well-known fact proved by Federer-Ziemer (see [FZ]).

It is obvious, via the monotonicity of energy, that

r2−nµ(Br(x)) ≤ δ2−n
0 µ(Ω) ≤ δ2−n

0 Λ,

for x ∈ B1. Thus µ |Σ is absolutely continuous with respect to Hn−2bΣ. In
other words, by the Radon-Nikodym theorem, one has

µ |Σ= Θ(x)Hn−2bΣ,

for Hn−2-a.e. x ∈ Σ. Since Θu(x) = 0 for Hn−2-a.e. x ∈ Σ, we obtain (note
that sptν ⊆ Σ):

ν(x) = Θ(x)Hn−2bΣ,

for Hn−2- a.e. x ∈ Σ. The conclusion of Lemma 1.6 follows from the above
density estimates, and also, for Hn−2- a.e. x ∈ Σ, that

(1.15) 22−n ≤ lim inf
r↘0

Hn−2(Σ ∩Br(x))
rn−2

≤ lim sup
r↘0

Hn−2(Σ ∩Br(x))
rn−2

≤ 1.

See [Sim2] for examples.
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To explore further properties of Σ and µ, we assume B1 ⊂ B1+δ0 = Ω. Let
M denote the set of all those Radon measures µ on B1 such that µ is a weak
limit of Radon measures µi, µi = |∇ui|2dx defined on B1, where ui ∈ HΛ, for
i = 1, 2, . . . and Λ = Λ(µ) is a positive number. We also define F to be the
set which consists of all whose compact subset E of B1 such that E ⊂ Σ for
some Σ as defined in Lemma 1.5. We note that, for µ ∈M, µ = |∇u|2dx+ ν,
for some nonnegative ν as in Lemma 1.6, and for some u which is smooth
and harmonic away from Σ ∈ F . For E ∈ F , y ∈ B1 with |y| < 1 and for
0 < λ < 1− |y|, we define

Ey,λ =
E − y
λ
∩B1.

Similarly, for µ ∈M we define a scaled Radon measure µy,λ by

µy,λ(A) = µ(y + λA)λn−2,

for |y| < 1 and 0 < λ < 1− |y|.

Lemma 1.7. (i) If |y| < 1 and 0 < λ < 1 − |y|, and if µ ∈ M, then
µy,λ ∈M.

(ii) If {λk} ↘ 0 and if µ ∈M, then there is a subsequence {λ′k} and η ∈M
such that µy,λk ⇀ η; here |y| < 1. Moreover, η0,λ = η for each λ > 0.

(iii) M is closed with respect to weak-convergence of measures.

(iv) We define a map π : M → F as follows: If µ = |∇u|2dx + ν ∈ M so
that ν(x) = Θ(x)Hn−2bΣ (cf. Lemma 1.6), then π(µ) = Σ. If ν = 0,
then π(µ) = sing u. The map π has the following properties.

(a) If |y| ≤ 1− λ,0 < λ < 1, then

π(µy,λ) = λ−1(π(µ)− y) for µ ∈M.

(b) If µ, µk ∈ M with µk ⇀ µ, then for each ε > 0 there is k(ε) such
that

B1 ∩ π(µk) ⊂ {x ∈ B1+δ0 : dist(π(µ), x) < ε} for all k ≥ k(ε).

Similarly we have the following lemma concerning F .

Lemma 1.8. 1. If E ∈ F , |y| < 1, 0 < λ < 1− |y|, then Ey,λ ∈ F .
2. If {λk} ↘ 0 ≤ |y| < 1, E ∈ F , then there is a subsequence {λk′} such

that Ey,λk′ → F ∈ F in the Hausdorff metric as λk′ → 0. Moreover, F ⊂ Σ∗
for some Σ∗ as defined in Lemma 1.5; and Σ∗ is a cone.
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Remark 1.9. Letting µ ∈ M and Σ = π(µ), we consider FΣ, the clo-
sure of

{E ∈ F : E ⊂ Σy,λ for some |y| < 1, 0 < λ < 1− |y|}

under the Hausdorff metric. Note that FΣ is a compact subset of F . Indeed, if
F ∈ FΣ then there are a sequence of yk, |yk| < 1, a sequence 0 < λk < 1− |yk|
and a sequence Ek ⊂ Σyk,λk such that Ek → F in the Hausdorff metric.
Suppose µ is the weak limit of µi; here µi = |∇ui|2dx such that E(ui, B1+δ0)
≤ Λ, for some Λ > 0. Define vi,k by

vi,k(x) = ui(yk + λkx), x ∈ B1+δ0 .

Note that

|yk + λkx| ≤ |yk|+ λk|x|
< |yk|+ (1− |yk|)(1 + δ0)

≤ 1 + δ0,

and thus the vi,k’s are well-defined. Moreover,

E(vi,k, B1+δ0) ≤ λ2−n
k

∫
B(1+δ0)λk

(yk)
|∇ui|2dx

≤ (1 + δ0)n−2 ((1 + δ0)λk)
2−n

∫
B(1+δ0)λk(yk)

|∇ui|2dx

≤ (1 + δ0)n−2δ2−n
0 Λ by the energy monotonicity (1.7).

Thus for each fixed k,

µi,k = |∇vi,k|2dx ⇀ µyk,λk

as i→∞. By taking subsequences as necessary, we may also assume

µyk,λk ⇀ µ∗ as k →∞.

Then, by the diagonal sequence method, we may obtain a sequence {ik} → ∞
such that

µik,k ⇀ µ∗ as k →∞.

As in Lemma 1.6, we may write µ∗ = |∇u∗|2dx+ν∗. Moreover, F ⊂ Σ∗ by the
definition. That is F ∈ F . We define a subset of R+ by

(1.16) O = {s ∈ R+ : Hs(F ) = 0 for every F ∈ FΣ}.

Then O is an open subset of R+ (cf. [W]).

Proof of Lemma 1.7. Part (i) of the lemma is obvious. Indeed, if
{µi} ∈ HΛ such that

µi = |∇ui|2dx ⇀ µ ∈M,
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then ui,y,λ(x) = ui(y + λx), for every x ∈ B1+δ0 = Ω, i = 1, 2, . . ., |y| < 1,
0 < λ < 1− |y|. Note that

|y + λx| < |y|+ (1− |y|)(1 + δ0) ≤ 1 + δ0;

thus ui,y,λ is well-defined. Since∫
B1+δ0

|∇ui,y,λ|2dx = λ2−n
∫
Bλ(1+δ0)(y)

|∇ui|2dx ≤
(

1 + δ0

δ0

)n−2

Λ,

we have ui,y,λ ∈ HΛ̃,

Λ̃ =
(

1 + δ0

δ0

)n−2

Λ,

for each i = 1, 2, . . . . Since

|∇ui,y,λ|2dx ⇀ µy,λ

by definition, we thus have µy,λ ∈M.

To prove part (ii), let {ui} ∈ HΛ be such that |∇ui|2dx ⇀ µ ∈ M. For
any sequence {λk} ↘ 0, and for |y| < 1, one has

lim
k→∞

µy,λk(BR) ≤ Rn−2Θ(µ, y)

(cf. the proof of Lemma 1.6), for every R > 0. Hence we obtain a subsequence
{λk′} so that

µy,λ′
k
⇀ η

as Radon measures on Rn. Note that if η is restricted to B1+δ0 , then η ∈ M.
Indeed, since

|∇ui,y,λ′
k
|2dx ⇀ µy,λ′

k
as i→∞,

and µy,λ′
k
⇀ η as k → ∞, we may obtain (by the diagonal sequence method)

a sequence ik →∞ such that

|∇uik,y,λk |2dx ⇀ η.

By the monotonicity of r2−nµ(Br(y)), for 0 < r < δ0, we see that

r2−nη(Br(0)) ≡ Θ(µ, y) for all r > 0.

Let vk = uik,y,λk ⇀ v so that

η = |∇v|2dx+ ν, ν(x) = Θ(x)Hn−2bΣ.

Applying (1.6) to vk, we get for a.e. 0 < r < R <∞,

(1.17)
∫
BR(0)/Br(0)

∣∣∣∣∂vk∂ρ
∣∣∣∣2 ρ2−ndx→ R2−nη(BR)− r2−nη(Br) = 0.

Thus, in particular, ∂v/∂ρ = 0.
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Let φ : Sn−1 → R+ be a smooth function, and let ψ ∈ C∞0 (0, 1) be such
that ∫ 1

0
ψ(t)dx = 1, and ψ ≥ 0.

We consider, for 0 < a <∞, 0 < ε¿ a, the functions

(1.18) E(vk, φ, a, ε) =
∫ ∞

0

∫
Sn−1

[
(r + a)2

∣∣∣∣∂vk∂r
∣∣∣∣2 +

∣∣∣∣ ∂∂θvk
∣∣∣∣2
]

(r+a, θ)·Odθdr;

here
O = φ(θ) · ψε(r) , ψε(r) =

1
ε
ψ

(
r

ε

)
.

Then a direct computation using the identity

Div[δi,j |∇vk|2 − 2DivkDjvk] = 0

in the sense of distributions (cf. (1.3) or more precisely the equivalent version
of it in the polar coordinates system), we obtain

d

da
E(vk, φ, a, ε)(1.19)

= 2
d

da

∫ ∞
0

∫
Sn−1

(r + a)2

∣∣∣∣∂vk∂r
∣∣∣∣2 (r + a, θ) · φ(θ) · ψε(r)dθdr

+2(n− 2)
∫ ∞

0

∫
Sn−1

(r + a)
∣∣∣∣∂vk∂r

∣∣∣∣2 (r + a, θ) · φ(θ)ψε(r)dθdr

−
∫ ∞

0

∫
Sn−1

2
∂

∂r
vk ·

∂

∂θ
vk(r + a, θ)

∂

∂θ
φ(θ)ψε(r)dθdr.

