An endpoint estimate for the Kunze-Stein phenomenon and related maximal operators

By Alexandru D. Ionescu*

Abstract

One of the purposes of this paper is to prove that if G is a noncompact connected semisimple Lie group of real rank one with finite center, then $$
L^{2,1}(G) * L^{2,1}(G) \subseteq L^{2, \infty}(G)
$$

Let K be a maximal compact subgroup of G and $X=G / K$ a symmetric space of real rank one. We will also prove that the noncentered maximal operator $$
\mathcal{M}_{2} f(z)=\sup _{z \in B} \frac{1}{|B|} \int_{B}\left|f\left(z^{\prime}\right)\right| d z^{\prime}
$$ is bounded from $L^{2,1}(X)$ to $L^{2, \infty}(X)$ and from $L^{p}(X)$ to $L^{p}(X)$ in the sharp range of exponents $p \in(2, \infty]$. The supremum in the definition of $\mathcal{M}_{2} f(z)$ is taken over all balls containing the point z.

\section*{1. Introduction}

A central result in the theory of convolution operators on semisimple Lie groups is the Kunze-Stein phenomenon which, in its classical form, states that if G is a connected semisimple Lie group with finite center and $p \in[1,2)$, then $$
\begin{equation*} L^{2}(G) * L^{p}(G) \subseteq L^{2}(G) \tag{1.1} \end{equation*}
$$

The usual convention, which will be used throughout this paper, is that if \mathcal{U}, \mathcal{V}, and \mathcal{W} are Banach spaces of functions on G then the notation $\mathcal{U} * \mathcal{V} \subseteq$ \mathcal{W} indicates both the set inclusion and the associated norm inequality. The inclusion (1.1) was established by Kunze and Stein [10] in the case when the group G is $\mathrm{SL}(2, \mathbb{R})$ (and, later on, for a number of other particular groups) and by Cowling [3] in the general case stated above. For a more complete account of the development of ideas leading to (1.1) we refer the reader to [3] and [4].

[^0]More recently, Cowling, Meda and Setti noticed that if the group G has real rank one then the inclusion (1.1) can be strengthened. Following earlier work of Lohoué and Rychener [9], the key ingredient in their approach is the use of Lorentz spaces $L^{p, q}(G)$; they prove in [4] that if G is a connected semisimple Lie group of real rank one with finite center, $p \in(1,2)$ and $(u, v, w) \in[1, \infty]^{3}$ has the property that $1+1 / w \leq 1 / u+1 / v$, then

$$
\begin{equation*}
L^{p, u}(G) * L^{p, v}(G) \subseteq L^{p, w}(G) \tag{1.2}
\end{equation*}
$$

In particular, $L^{p, 1}$ convolves L^{p} into L^{p} for any $p \in[1,2)$. Our first theorem is an endpoint estimate for (1.2) showing what happens when $p=2$.

Theorem A. If G is a noncompact connected semisimple Lie group of real rank one with finite center then

$$
\begin{equation*}
L^{2,1}(G) * L^{2,1}(G) \subseteq L^{2, \infty}(G) \tag{1.3}
\end{equation*}
$$

Notice that (1.2) follows from Theorem A and a bilinear interpolation theorem ([4, Theorem 1.2]). Unlike the classical proofs of the Kunze-Stein phenomenon, our proof of Theorem A will be based on real-variable techniques only: the inclusion (1.3) is equivalent to an inequality involving a triple integral on G and we use certain nonincreasing rearrangements to control this triple integral. Easy examples, involving only K-bi-invariant functions, show that the inclusion (1.3) is sharp in the sense that neither of the $L^{2,1}$ spaces nor the $L^{2, \infty}$ space can be replaced with some $L^{2, u}$ space for any $u \in(1, \infty)$.