Integrating both sides of (1.19) with respect to a ∈ (ρ,R), we then get

(1.20)

E(vk, φ,R, ε)− E(vk, φ, ρ, ε)

=
∫ ∞

0

∫
Sn−1

2(r + a)2

∣∣∣∣∂vk∂r
∣∣∣∣2 (r + a, θ) · φ(θ) · ψε(r)dθdr

∣∣∣∣∣
a=R

a=ρ

+
∫ ∞

0

∫ R

ρ

∫
Sn−1

2(n− 2)(r + a)
∣∣∣∣∂vk∂r

∣∣∣∣2 (r + a, θ) · φ(θ) · ψε(r)dθdadr

−
∫ ∞

0

∫ R

ρ

∫
Sn−1

2
∂

∂r
vk

∂

∂θ
vk(r + a, θ)φθ(r)ψε(r)dθdadr.

Now letting ε→ 0+, we obtain for a.e. 0 < ρ < R <∞, that∫
Sn−1

[
R2

∣∣∣∣∂vk∂r
∣∣∣∣2 +

∣∣∣∣∂vk∂θ
∣∣∣∣2 (R, θ)

]
φ(θ)dθ(1.21)

−
∫
Sn−1

[
ρ2

∣∣∣∣∂vk∂r
∣∣∣∣2 (ρ, θ) +

∣∣∣∣∂vk∂θ
∣∣∣∣ (ρ, θ)

]
φ(θ)dθ



    

STATIONARY HARMONIC MAPS 799

= 2
∫
Sn−1

R2

∣∣∣∣ ∂∂rvk
∣∣∣∣2 (R, θ)φ(θ)dθ+

−2
∫
Sn−1

ρ2

∣∣∣∣ ∂∂rvk
∣∣∣∣2 (ρ, θ)φ(θ)dθ

+
∫ R

ρ

∫
Sn−1

2(n− 2)r
∣∣∣∣ ∂∂rvk

∣∣∣∣2 (r, θ)φ(θ)dr

−
∫ R

ρ

∫
Sn−1

2
∂

∂r
vk
∂vk
∂θ

(r, θ)
∂φ

∂θ
dθ)dr.

Note that

|∇vk|2dx =

(
r2

∣∣∣∣∂vk∂r
∣∣∣∣2 +

∣∣∣∣∂vk∂θ
∣∣∣∣2
)

(r, θ)rn−3dθdr = rn−3dσk(r, θ)dr;

then the above identity yields

(1.22)
∫
Sn−1

φ(θ)dσk(R, θ)−
∫
Sn−1

φ(θ)dσk(ρ, θ)

is equal to the right-hand side of (1.21).
Now when k → ∞, (1.22) goes to zero by (1.17) and (1.21), in the sense

of distributions on (0,∞). Since |∇vk|2dx ⇀ dη, one has

r3−n|∇vk|2dx ⇀ r3−ndη

on (0,∞)× Sn−1. That is,

dσk(r, θ)dr ⇀ r3−ndη(r, θ).

On the other hand, (1.22) yields also

dσk(r + a, θ)dr = dσk((r + a)θ)d(r + a) ⇀ r3−ndη(r, θ)

for any a > 0. That is, r3−ndη(r, θ) is translation invariant in r. We thus
obtain

r3−ndη(r, θ) = dσ(θ)dr,

or equivalently
dη(r, θ) = r3−ndrdσ(θ)

for some Radon measure dσ(θ) on Sn−1. Note that dσ(θ) can also be obtained
from the weak-limit of dσk(r, θ), for some suitable r′ks, when k →∞.

Another way to see this is to integrate (1.22) again, and then let k →∞
to obtain

(1.23)
∫
BR+δ/BR−δ

φ2(θ)r3−ndη(r, θ) =
∫
Bρ+δ/Bρ−δ

φ2(θ)r3−ndη(r, θ),

for 0 < ρ < R <∞, and for a.e. δ ∈ (0, R). Note that

η(Br)
rn−2

= Θ(µ, y),



      

800 FANG-HUA LIN

for all r > 0, implies in particular that

η(BR+δ)− η(BR−δ)
δ

≤ C0Θ(µ, y)

for all 0 < δ ¿ r <∞. This combines with (1.23) to imply that

(1.24)
η(AR,δ)
Rn−3

=
η(Aρ,δ)
ρn−3

+O(δ2),

for a.e. δ such that 0 < δ ¿ ρ < R <∞. When

Ar,δ = {tA : r − δ ≤ t ≤ r + δ}

and A is a Borel subset of Sn−1, it is easy to derive η0,λ ≡ η, for λ > 0. This
completes the proof of (ii).

Part (iii) simply follows from the diagonal sequence method. To prove
(iv), we observe that (a) is a direct consequence of the definitions. For the
statement (b), we let kj → ∞ be any sequence; then by Blaschike’s selection
principle, we may assume

π(µkj )→ F,

for some closed subset F of B1+δ0 in the Hausdorff metric. It is then clear that

π(µkj ) ∩B1 ⊂ {x ∈ B1+δ0 : dist(x, F ) < ε}

whenever kj is sufficiently large. It is therefore sufficient to verify that F ⊆
π(µ). Let x ∈ F ; then there is xkj ∈ π(µkj ) such that limxkj = x. Since
xkj ∈ π(µkj ) if and only if Θ(µkj , xkj ) > 0 if and only if Θ(µkj , xkj ) > ε0 (cf.
(1.12)) and since µkj (Br(xkj ))r

2−n is monotone in r, we obtain, via the fact
µkj ⇀ µ, that

µ(B2r(x))r2−n ≥ lim
kj
µkj (Br(xkj ))r

2−n ≥ ε0,

for every r > 0. Thus Θ(µ, x) > 0, and since

Θ(µ, x) > 0 ⇐⇒ Θ(µ, x) ≥ ε0 ⇐⇒ x ∈ π(µ),

we obtain the conclusion.

The proof of Lemma 1.8 is identical to the proof of (i) and (ii) of Lemma 1.7.
We would like now to state two important consequences of Lemma 1.7.

The first one is Federer’s dimension reducing principle which follows (cf. [Sim2,
Appendix A]).

Corollary 1.10. Subject to the same notations as in Lemma 1.7, we
have

(1.25) dimπ(µ) ≤ n− 2, for all µ ∈M.
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Here “dim” is Hausdorff dimension, so that (1.25) means

Hn−2+α(π(µ)) = 0 for all α > 0.

In fact, either π(µ) = φ for every µ ∈ M or there is an integer d ∈ [0, n − 2]
such that

dimπ(µ)) ≤ d for all µ ∈M,

and such that there is some µ ∈M and a d dimensional subspace L ⊆ Rn with

(1.26) µy,λ ≡ µ for all y ∈ L, λ > 0 and π(µ)) = L.

If d = 0, then π(µ)) is a finite set for each µ ∈M.

Remark 1.11. The statement (1.25) is a trivial consequence of Lemma
1.5. If d = n− 2 in the above statement, then for some µ ∈ M, Hn−2(Σ) > 0
and ν > 0. If d ≤ n − 3, then ν ≡ 0 for any µ ∈ M, and π(µ) = sing u. In
such a case, we have, for any sequence ui ∈ HΛ, ui ⇀ u, that ui → u strongly
in H1

loc(Ω, N). In other words, HΛ is pre-compact in H1
loc(Ω, N) if and only if

d ≤ n− 3.

We also note that if dimπ(µ) ≤ n − 3, for every µ ∈ M, the above
statement can be proved as in [SU].

Let µ ∈ M and let η be a tangent measure of µ at y in the sense that
η = w − limµy,λk , for some λk → 0. Then Θ(η, 0) = Θ(µ, y), η0,λ ≡ η. As a
consequence of the monotonicity of energy, hence the upper-semi continuity of
Θ(µ, y) as a function of y, we obtain

Θ(η, 0) = max{Θ(η, x) : x ∈ Rn}.

Let
Lη = {z ∈ Rn : Θ(η, 0) = Θ(z)}.

Then Lη is a linear subspace of Rn (possibly the trivial subspace {0}) and
ηz,1 = η, for z ∈ Lη.

The last fact follows from the similar arguments as in the proof of (ii) of
Lemma 1.7. (Cf. also [Sim3, Lemma 1.26].) Indeed, the following refinement
of Lemma 1.7 follows from the stratification theorem of Almgren [Alm].

Corollary 1.12. Let µ ∈ M and Σ = π(µ). Then Σ has the decompo-
sition

Σ = ∪dj=0Σj ,

for some d ≤ n− 2, where x ∈ Σ ∩Σj , if for any tangent measure η of µ at x,
dimLη ≤ j, and if there is a tangent measure η̃ of µ at x such that dimLη̃ = j.
Moreover, dim(Σj) ≤ j, for j = 0, 1, . . . , d (cf. [Sim]).
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Finally we have the following H1-compactness theorem for energy min-
imizing maps due to Schoen-Uhlenbeck, discussed at the beginning of this
section.

Proposition 1.13. Let {ui} ∈ HΛ be a sequence of energy-minimizing
maps such that ui ⇀ u in H1(Σ, N). Then ui → u in H1

loc(Ω, N).

Proof. Suppose not; then there would be a sequence of energy-minimizing
maps {ui} such that

|∇ui|2dx ⇀ µ = |∇u|2dx+ ν ∈M

with ν 6= 0, and hence Hn−2(π(µ)) > 0. Let M∗ be the subset of M which
consists of all weak limits of the sequence |∇ui|2dx with ui minimizing energy
in Ω. Then, one can check easily that Lemma 1.7 remains true for M∗. In
particular, there is

µ∗ = |∇u∗|2dx+ C∗H
n−2bRn−2 × [0] ∈M∗

by Corollary 1.10. Since µ∗,y,λ = µ∗, for all y ∈ Rn−2 × {0} and all λ > 0, u∗
must be a harmonic map from {0} × R2 into N with finite energy; also u∗ is
homogeneous of degree zero and thus is constant.

In other words,

µ∗ = C∗H
n−2b(Rn × {0}) ∈M∗

for some 0 < C∗ < ∞. Let {ui} be a sequence of energy-minimizing maps in
Bn−2

2 (0)×B2
2(0) = B such that

|∇ui|2(x)dx ⇀ µ∗

as Radon measures in B. Since

ui → c ≡ constant, strongly in H1
loc(B/R

n−2 × {0}),

one may easily construct a comparison map ũi such that ũi = ui on ∂B, and
that ũi = c on Bn−2

2−δ (0)×B2
2−δ(0) and ũi minimizes the energy on(

Bn−2
2 (0)\Bn−2

2−δ (0)
)
×B2

2(0) ∪Bn−2
2 (0)×

(
B2

2(0)\B2
2−δ(0)

)
subject to its Dirichlet boundary conditions. A direct computation then yields∫

B
|∇ũi|2dx ≤ C(n)δC∗.

By choosing δ suitably small, we obtain a contradiction as∫
B
|∇ũi|2dx ≥

∫
B
|∇ui|2dx→ C1(n)C∗.
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2. Rectifiability of defect measures

In the previous section we showed that, for any µ ∈M,

µ = |∇u|2dx+ ν, where ν(x) = Θ(x)Hn−2bΣ, ε0 ≤ Θ(x) ≤ C(µ) <∞,
for Hn−2-a.e. x ∈ Σ,

where u is a smooth harmonic map into N away from the concentration set Σ.
We shall call ν the defect measure associated with µ ∈M. The purpose of this
section is to show that ν is Hn−2-rectifiable. Thus Σ is an Hn−2-rectifiable set
of finite Hn−2-measure. The proof of this result is divided into three steps.

Step 1. Existence of weak tangent planes. We first observe that ν = µbΣ.
Indeed, one notices that for Hn−2-a.e. x ∈ Σ,Θu(x) = 0, and for any Hn−2-
measurable subset E of Σ with Hn−2(E) = 0, µ(E) = 0. The last fact follows
from the monotonicity of r2−n(Br(x)), 0 < r < δ0, and r2−nµ(Br(x)) ≤ C(µ),
for x ∈ Σ, 0 < r < δ0, for some positive constant C(µ) depending only on µ.
Therefore,

|∇u|2dxbΣ = 0, and ν = µbΣ
follows.

Next we note that the function Θ(µ, x), x ∈ Σ is Borel measurable (cf.
[Sim2]), in particular, Hn−2-measurable on Σ. Thus Θ(µ, x) is Hn−2 approxi-
mate continuous Hn−2 almost everywhere on Σ (cf. [F]). That is, for Hn−2-a.e.
x ∈ Σ, and for every ε > 0,

lim
r↘0

Hn−2({y ∈ Br(x) ∩ Σ : |Θ(µ, y)−Θ(µ, x)| > ε})
rn−2

= 0.

Lemma 2.1 (existence of weak-tangent planes). For Hn−2-a.e. x ∈ Σ,
and for δ > 0, there is a positive number rx > 0 such that if 0 < r < rx, then
there exists a (n− 2)-plane

V = V (x, r) ∈ GL(n, n− 2)

such that

spt(µbBr(x) ∩ Σ) ⊆ Vδ, or equivalently, ν(Br(x)\Vδ) = 0.

Here Vδ is the δr-neighborhood of V in Rn.

Corollary 2.2. For any δ1, δ2 ∈ (0, 1), there are a positive number r∗

and a subset E∗ of Σ with the following properties:

(a) Hn−2(Σ\E∗) < δ1.

(b) If x ∈ E∗, 0 < r < r∗, then there is V = V (x, r) ∈ GL(n, n− 2) such that

ν(Br(x)\Vδ2) = 0.
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Proof of Corollary 2.2. It is clear that if rx in Lemma 2.1 is the largest such
number that the conclusion of Lemma 2.1 remains true for the given x ∈ Σ,
then rx is a Hn−2-measurable function of Σ. The statement of Corollary 2.2
follows from the standard facts in measure theory.

Before proving Lemma 2.1, we note that Corollary 1.12 (from dimension
reducing arguments) implies that for Hn−2-a.e. x ∈ Σ, there is a tangent
measure η of µ such that ηz,λ = η, for all z ∈ Lη and λ > 0. Here Lη is
an (n − 2) dimensional subspace of Rn. It is clear that the defect measure
associated with η has to be supported in Lη. For otherwise the support of this
defect measure would contain an (n−1)-dimensional half-space and that would
contradict Lemma 1.5. Thus we derive from Corollary 1.12 the following:

(2.3) For Hn−2 a.e. x ∈ Σ, there is a sequence ri → 0 (this sequence may
depend on x) such that

ν(Bri(x)\Vδ) = 0

for all sufficiently large i. Here Vδ is a δri-neighborhood of some (n− 2)
dimensional plane V in Rn, 1 > δ > 0.

The conclusion of Lemma 2.1 is an improvement of (2.3) which says the
above is true for any sequence of {ri} ↘ 0 even though V may depend on the
sequence.

To prove Lemma 2.1 we need the following:

Lemma 2.4 (Geometric Lemma). Let x ∈ Σ be such that Θ(µ, x) ≥ ε0

and Θ(µ, y) is Hn−2 approximate continuous at x, for y ∈ Σ. Then there exists
a positive number rx such that, for each 0 < r < rx, there are n − 2 points
x1, . . . , xn−2 inside Br(x) ∩ Σ such that

(i) Θ(µ, xi) ≥ Θ(µ, x)− εr; for j = 1, 2, . . . , n− 2, here εr → 0 as r → 0+;

(ii) |x1| ≥ sr, and for any k ∈ {2, . . . , n− 2}, dist(xk, x+ Vk−1) ≥ sr, where
Vk−1 is the linear space spanned by {x1 − x, . . . , xk−1 − x},

where s ∈ (0, 1/2) depending only on n.

Proof. Since Θ(µ, y), y ∈ Σ is Hn−2-approximate continuous at x, there is
a positive function ε(r) defined for all r, 0 < r < rx such that

(2.1)
Hn−2({y ∈ Σ ∩Br(x) : |Θ(µ, y)−Θ(µ, x)| ≥ ε(r)})

rn−2
≤ s(n)

2
<

1
2

where s(n) is a positive number to be determined later, and where ε(r)→ 0+

as r → 0+.
We want to show there are n− 2 points x1, . . . , xn−2 inside the set

{y ∈ Σ ∩Br(x) : |Θ(µ, y)−Θ(µ, x)| < ε(r)}
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such that they satisfy the geometrical condition (ii) of Lemma 2.4.
Suppose the above were not true; then there would be sufficiently small

r’s such that one could not find n− 2 points inside the set

(2.2) {y ∈ Σ ∩Br(x) : |Θ(µ, y)−Θ(µ, x)| < ε(r)}.

Therefore, the set (2.2) is contained in an sr-neighborhood of some (n−3)-
dimensional plane L through x of Rn. Note that x belongs to the set (2.2).

In other words, for any y ∈ Bri(x) ∩ Σ, one has either

|Θ(µ, y)−Θ(µ, x)| ≥ ε(ri)

or y belongs to the sri neighborhood of Li ∩Bri(x), for a sequence of ri → 0+,
and some (n− 3)-dimensional planes Li through x.

Now we wish to estimate µ(Bri(x) ∩ Σ). It is obvious, for ri small, that

µ(Bri(x) ∩ Σ) ≥ Θ(µ, x)
2

rn−2
i

by the definition of density. On the other hand, the upper-semicontinuity of
Θ(µ, y) implies for all ri small enough that

Θ(µ, y) ≤ 2Θ(µ, x), for y ∈ Bri(x).

We thus have, in particular, that

(2.3) Θ(µ, y) ≤ 2Θ(µ, x) for Hn−2-a.e. y ∈ Σ ∩Bri(x).

Thus

µ({y ∈ Σ ∩Bri(x) : |Θ(µ, y)−Θ(µ, x)| ≥ ε(ri)}(2.4)

≤ 2Θ(µ, x)Hn−2({y ∈ Σ ∩Bri(x) : |Θ(µ, y)−Θ(µ, x)| ≥ ε(ri)})
≤ 2Θ(µ, x)(s(n)/2)rn−2

i

= s(n)Θ(µ, x)rn−2
i .

Next we may cover an sri-neighborhood of Li∩Bri(x) by C(n)/sn−3 balls
of radius less than or equal to sri because Li is an (n − 3)-dimensional plane
through x. Let {Bj}Nj=1 be such a cover with N ≤ C(n)/sn−3 and

Bj = Bris(yj), yj ∈ Bri(x).

Then

µ(sri neighborhood of Li ∩Bri(x)) ≤
N∑
j=1

µ(Bj).

To estimate the last term, we observe that there is δx > 0 such that

r2−nµ(Br(x)) ≤ 3
2

Θ(µ, x)



    

806 FANG-HUA LIN

for 0 < r < δx. If ri ¿ r = δx, then

µ(Bj) = (ris)n−2 · µ(Bris(yi))
(ris)n−2

≤ (ris)n−2µ(Br−ri(yi))
(r − ri)n−2

≤ (ris)n−2µ(Br(x))
rn−2

(
r

r − ri

)n−2

≤ 2(ris)n−2Θ(µ, x).

Therefore,

µ((sri neighborhood of Li ∩Bri(x)) ≤ C(n)
sn−3

· 2(r, s)n−2Θ(µ, x)(2.5)

= 2C(n)s(n)rn−2
i Θ(µ, x).

By combining (2.4), (2.5) we get

µ(Bri(x) ∩ Σ) ≤ s(n)(2C(n) + 1)Θ(µ, x)rn−2
i < 1/2Θ(µ, x)rn−2

i

if s(n) < (4C(n) + 2)−1. The last conclusion is contrary to

µ(Bri(x) ∩ Σ) ≥ Θ(µ, x)
2

rn−2
i .

This proves Lemma 2.4.

Proof of Lemma 2.1. Let x ∈ Σ be such that Θu(x) = 0, Θ(µ, x) ≥ ε0, and
that Θ(µ, y) is Hn−2 approximate continuous at x. Suppose, for some δ > 0,
that there is a sequence {ri} ↘ 0 such that

ν(Bri(x)\V i
δ ) > 0,

for i = 1, 2, . . ., and for any n − 2 dimensional plane V i through x. Here V i
δ

is the δri-neighborhood of V i.
For each i sufficiently large, we may find, by Lemma 2.4, (n − 2) points

xi1, . . . , x
i
n−2 inside Σ ∩Bri(x) such that

Θ(µ, xij) ≥ Θ(µ, x)− εri for j = 1, . . . , n− 2 and i = 1, 2, . . . ,

and such that

|xi1| ≥ sri, dist(xij , x+ V i
j−1) ≥ sri for j = 2, . . . , n− 2.

Here
V i
j−1 = span{xi1 − x, . . . , xij−1 − x}.

Let

ξij =
xij − x
ri

, j = 1, . . . , n− 2 and µi = µx,ri = |∇ux,ri |2(y)dy + νx,ri .

Then, by taking a subsequence if needed, we have ξij → ξj , µi → µ∗, and νi →
ν∗ as i→∞. Note that ν∗ = µ∗ as Θu(x) = 0 implies that |∇ux,ri(y)|2dy ⇀ 0.
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Since ξij ∈ π(µx,ri), and since for any ε > 0, there is i(ε) such that i ≥ i(ε)
implies, by Lemma 1.7, π(µx,ri) ⊆ ε-neighborhood of π(µ∗), we have ξj ∈
π(µ∗). We also note that

Θ(µ, xij) ≥ Θ(µ, x)− εri ,
implying that

r2−nµ(Br(xij)) ≥ Θ(µ, x)− εri , for all r > 0.

Thus
r2−nµ∗(Br(ξj)) ≥ Θ(µ, x) for all r > 0.

In particular,
Θ(µ∗, ξj) ≥ Θ(µ, x).

Finally,

(2.6) Θ(µ∗, 0) = Θ(µ, x) ≡ max{Θ(µ∗, y) : y ∈ Rn}.
Indeed, for any y ∈ Rn, choose r > 0 such that

r2−nµ∗(Br(y)) = r2−n lim
i
µi(Br(y)).

Since

r2−nµi(Br(y)) = (rri)2−nµ(Brir(x+ riy)) ≤ ρ2−nµ(Bρ(x+ riy))

≤ (ρ+ ri|y|)2−n)µ
(
Bρ+ri|y|(x)

)
·
(

ρ

ρ+ ri|y|

)2−n
.

Here ρ > 0 is any fixed number such that ρ > rri. When i → ∞, ri → 0,
ri|y| → 0, then monotonicity implies

r2−nµ∗(Br(y) ≤ Θ(µ, x), for all y ∈ Rn, r > 0.

On the other hand, Θ(µ∗, 0) = Θ(µ, x) follows from the definitions. We remark:

(2.7) For Hn−2a.e.y ∈ π(µ∗),Θ(µ∗, y) = Θ(µ, x)

and

(2.8) π(µi)→ π(µ∗)

in the Hausdorff metric.
We shall postpone the proofs of (2.7) and (2.8) as these statements alone

do not imply that π(µ∗) is an n−2 dimensional plane (cf. [P]). In the following
part of the proof of Lemma 2.1 we do not use (2.7) and (2.8).

Since µ∗ = ν∗ ∈M, there is a sequence of maps ui ∈ HΛ, for some Λ such
that

|∇ui|2dx ⇀ µ∗ = ν∗.

Thus ui converges strongly to a constant in H1
loc(Ω\π(µ∗)).
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By an argument similar to the proof of (2.6),

r2−nµ∗(Br(0)) = Θ(µ∗, 0) = Θ(µ∗, ξj) = r2−nµ∗(Br(ξj))

for r > 0 and j = 1, . . . , n− 2. We apply the monotonicity formula (1.6) to ui
at 0, ξj , j = 1, . . . , n− 2, to obtain
(2.9)

2
∫
BR(0)\Bσ(0)

∣∣∣∣∂ui∂ρ

∣∣∣∣2 ρ2−ndx = R2−n
∫
BR(0)

|∇ui|2dx− σ2−n
∫
Bσ(0)

|∇ui|2dx

tends, as i→∞, to

R2−nµ∗(BR(0))− σ2−nµ∗(Bσ(0)) = 0,

for a.e. 0 < σ < R <∞, and that

(2.10) 2
∫
Bρ(ξj)\Bσ(ξj)

|Rξjui,Rξj |
2

|Rξj |2
dx→ 0,

as i→∞, for j = 1, . . . , n− 2, and for a.e. 0 < σ < ρ <∞.
The geometrical property of ξ1, . . . , ξn−2 as described in (ii) of Lemma 2.4

implies that span{ξ1, . . . , ξn−2} is an (n− 2)-dimensional subspace of Rn, say
Rn−2 × {0}. Then (2.9) and (2.10) imply

(2.11)
∫
B1

∣∣∣∣ ∂ui∂xk

∣∣∣∣2 dx→ 0 as i→∞, for k = 1, . . . , n− 2.

Let φ(x) ∈ C∞0 (Bε(0)); then consider

Fi(a) =
∫
B1

|∇ui|2(x+ a)φ2(x)dx, for a ∈ B1−ε(0).

Using the identity (1.3), we have, for k = 1, . . . , n− 2,

∂Fi
∂ak

=
∫
B1

(
∂

∂xk
|∇ui|2(x+ a)

)
φ2(x)dx(2.12)

= −2
∫
B1

n∑
l=1

∂

∂xl

(
∂ui
∂xl

∂ui
∂xk

)
(x+ a)φ2(x)dx

= 2
n∑
l=1

∫
B1

∂ui
∂xl

∂ui
∂xk

(x+ a)
∂

∂xl
φ2(x)dx.

Here we have used the fact that

(2.13)
∂

∂al

∫
B1

f(x+ a)φ2(x)dx =
∫
B1

∂

∂xl
f(x+ a)φ2(x)dx,

for any φ ∈ C∞0 (Bε), a ∈ B1−ε(0) and f ∈ L1(B1). The right-hand side in
(2.13) should be explained in the sense of distributions.
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It is obvious, since (2.11), that the right-hand side of (2.12)→ 0 as i→∞,
in the sense of distributions. Therefore

(2.14) µ∗a,1(φ) =
∫
B1

φ2(x)dµ∗(x+ a)

is independent of the variables a1, . . . , an−2.
Since φ is arbitrary, we have

µ∗(x1, . . . , xn−2, xn−1, xn) ≡ µ∗(xn−1, xn).

Thus u∗ = Θ(µ, x)Hn−2b(Rn−2 × {0}) follows from the above fact and

Θ(µ, x) = rn−2µ∗(Br(0)), for all r > 0.

Finally, since νi → µ∗, the energy density estimate for νi implies that

νi
(
B1(0)\V 0

δ

)
= 0

for all large i. Here V 0
δ is the δ-neighborhood of Rn−2 × {0} in Rn. This

contradicts the initial assumption, and thus Lemma 2.1 is proved.

Let us now prove these two additional facts, (2.7) and (2.8), though they
were not needed in the proof of Lemma 2.1.

Proof of (2.8). Lemma 1.7 implies that, if π(µi) → E in the Hausdorff
metric, then E ⊆ π(µ∗). Suppose x0 ∈ π(µ∗)\E; since E is closed,

Bδ(x0) ∩ Eδ = ∅

for some δ > 0. Here Eδ is the δ-neighborhood of E. Since π(µi) ⊆ Eδ, for i
large, and since |∇ux,ri |2dx ⇀ 0, we have

µi(Bδ(x0))→ 0 as i→∞.

On the other hand,

x0 ∈ π(µ∗), µ∗(Bδ(x0)) ≥ ε0δ
n−2.

The final estimate contradicts the claim µi ⇀ µ∗. Thus E = π(µ∗).

Proof of (2.7). We have already shown Θ(µ∗, y) ≤ Θ(µ, x), for Hn−2-a.e.
y ∈ Rn. Next, when y ∈ π(µ∗),

Θ(µ∗, y) = lim
ρ↘0

ρ2−nµ∗(Bρ(y))

implies that, for any ε > 0, there is ry > 0 such that

ε0 ≤ Θ(µ∗, y) ≤ ρ2−nµ∗(Bρ(y)) ≤ Θ(µ∗, y) + ε,

for all 0 < ρ < ry. Let 0 < σ ¿ ρ < ry, such that

σ2−nµi(Bσ(y))→ σ2−nµ∗(Bσ(y)).
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Then one has
σ2−nµi(Bσ(y)) ≥ ε0

2
for large i. On the other hand, for large i, the µi measure of the set

{z ∈ BR(0) | Θ(µi, z) ≤ Θ(µ, x)− ε}

as i→∞, goes to zero for all ε > 0 and R > 0 because of the fact that Θ(µ, ·)
is approximate continuous at x. Therefore, there is yi ∈ Bσ(y) such that

Θ(µi, yi) ≥ Θ(µ, x)− ε

and hence
((ρ− σ)2−nµi(Bρ−σ(yi)) ≥ Θ(µ, x)− ε.

This implies

Θ(µ, x)− ε ≤ (ρ− σ)2−nµi(Bρ(y))→ (ρ− σ)2−nµ(Bρ(y))

≤
(

ρ

ρ− σ

)2−n
(Θ(µ∗, y) + ε).

Since ε, σ > 0 is arbitrary,

Θ(µ, x) ≤ Θ(µ∗, y) for y ∈ π(µ∗).

Step 2. Null projections.

Lemma 2.5. If E ⊂ π(µ) is a purely (n − 2)-unrectifiable set, for some
µ ∈M, then

Hm(PV (E)) = 0, for any V ∈ GL(n, n− 2).

Here PV is the orthogonal projection of Rn onto V .

Proof. Let 0 < ε < 1/8. As in Corollary 2.2, we can find a positive number
r∗ and a subset E∗ ⊂ E with the properties:

(a) Hn−2(E\E∗) < ε;
(b) If x ∈ E∗, 0 < r < r∗, then there is

W = W (x, r) ∈ GL(n, n− 2) such that E∗ ∩ (Br(x)\Wε) = ∅,

where Wε is the εr-neighborhood of W ;

(c) µ(E ∩Br(x)) ≥ Θ(µ, x)
2

rn−2 ≥ ε0

2
rn−2.

Since E is purely unrectifiable it follows from the characterization of rec-
tifiable sets (cf. [Sim] or [F, 3.3.5]) that for Hn−2-a.e. x ∈ E∗, there are points
y ∈ E∗ arbitrarily close to x such that

| PV (y − x) |≤ ε

4
|y − x|;
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i.e., y − x is almost orthogonal to V .
Suppose |y−x| ∼ r; then property (b) implies that, since y ∈ Br(x)∩Wε,

Hn−2(PV (Br(x) ∩Wε)) ≤ 4εrn−2.

Thus

(2.15) Hn−2(PV (Br(x) ∩ E∗)) ≤ 4εrn−2.

We now may cover Hn−2- a.e. point in E∗ by balls Br(x) such that (c) and
(2.15) are valid. Note that it is a fine cover (i.e., r can be arbitrarily small).
Thus the Vitali covering theorem [F, 2.8.15] says that we can cover almost all
of E∗ with disjoint balls {Brj (xj)} for which both (c) and (2.15) are valid and
xj ∈ E∗. Therefore

Hn−2(PV (E∗)) ≤
∞∑
j=1

Hn−2(PV (E∗ ∩Brj (xj))) ≤ 4ε
∞∑
j=1

rn−2
j

≤ 4ε
2
ε0

∞∑
j=1

µ(E ∩Brj (xj)) ≤
8ε
ε0
µ(E).

On the other hand

Hn−2(PV (E\E∗)) ≤ Hn−2(E\E∗) < ε,

and thus

Hn−2(PV (E)) ≤ ε
(

1 +
8µ(E)
ε0

)
.

Since ε > 0 is arbitrary, we obtain the conclusion.

Step 3. Positive projection density.

Lemma 2.6. If µ ∈M, µ = |∇u|2 + ν, π(µ) = Σ, then

lim
r→0+

sup
V ∈GL(n,n−2)

Hn−2(PV (Σ ∩Br(x)))
α(n− 2)rn−2

≥ 1
2

for Hn−2-a.e. x ∈ Σ.

Proof. Obviously we may assumeHn−2(Σ) > 0 and hence ν > 0; otherwise
there is nothing to prove. As before, we let x ∈ Σ be such that Θu(x) = 0,
Θ(µ, x) ≥ ε0 and Θ(µ, y) is Hn−2-approximate continuous, for y ∈ Σ, at x.
Suppose for such x, Lemma 2.6 is not true; then there would be a sequence
{ri} ↘ 0 such that

(2.16) lim
ri→0+

sup
V ∈GL(n,n−2)

Hn−2(PV (Σ ∩Bri(x)))
α(n− 2)rn−2

i

<
1
2
.

By taking subsequences if necessary, we obtain from Lemma 2.1 that

(2.17) µx,i ⇀ µ∗, νx,i ⇀ ν∗.
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Also, |∇ux,ri |2(y)dy ⇀ 0 as Radon measures in B2. Here

µ∗ = ν∗ = Θ(µ, x)Hn−2b(Rn × {0}).

For each i = 1, 2, . . . , we may find a sequence of stationary harmonic maps
{ui,j}∞j=1 in B2 such that

|∇ui,j |2(y)dy ⇀ νx,i + |∇ux,ri |2(y)dy as j →∞.

Let

τi,j = |∇Tui,j |2dy =
n−2∑
k=1

∣∣∣∣ ∂∂yk ui,j
∣∣∣∣2 dy;

then by taking subsequences of j (for each fixed i if needed), we have τi,j ⇀ τi
as Radon measures in B2. We claim τi(B1)→ 0 as i→∞. For otherwise, we
may assume (after choosing a subsequence of {i})

τi(B1) ≥ δ0 > 0, for all i.

Thus, for each i, there is j(i) such that

τi,j(B3/2) ≥ δ0

2
for all j ≥ j(i), i = 1, . . . .

On the other hand, since

|∇ui,j |2(y)dy ⇀ µx,ri as j →∞ and µx,ri ⇀ µ∗ as i→∞,

we may find a suitable diagonal subsequence

|∇ui,j |2(y)dy ⇀ µ∗ as i→∞.

Here j = j(i). Then, from the proof of Lemma 2.1 (cf. (2.11)) we have τi,j ⇀ 0
as Radon measures in B3/2. This contradicts the fact

τi,j(B3/2) ≥ δ0

2
for all j ≥ j(i) and i = 1, 2, . . . .

Therefore we obtain the following situation: τi,j ⇀ τi as j → ∞ for each
i, τi ⇀ 0 as i→∞ and thus for all i suitably large, say i ≥ i0,

τi(B3/2) ≤ δ.

Here δ = δ(n,Θ(µ, x)) is a small number to be chosen later. Hence, for i ≥ i0,
and j ≥ j(i), one has

(2.18) τi,j(B3/2) ≤ 2δ.

Next we consider the following functions of

a ∈ Rn−2 × {0}, Fi,j(a, ε), i, j = 1, 2, . . . ,
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defined by

(2.19) Fi,j(a, ε) =
∫
Bn2 (0)

|∇ui,j |2(a+ y)ψε(y)φ2(y)dy.

Here

φ(y) = φ(yn−1, yn) ∈ C∞0 (B2
2(0)), ψε(y) =

1
εn−2

ψ

(
y

ε

)
,

0 ≤ ψ(y) = ψ(y1, . . . , yn−2) ∈ C∞0 (Bn−2
1 (0))

with ∫
Bn−2

1 (0)
ψ(y1, . . . , yn−2)dy1 . . . dyn−2 = 1, and 0 < ε¿ 1.

Let ε be fixed; then Fi,j(a, ε) is a smooth function of a ∈ Bn−2
2−ε (0)× {0}.

Moreover, by (2.12) and (2.13), we have, for j ≥ j(i), that

(2.20)
∂

∂ak
Fi,j(a, ε) = 2

n∑
l=n−1

∫
Bn2 (0)

(
∂ui,j
∂yl

∂ui,j
∂yk

)
(y + a) ·

(
∂

∂yl
φ2
)

(y)ψε(y)dy

− 2
n−2∑
l=n

∂

∂al

∫
Bn2 (0)

(
∂ui,j
∂yl

∂ui,j
∂yk

)
(y + a)φ2(y)ψε(y)dy.

Note that it is important not to differentiate ψε as we should let ε→ 0 below.
After omitting the indices i, j and the dependence on ε, we may rewrite (2.20)
as

(2.21) gradF (a) = ~f(a) + divG(a), for a ∈ Bn−2
2−ε (0),

with

(2.22) ‖~f‖+ ‖G‖ ≤ C(n)δ,

whenever j ≥ j(i), ‖φ‖C1 ≤ 1 in (2.20). Here δ = δ(n,Θ(x)) is as given in
(2.18), and ‖ · ‖ denotes the L1 norm on B2−ε.

Now we are in the position of applying the following strong constancy
lemma of Allard [All]. Its proof is quite elementary (cf. also (2.11)–(2.14)).

Lemma 2.7. Suppose F, ~f and G are smooth on B1−2ε, 0 < ε < 1/8, and
if (2.21) and (2.22) are valid, then, for any δ1 > 0, there is a δ0 that depends
on δ1, ‖F‖ such that

‖F − c‖L1(B3/2) ≤ δ1 whenever δ ≤ δ0.

We apply Lemma 2.7 to conclude that for each Fi,j(a, ε) with j ≥ j(i) and
0 < ε¿ 1, there is a constant Cij(ε) such that

(2.23) ‖Fij(a, ε)− Ci,j(ε)‖L1(B3/2) ≤ C(n, δ) (C(n, δ)→ 0+ as δ → 0+).
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As ε→ 0+, we note that Fij(a, ε)→ Fij(a), and

Fij(a) =
∫
B2

2(0)
|∇ui,j |2(a1, a2, . . . , an−2, yn−1, yn)φ2(yn−1, yn) · dyn−1dyn,

in L1(Bn−2
2 (0)). We thus conclude from (2.23) that

(2.24) ‖Fij(a)− Cij‖L1(B3/2) ≤ C(n, δ), for some constant Cij .

Note that Cij may depend on φ. But if φ = 1 for |(yn−1, yn)| ≤ 1/2 and φ = 0
if |(yn−1, yn)| ≥ 1, then since sptνi → Rn−2×{0} in the Hausdorff metric, and
νi ⇀ µ∗, we have Cij ∼= Θ(µ, x) for all large i and all j ≥ j(i).

To complete the proof of Lemma 2.6, we need the final ingredient (cf.
[E2]).

Lemma 2.8 (slicing measures). Let µ be a finite, nonnegative Radon
measure on Rn+m. We denote by σ the projection of µ onto Rn; that is,
σ(E) = µ(E × Rm) for each Borel set E ⊂ Rn. Then, for σ-a.e. x ∈ Rn there
is a probability measure νx on Rm, such that

(i) the mapping

x→
∫
Rm

f(x, y)dνx(y)

is σ-measurable and

(ii)
∫
Rn+m

f(x, y)dµ(x, y) =
∫
Rn

(∫
Rm

f(x, y)dνx(y)
)
dσ(x)

for each bounded continuous f .

Let

Y1 = (y1, . . . , yn−2), Y2 = (yn−1, yn), f(Y1, Y2) = ζ2(Y1)φ2(Y2),

where ζ ∈ C∞0 (B2
3/2(0). We apply the above lemma to each of the following

measures: |∇ui,j |2(y)dy, νi, and |∇ux,ri |2dy to obtain (here i is fixed)∫
Bn−2

2 (0)
Fij(Y1)ζ2(Y1)dY1

converges as j →∞ to∫
Bn−2

2 (0)
ζ2(Y1)dσi(Y1) +

∫
Bn−2

2

ζ2(Y1)εi(Y1)dY1.

Here
εi(Y1) =

∫
Bn−2

2

|∇ux,ri |2(Y1, Y2)φ2(Y2)dY2,
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and σi is the projection of νi on Rn−2 × {0}. Without loss of generality, we
may assume Ci = limj→∞Cij exists. The above conclusion and (2.24) yield
the following identity:

(2.25) dσi(Y1) = CidY1 − εi(Y1) + dri(Y1).

Here dri(Y1) is a signed measure whose total variation measure on B3/2 is
bounded (cf. (2.24)) by C(n, δ). Also note that

‖εi(Y1)‖L1(B3/2) ≤ δ

for large i. If we choose δ = δ(n,Θ(x)) at the beginning so small that

δ + C(n, δ) <
Θ(µ, x)

4
,

then, because Ci → Θ(µ, x) as i→∞, (2.25) implies that

PRn−2×{0}(sptνi ∩Bn
1 (0))

contains at least half of Bn−2
1 (0). That is, for all large i,

Hn−2(PRn−2×{0}(Σ ∩Bri(x))

α(n− 2)rn−2
i

≥ 1
2
.

This contradicts (2.16).

Proof of Theorem C. Let µ ∈M, π(µ) = Σ. Then Lemma 1.5 implies that
Hn−2(Σ) ≤ C(µ) < ∞. By the structure theorem of Federer [F, Chap. 3], we
may write Σ = E ∪R where R is a rectifiable set and E is a purely unrectifiable
set. Naturally if Hn−2(E) = 0, we have nothing to prove. If Hn−2(E) > 0,
then Step II above implies Hn−2(PV (E)) = 0 for each V ∈ GL(n, n − 2).
However, Step 3 yields, for a.e. x ∈ E,

lim
r→0

sup
V ∈GL(n,n−2)

Hn−2(PV (E ∩Br(x)))
α(n− 2)rn−2

≥ 1
2
.

This is clearly impossible. Thus the conclusion of Theorem C is valid.

3. Interior gradient estimates

In Section 1 we proved that if {ui} ∈ HΛ such that ui ⇀ u weakly in
H1(Ω, N), and

µi = |∇ui|2dx ⇀ µ = |∇u|2dx+ ν,

then ui → u in H1
loc(Ω, N) strongly whenever Π(µ) = Σ is an Hn−2-measure

zero set, i.e. ν = 0. We now prove the following:
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Lemma 3.1. Suppose for some µ ∈ M, Σ = Π(µ), that Hn−2(Σ) > 0.
Then there exists a nonconstant, smooth harmonic map from S2 into N .

Remark 3.2. Suppose V : S2 → N is a smooth, nonconstant harmonic
map. By composing with conformal maps of S2, we may find families of smooth
harmonic maps {Vλ}λ>0 from S2 into N such that

|∇Vλ|2dx ⇀ c0δp, as λ→ 0+

for some p ∈ S2, c0 > 0. In this way, one may find, in particular, a sequence of
smooth harmonic maps {Vk} such that

Vk : B2
2(0)×Bn−2

2 (0)→ N

with
Vk(x) = Vk(x1, x2), and |∇Vk|2dx ⇀ c0H

n−2bΣ.
Here Σ = {0}×Bn−2

2 (0). Therefore, by Lemma 3.1, the necessary and sufficient
condition for Hn−2(Σ) > 0, for some Σ = Π(µ), µ ∈ M, is for there to be a
smooth, nonconstant harmonic map from S2 into N .

Proof of Lemma 3.1. If for some µ ∈M, Σ = Π(µ), one has Hn−2(Σ) > 0,
then the dimension reduction principally (cf. Cor. 1.10) implies d = n− 2, and
there is a µ∗ ∈M, with

Σ∗ = Bn−2
1 (0)× {0}, and µ∗ = C0H

n−2bΣ∗,
for some C0 > 0. Let {ui} ∈ HΛ (for some Λ > C0) be such that

µi = |∇ui|2dx ⇀ µ∗

as Radon measures on Bn
1 (0). Then as in the proof of Lemma 2.1, one has (cf.

(2.11))

(3.1)
n−2∑
k=1

∫
Bn1 (0)

∣∣∣∣ ∂ui∂xk

∣∣∣∣2 dx→ 0 as i→∞.

Note also that µi ⇀ µ∗, and µ∗ is supported in Bn−2
1 (0) × {0}. We have, by

the small energy regularity theorem of Bethuel [B] (cf. (1.12), that

ui −→ a constant, in C1,α
loc (Bn

1 (0)\Bn−2
1 (0)× {0}).

Let X1 = (x1, . . . , xn−2), X2 = (xn−1, xn),

fi(X1) =
n−2∑
k=1

∫
B2

1/2
(0)

∣∣∣∣ ∂ui∂xk

∣∣∣∣2 (X1, X2)dX2,

for X1 ∈ Bn−2
1/2 (0). Then Fubini’s theorem implies fi → 0 in L1(Bn−2

1/2 (0)).
Since, for Hn−2-a.e. X1 ∈ Bn−2

1/2 (0), ui(y) is smooth near points

(X1, X2) ∈ Bn−2
1/2 (0)×B2

1/2(0)
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by the partial regularity theorem of Bethuel [B] for stationary harmonic maps,
and since the weak-L1 estimate for the Hardy-Littlewood maximal function,
one can easily find a sequence of points {Xi

1}, i = 1, 2, . . . , such that

(3.2) ui(x) is smooth near all (Xi
1, X2) ∈ Bn−2

1/2 (0)×B2
1/2(0),

and such that

(3.3) sup
0<r≤1/2

r2−n
∫
Bn−2
r (Xi

1)
fi(X1)dX1 → 0, as i→∞.

For all i sufficiently large, we may find

δi ∈
(

0,
1
2

)
and Xi

2 ∈ B2
1/4(0)

such that the maximum

(3.4) maxX2∈B2
1/2

(0)δ
2−n
i

∫
Bn−2
δi

(Xi
1)×B2

δi
(X2)
|∇ui|2(x)dx =

ε0

c(n)

is achieved at Xi
2. Here c(n) is a suitable large number that will be chosen

later. Moreover, δi → 0 as i→∞.
To see (3.4), we note that, since ui is smooth near {Xi

1}×B2
1/2(0), for any

given i and for δ ≤ δ(i),

δ2−n
∫
Bn−2
δ

(Xi
1)×B2

δ
(X2)
|∇ui|2(x)dx ≤ ε0

2c(n)
,

for all X2 ∈ B2
1/2(0). On the other hand, if δ > 0 is a fixed number, then, for

all i large,

max
X2∈B2

1/2
(0)
δ2−n

∫
Bn−2
δ

(Xi
1)×B2

δ
(X2)
|∇ui|2(x)dx ≥ ε0.

For otherwise δ|∇ui|(x) ≤ c0ε
1/2
0 holds for all x ∈ Bn−2

δ/2 (Xi
1)×B2

δ (0), and this
contradicts |∇ui|2(x)dx ⇀ µ∗. Therefore, there is a δi > 0 (for each i large)
such that (3.4) is true, and δi → 0 as i→∞.

Next to show (3.4) is achieved at some Xi
2 ∈ B2

1/4(0), we note ui →
a constant in

C1,α
loc (Bn

1 (0)\Bn−2
1 (0)× {0}).

If
| Xi

2 |≥
1
4
,

then monotonicity of energy implies that∫
Bn−2

1 (0)×(B2
1/2

(0)\B2
1/8

(0))
|∇ui|2(x)dx ≥ C(ε0, n) > 0,

for all such i The last statement is again contradictory to µi ⇀ µ∗.
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Now we proceed with our proof using the statements (3.4) and (3.3). Let

vi = ui,pi,δi(y) = ui(pi + δiy), pi = (Xi
1, X

i
2).

Then vi is a stationary harmonic map defined on

Bn−2
Ri

(0)×B2
Ri(0) ⊃ Bn−2

3 (0)×B2
Ri(0), Ri =

1
4δi
→∞ as i→∞.

Moreover, (3.3), (3.4), energy monotonicity for both ui and vi, and the fact
that ui ∈ HΛ imply the following properties of vi:

1
Rn−2

∫
Bn−2
R (0)×B2

Ri
(0)

n−2∑
k=1

∣∣∣∣ ∂vi∂yk

∣∣∣∣2 dy → 0 as i→∞,(3.5) ∫
Bn−2

1 (0)×B2
1(0)
|∇vi|2(y)dy =

ε0

C(n)
(3.6)

= max

{∫
Bn−2

1 (0)×B2
1(y0)
|∇vi|2(y)dy : y0 ∈ B2

Ri−1(0)

}
,

sup
i

{∫
Bn−2
R (0)×B2

R(0)
|∇vi|2(y)dy

}
≤ C(Λ)Rn−2(3.7)

for 0 < R < Ri.
Let ξ(Y1) ∈ C∞0 (Bn−2

1 (0)) such that 0 ≤ ξ ≤ 1, and ξ ≡ 1 on Bn−2
3/4 (0).

Let φ(Y2) ∈ C∞0 (B2
1(0)) with 0 ≤ φ ≤ 1 and φ ≡ 1 on B2

1/2(0). Consider

Fi(a) =
∫
Bn−2

1 (0)×B2
1(0)
|∇vi|2(a+ y)ξ(Y1)φ(Y2)dy,

for a ∈ Bn−2
1 (0)×B2

Ri−1(0). Then, by (2.10), for k = 1, . . . , n− 2,

(3.8)
∂Fi(a)
∂ak

= 2
n∑
l=1

∫
Bn−2

1 (0)×B2
1(0)

∂vi
∂yl

∂vi
∂yk

(y + a)
∂

∂yk
(ξφ)dy.

Thus
∂Fi(a)
∂ak

→ 0

uniformly for a ∈ Bn−2
2 (0)×B2

Ri−1(0), as i→∞, for each k = 1, . . . , n− 2, by
(3.5), (3.6) and (3.7). It is then clear from (3.6), for all large i, that

(3.9)
∫
Bn−2

2 (0)×B2
1(0)
|∇vi|2(Y1, Y2 + b)dY1dY2 ≤

ε0

2n8

for each b ∈ B2
Ri−1(0) and for C(n) = 8·2n (we choose C(n) here). In particular,∫

Bn−2
2 (0)×B2

2(0)
|∇vi|2(Y1, Y2 + b)dY1dY2 ≤ ε0,
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for all b ∈ B2
Ri−2(0). Therefore, by the small energy regularity theorem [B],

we have vi → v (by taking subsequences if necessary) in

C1,α
(
Bn−2

3/2 (0)×B2
Ri−1(0)

)
as i→∞.

The limiting map v is a smooth harmonic defined on Bn−2
3/2 (0)× R2 such that

(3.10)
∫
Bn−2

1 (0)×B2
1(0)
|∇v|2(y)dy =

ε0

C(n)
,

by the strong convergence above. We also note that

(3.11)
∫
Rn−2×R2

n−2∑
k=1

| ∂v
∂yk
|2 dy = 0, and

∫
BnR(0)

|∇v|2dx ≤ C(Λ)Rn−2.

We thus obtain a smooth, nonconstant harmonic map v : R2 → N of finite
energy, hence by Sacks-Uhlenbeck’s theorem a smooth nonconstant harmonic
map from S2 into N .

Proof of Theorem A. Suppose N does not carry harmonic S2; then for any
sequence of harmonic maps {ui} from B1 into N such that ui ⇀ u weakly in
H1(B1, N), Lemma 3.1 implies that ui → u strongly in H1

loc(B1, N). In other
words, we may apply the dimension reducing argument in [SU] to stationary
harmonic maps, to obtain

(3.12) sup
x∈B1/2

|∇u(x)| ≤ C(n,N,E), E =
∫
B1

|∇u|2(x)dx,

whenever N does not carry any harmonics spheres, Sl, for l = 2, . . . , n − 1
≥ 2.

Remark 3.3. When n = 2, the conclusion (3.12) can be proved in a much
easier manner. Indeed, any weakly harmonic map defined on a 2-dimensional
domain is smooth. If (3.12) is not true, then one may find a sequence {ui} of
smooth harmonic maps from B1 into N such that∫

B1

|∇ui|2dx ≤ Λ, and sup
x∈B1/2

|∇ui(x)| → ∞ as i→∞.

Then ui cannot converge strongly to some u in H1(B2/3, N), for otherwise
u would be weakly harmonic, and hence smooth. Then energy convergence
implies that ui must be uniform C1,α in B1/2. Thus

|∇ui|2dx ⇀ |∇u|2dx+ ν

for some ν > 0 in B1/2, and so

ν =
K∑
j=1

cj · δaj , cj ≥ ε0,K ≤
Λ
ε0
.
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Then the argument in [DL] implies that there is a smooth harmonic map
v : R2 → N with

0 <
∫
R2
|∇v|2(y)dy ≤ Λ.

This is a contradiction.

Remark 3.4. Under the assumption that there is no smooth, noncon-
stant harmonic map from S2 into N , stationary maps in H1(Ω, N) of uniform
bounded energy are locally H1-compact. Thus all the statements in [Sim3] can
be carried over, and the conclusion of Theorem D follows.

Finally we state the following consequence from the proof of Lemma 3.1.

Corollary 3.5 (three circle theorem). Let

u : Bk
3 (0)×Bn−k

1 (0)→ N, 1 ≤ k ≤ n− 1,

be a stationary harmonic map such that

(i)
∫
Bk3 (0)×Bn−k1 (0)

|∇u|2dX1dX2 ≤ Λ,

(ii)
∫
Bk1 (0)×Bn−k1 (0)

|∇u|2dX1dX2 ≤ ε,

Then ∫
Bk2 (0)×Bn−k

2/3
(0)
|∇u|2dX1dX2 ≤ C(n, ε,Λ)

whenever ε ≤ ε0(n,N) and

(iii)
∫
Bk3 (0)×Bn−k1 (0)

|∇X1u|2dX1dX2 ≤ δ0(n,N).

Here C(n, ε,Λ)→ 0 as ε→ 0+, for any fixed Λ.

4. Boundary gradient estimates

Here we consider smooth harmonic maps u : B+
1 (0)→ N such that

E =
∫
B+

1 (0)
|∇u|2dx <∞ and u |Γ= φ satisfy ‖φ‖C1,1(Γ) ≤ K <∞

where

B+
1 (0) = {x ∈ Rn : |x| ≤ 1, xn ≥ 0} and Γ = {x ∈ B+

1 (0) : xn = 0}.
The reason we assume u to be smooth instead of merely stationary is

that the similar monotonicity identity (1.6) (or inequality) is not known for
stationary harmonic maps u at boundary points. For smooth harmonic maps
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u as above, we have the following lemma due first to W. Y. Ding; cf. [CL] and
references therein.

Lemma 4.1. There is a constant Λ depending only on n and K such that∫ ρ

σ
r2−neΛr

∫
∂B+

r (z)

∣∣∣∣∂u∂r
∣∣∣∣2 dr ≤ f(ρ)− f(σ),

for all 0 < σ < ρ, x ∈ Γ with B+
ρ (z) ⊆ B+

1 (0). Here

f(r) = eΛrr2−n
∫
B+

1 (2)
|∇u|2dx+ C(Λ)r,

and
∂B+

r (z) = {x ∈ B+
1 (0) : |x− z| = r}.

Proof. Consider a C1,1 extension of φ defined on Γ into whole B+
1 (0),

which we still denote by φ, so that

‖φ‖C1,1(B+
1 (0) ≤ K.

Multiply the equation for u,

(4.1) ∆u+A(u)(∇u,∇u) = 0 in B+
1 (0),

by x · (∇u(x)−∇φ(x)) and integrate over B+
r (0). Using integration by parts,

one can obtain the following estimate:∣∣∣∣∣r
∫
∂B+

r (0)
|∇u|2 − 2r

∫
∂B+

r (0)
u2
r − (n− 2)

∫
B+
r (0)
‖∇u|2dx

∣∣∣∣∣(4.2)

≤ c(K)

[∫
∂B+

r (0)
(r|∇u|2 + |∇u|+ r|∇u|)dx+ r

∫
∂B+

r (0)
|ur|

]
.

Thus, for Λ = C(K,n), C(Λ) = C̃(K,n),

d

dr
f(r) ≥ eC(Λ)rr2−n

∫
∂B+

r (0)

∣∣∣∣∂u∂r
∣∣∣∣2 .

From Lemma 4.1, one deduces in particular that

(4.3) f(r) = eΛrr2−n
∫
∂B+

r (z)
|∇u|2dx+ C(Λ)r

is an increasing function of r whenever B+
r (z) ⊂ B+

1 (0), x ∈ Γ, and hence

(4.4) lim
r↘0

r2−n
∫
∂B+

r (z)
|∇u|2dx = Θu(z)

exists.
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The following small energy regularity theorem follows from [CL].

Lemma 4.2. There is a constant ε0 = ε0(n,N,K) such that, if f(r) ≤ ε0,
then

r|∇u(x)| ≤ C(n,N,K)
√
ε0,

for all x ∈ B+
r/2(z). Here B+

1 (z) ⊂ B+
r (0), as before.

Remark 4.3. The same result as Lemma 4.2 was also shown to be valid
for stationary harmonic maps whenever (4.3) is assumed; see [Wa].

Example 4.4. Using the H1-compactness property of energy-minimizing
maps and Schoen-Uhlenbeck’s boundary regularity theorem, [SU2], one can
show (cf. [M]) that if u is an energy-minimizing map from B+

1 (0) into N with

u |Γ= φ, ‖φ‖C1,1(Γ) ≤ K and
∫
B+

1 (0)
|∇u|2dx ≤ E,

then there is a
δ0 = δ0(E,K, n,N) > 0

such that u is uniformly C1,α on

{x ∈ B+
2/3(0), 0 ≤ xn ≤ δ0}.

The same conclusion is not true for arbitrary smooth harmonic maps u. Indeed,
let

ui : B2
1(0)→ S

2

be a sequence of harmonic maps such that |∇ui|2dx ⇀ c0δ0, c0 > 0. Thus
ui → a constant in any Ck norm in B2

1(0) away from {0}. Let 0 < δi → 0+,
and

ui(x1, x2 − δi) = vi so that vi |x2=0
C2

→ constant.

Then vi |B+
1 (0) will be a counterexample to such uniform estimates. Thus some

additional assumption is needed for the Schoen-Uhlenbeck-type theorem to be
valid for smooth harmonic maps near the boundary. It turns out the necessary
(by the above example) and sufficient condition is that there is no smooth,
nonconstant harmonic map from S2 into N .

Theorem 4.5. Let u be a smooth harmonic map B+
1 (0)→ N as described

above. Then there is a δ0 = δ0(E,K, n,N) > 0 such that

|∇u(x)| ≤ C(n,N,E, k)

for x ∈ {B+
2/3(0) : 0 ≤ xn ≤ δ0} provided that there is no smooth nonconstant

harmonic map from S2 into N .
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To prove this theorem, we first observe that if the theorem were false,
then there would be a sequence of smooth harmonic maps {ui} from B+

1 into
N with ui = φi on Γ,

‖φi‖C1,1(Γ) ≤ K, and
∫
B+

1 (0)
|∇ui|2dx ≤ E

such that

sup
x∈Dδ

|∇ui(x)| → + ∞ as i→∞, for any δ > 0.

Here
Dδ = {x ∈ B+

2/3(0) : 0 ≤ xn ≤ δ}.

Without loss of generality, we may assume ui ⇀ u weakly in H1(B+
1 , N),

|∇ui|2dx ⇀ µ = |∇u|2dx+ ν,

for some nonnegative Radon measure ν on B+
1 (0). We may also assume φi → φ

in weak ∗C1,1.
As in Section 1, we let M+ be the set of all such Radon measures µ

obtained in the way described above, and let Π(µ) = Σ, where Σ denotes the
energy concentration set in B+

3/4(0). It is an easy consequence of Lemma 4.1,
Lemma 4.2 and arguments in Section 1 that

Σ = B+
3/4(0) ∩ (sptν ∪ (singu)),

Hn−2(Σ) ≤ C(n,N,E,K), and

Hn−2(Σ) = 0⇒ ν = 0

in B+
3/4(0).
There are two possibilities. The first possibility is that ν = 0 in B+

3/4(0)
for any µ ∈ M+. Then for any sequence of smooth harmonic maps {ui} from
B+

1 (0) into N with

ui |Γ= φi → φ weak− ∗C1,1, and ui ⇀ u weakly in H1(B+
1 (0), N),

ui converges to u strongly in H1(B+
3/4(0), N). We note that if u is a weak limit

of {ui} as above, then uz,λ is also for all z ∈ Γ, |z| ≤ 1/2, and 0 < λ < 1/2.
One then can easily apply the usual dimension reducing argument [SU2] to all
such u to show that there is δ = δ(n,N,K,E) > 0 such that

(4.5) |∇u(x)| ≤ C(n,N,K,E)

for all x ∈ B+
2/3(0), 0 ≤ xn ≤ δ. Here

E =
∫
B+

1 (0)
|∇u|2dx, ‖u |Γ ‖C1,1(Γ) ≤ K.



      

824 FANG-HUA LIN

Indeed, any such u will automatically verify the small energy regularity
property and the monotonicity of energy (cf. Lemmas 4.1 and 4.2). Moreover,
if v is a tangent map of u at z ∈ Γ, |z| ≤ 2/3, then, since each uz,λ, λ > 0 is
the strong limit of some smooth harmonic maps of uniform bounded energy,
the diagonal sequence method and again the assumption ν ≡ 0 for all µ ∈M+

imply that v is also a strong limit of uz,λj for some {λj} ↘ 0. Note that v is
also the strong limit of a sequence of smooth harmonic maps.

After we establish (4.5), then Theorem 4.5 follows easily from the strong
convergence of ui to u, and from Lemma 4.2.

We thus should consider the second possibility that ν 6= 0 in B+
3/4(0) for

some µ ∈M+. We need the following lemma.

Lemma 4.6. If Hn−2(Σ) > 0 for some µ ∈ M+, then there is a smooth,
nonconstant harmonic map from S2 into N .

Proof. Suppose there is no smooth, nonconstant harmonic map from S2

into N ; then Lemma 3.1 implies that

Hn−2(Σ ∩ (B+
1 \Γ)) = 0,

and hence Hn−2(Γ ∩ Σ) > 0 by assumption. In other words, for Hn−2-a.e.
x ∈ Σ, x ∈ Γ, we can easily modify the proof of Lemma 2.1 and by Lemmas
4.1 and 4.2 we may conclude that there is a (n− 2)-dimensional subspace L in
Γ such that for some µ ∈M+,

µ = C0H
n−2bL = ν, for some C0 > 0.

Without loss of generality, we assume L = Rn−2×{0}. Then there is a sequence
of smooth harmonic maps {ui} : B+

1 (0)→ N such that

(4.6)

{ |∇ui|2dx ⇀ C0H
n−2bRn−2 × {0}, and that

ui |Γ → constant, weak-*C1,1.

Moreover, as for (2.11), one has

(4.7)
∫
B+

3/4
(0)
| ∂ui
∂yk
|2 dy → 0 as i→∞, for each k = 1, 2, . . . , n− 2.

Now we follow the exact same arguments ((3.3) − (3.11)) of Section 3
to find either a smooth, nonconstant harmonic map V : R2 → N with finite
energy, or a smooth, nonconstant harmonic map of finite energy V : R2

+ → N

with V |x2=0 constant. The last statement is impossible due to a well-known
fact shown by Eells and Wood (cf. [EL] and references therein). We therefore
obtain a contradiction.
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5. Arbitrary Riemannian metric

In the previous sections, we have always assumed that Ω has the stan-
dard Euclidean metric. Here we point out a few changes needed in the above
arguments to handle the general metric case.

We let

g =
n∑

i,j=1

gij(x)dxi ⊗ dxj

be a C2-metric on B1+δ0 such that

(5.1) K−1
0 |ξ|2 ≤ |ξ2| ≤ gij(x)ξiξj ≤ K0|ξ|2, ‖gij‖C2(B1+δ0

) ≤ K0,

for a constant K0. Thus the energy for a map u : B1+δ0 → N in this metric
becomes

(5.2) E(u,B1+δ0 , g) =
∫
B1+δ0

gij(x)Diu(x) ·Dju(x)
√
g(x)dx,

g = det(gij), and the Euler-Lagrange equation for a map u to be weakly
harmonic becomes

(5.3) ∆u+A(u)(∇u,∇u) = 0.

Here ∆ and ∇ are with respect to the metric g.
The important identity (1.3) for the map u to be stationary becomes

(5.4) div(|∇u|2δij − 2DiuDju) = R ∈ D(B1+δ0).

Here again div and ∇ etc. are with respect to the intrinsic metric g, and
the vector R is bounded by C‖∇g‖|∇u|2. From (5.4) one can also derive the
monotonicity inequality∫

BR(z)\Bσ(z)

|RzURz |2
|Rz|n

dx ≤ f(R)− f(σ),(5.5)

f(r) = eC(K0)rr2−n
∫
Br(z)

|∇u|2dx+ C(K0)r.

In particular, f(r) is a monotone function increasing in r, and

(5.6) Θu(z) = lim
r↘0

r2−n
∫
Br(z)

|∇u|2dx

exists.
In (5.5), (5.6), one should regard ∇ etc. intrinsically also. One may also

simply view them as the usual gradient in the Euclidean metric if the following
transformations of metrics are performed. For any point x ∈ B1+δ0 , (gij(x)) is
a positive definite symmetric matrix. Thus there is an orthogonal matrix O(x)
whose columns are normalized eigenvectors of (gij(x)), such that

O(x)t(gij(x))O(x) = diag(λ1(x), . . . , λn(x)).
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When
T (x) = diag(λ1(x)−1/2, . . . , λn(x)−1/2)O(x),

then
T (x)t(gij(x))T (x) = In.

Note that T (x) is also smooth in x ∈ B1+δ0 . Let Tx : Rn → Rn be the affine
transformation such that, for y ∈ Rn,

z = Tx(y) = x+ T (x)−1y.

Then if u is a stationary harmonic map in the metric g(z) = (gij(z)), then u(x)

defined by
u(x)(y) = u(Tx(y))

is a stationary harmonic map in the new metric g̃(y) = (g̃ij(y)) such that

(5.7) (g̃ij(y)) = T (x)t(gij(x+ T (x)−1(y))T (x)).

Thus g̃ij(0) = δij . In this way, (5.6) becomes

(5.8) Θu(z) = lim
ρ↘0

ρ2−n
∫
Bρ(z)

|∇u(z)|2(y)dy.

Here the right-hand side can be taken to be the usual Euclidean gradient. It
is straightforward to check the proof of Lemma 1.5 and Lemma 1.6 can be
carried over directly.

Next we want to define M in this general context. Let GK1 be the class
of Riemannian metrics on B1+δ0 that satisfies (5.1) with K0 replaced by a
suitably larger number K1 = K1(K0). Here K1 may be obtained from the
following metrics.

For any x ∈ B1, 0 < λ < δ0/K
2
0 (1 + δ0), we define a new metric gx,λ(y)

by:

(5.9) (gx,λ(y))ij = T (x)t(g(x+ λT (x)−1y))ijT (x),

so that (gx,λ(0)) = In. Note that by our choice of λ,

x+ λT (x)−1y ∈ B1+δ0 ,

the gx,λ metric is well-defined on B1+δ0 . Moreover, if u is a stationary map in
a metric g, then ux,λ defined by

ux,λ(y) = u(x+ λT−1(x)y)

is a stationary harmonic map with respect to the metric gx,λ on B1+δ0 . It is
clear that there is a constant K1 = K1(K0) such that, all these metrics gx,λ
described above satisfy (5.1) with K0 replaced by K1.

We say µ ∈ M if there are a sequence of metrics {gk} ∈ GΛ, and a
sequence of stationary maps {uk} (each uk is a harmonic map with respect
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to the metric gk on B1+δ0) such that gk → g ∈ GΛ (weak * C1,1, uk ⇀ u in
H1(B1+δ, N) weakly, and such that

(5.10) |∇uk(x)|2dx = gijk (x)
∂uk
∂xi

∂uk
∂xj

√
gk(x)dx ⇀ µ,

as Radon measures on B1, when k →∞.
Note that it is convenient for us to allow the bound on∫

B1+δ0

|∇uk|2(x)dx

and the bound Λ on metrics gk(∈ GΛ) to be dependent on µ (but not k!). Now
it is easy to check for µ ∈ M, µx,λ, the weak limit of |∇uk,x,λ(y)|dy ∈ M, for
any |x| < 1, 0 < λ < 1− |x|. To show (ii) of Lemma 1.7, we observe that {vk}
is a sequence of stationary maps such that the corresponding metric {gk} has
the property that (gk)ij → δij in weak * C1,1. Then (1.18) should be replaced
by

(5.11)

E(vk, φ, a, ε) ≡
∫ ∞

0

∫
Sn−1

(r + a)2

∣∣∣∣∂vk∂r
∣∣∣∣2 +

n−1∑
i,j=1

gijk (r + a, θ)
∂vk
∂θi

∂vk
∂θj


× (r + a, θ) · φ(θ)ψε(r) ·

√
gk(r + a, θ)dθdr.

Here we write gk in the polar coordinate system:

dr2 + r2gk,ij(r, θ)dθi ⊗ dθj , and det (gk,ij)(r, θ) = gk(r, θ).

Thus (1.19) becomes

(5.12)
d

da
E(vk, φ, a, ε)

= 2
d

da

∫ ∞
0

∫
Sn−1

(r + a)2

∣∣∣∣∂vk∂r
∣∣∣∣2 (r + a, θ)φ(θ)ψε(r)

√
gk(r + a, θ)dθdr

+ok(1)E(vk, φ, a, ε)

+
∫ ∞

0

∫
Sn−1

(2(n− 2)(r + a) + ok(1))
∣∣∣∣∂vk∂r

∣∣∣∣2
×(r + a)φ(θ)ψε(r)

√
gk(r + a, θdθdr

−
∫ ∞

0

∫
Sn−1

2
∂

∂r
vk · gijk (r + a, θ)

∂vk
∂θi

∂φ

∂θj
(r + a, θ)

×ψε(r)
√
gk(r + a, θdθdr.

Here ok(1) denotes the quantity that goes to zero as k → ∞. They all come
from differentiating gk(r, θ), gk,ij(r, θ) in the r-direction.
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The rest of the proofs of Lemma 1.7, (ii), say, (1.20)–(1.23), follow in the
same way as before.

For the proofs in Section 2, some changes have to be made also. For (2.12),
we note that

Fi(a) =
∫
B1

(
gikl

∂ui
∂xk

∂ui
∂xl

√
gi
)

(x+ a)φ2(x)dx;

here {gi} is a sequence of C1,1 metrics such that

|gikl(x)− δkl| → 0

in weak * C1,1. Therefore the term R in (5.4) is oi(1)|∇ui|2. Then (2.12)
becomes

(5.13)
∂Fi(a)
∂ak

= 2
n∑
l=1

∫
B1

(
∂ui
∂xk

∂ui
∂xl

gikl
√
gi

)
(x+ a)

∂

∂xl
φ2(x)dx+ ok(1)Fi(a),

and the same conclusions as before follow.
Finally, we can apply the modifications as above to the calculations in

(2.1) so that the proof of Lemma 1.6 can be carried out in the same manner.
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