Let K be a maximal compact subgroup of the group G and $X=G / K$ the associated symmetric space. Assume from now on that the group G satisfies the hypothesis stated in Theorem A and let d be the distance function on $X \times X$ induced by the Killing form on the Lie algebra of the group G. Let $B(x, r)$ denote the ball in X centered at the point x of radius r (with respect to the distance function d) and let $|A|$ denote the measure of the set $A \subset X$. For any locally integrable function f on X, let

$$
\begin{equation*}
\mathcal{M}_{2} f(z)=\sup _{z \in B} \frac{1}{|B|} \int_{B}\left|f\left(z^{\prime}\right)\right| d z^{\prime}, \tag{1.4}
\end{equation*}
$$

where the supremum in the definition of $\mathcal{M}_{2} f(z)$ is taken over all balls B containing z. We will prove the following:

Theorem B. The operator \mathcal{M}_{2} is bounded from $L^{2,1}(X)$ to $L^{2, \infty}(X)$ and from $L^{p}(X)$ to $L^{p}(X)$ in the sharp range of exponents $p \in(2, \infty]$.

We recall that the more standard centered maximal operator

$$
\mathcal{M}_{1} f(z)=\sup _{r>0} \frac{1}{|B(z, r)|} \int_{B(z, r)}\left|f\left(z^{\prime}\right)\right| d z^{\prime}
$$

is bounded from $L^{1}(X)$ to $L^{1, \infty}(X)$ and from $L^{p}(X)$ to $L^{p}(X)$ for any $p>1$, as shown in [5] and [12] (without the assumption that G has real rank one). Notice however that, unlike in the case of Euclidean spaces, balls on symmetric spaces do not have the basic doubling property (i.e. $|B(z, 2 r)|$ is not proportional to $|B(z, r)|$ if r is large $)$, thus the maximal operators \mathcal{M}_{1} and \mathcal{M}_{2} are not comparable. Easy examples (see [7, Section 4]) show that Theorem B is sharp in the sense that the maximal operator \mathcal{M}_{2} is not bounded from $L^{2, u}(X)$ to $L^{2, v}(X)$ unless $u=1$ and $v=\infty$.

This paper is organized as follows: in the next section we recall most of the notation related to semisimple Lie groups and symmetric spaces and prove a proposition that explains the role of the Lorentz space $L^{2,1}(G / / K)$ - the subspace of K-bi-invariant functions in $L^{2,1}(G)$. In Section 3 we prove Theorem B. As a consequence of Theorem B we obtain in Section 4 a covering lemma on noncompact symmetric spaces of real rank one. In Section 5 we give a complete proof of Theorem A, which is divided into four steps. The main estimate in the proof of Theorem A uses the technique of nonincreasing rearrangements; we return to this technique in the last section and prove a general rearrangement inequality.

We conclude this section with some remarks on semisimple Lie groups of higher real rank. If the group G has real rank different from 1, then (1.2) fails (the estimate in Lemma 6 and the discussion following Proposition 7 in [1] show that the appropriate spherical function Φ_{p} fails to belong to $L^{p^{\prime}, \infty}(G)$, where p^{\prime} is the conjugate exponent of p); therefore Theorem A fails to hold. On the other hand, the author has recently proved by a different method in [7] that the L^{p} estimate in Theorem B holds on symmetric spaces of arbitrary real rank. In the general case it is not known however whether the maximal operator \mathcal{M}_{2} is bounded from $L^{2,1}(X)$ to $L^{2, \infty}(X)$.

This work is part of the author's doctoral thesis at Princeton University under the guidance of Prof. Elias M. Stein. I would like to thank him for many clarifying discussions on the subject and for his time, interest and steady support. I would also like to thank Jean-Philippe Anker for several corrections on a preliminary version of this paper and the referee of the paper for a careful and detailed report.

2. Preliminaries

Let G be a noncompact connected semisimple Lie group with finite center, and let \mathfrak{g} be its Lie algebra. Most of our notation related to semisimple Lie groups and symmetric spaces is standard and can be found for example in [6]. Fix a Cartan involution θ of \mathfrak{g} and let $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ be the associated Cartan decomposition. Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p}; we will assume from
now on that the group G has real rank one, i.e., $\operatorname{dim} \mathfrak{a}=1$. Let \mathfrak{a}^{*} denote the real dual of \mathfrak{a}, let $\Sigma \subset \mathfrak{a}^{*}$ be the set of nonzero roots of the pair ($\mathfrak{g}, \mathfrak{a}$) and let W be the Weyl group associated to Σ. It is well-known that $W=\{1,-1\}$ and Σ is either of the form $\{-\alpha, \alpha\}$ or of the form $\{-2 \alpha,-\alpha, \alpha, 2 \alpha\}$. Let $m_{1}=\operatorname{dim} \mathfrak{g}_{-\alpha}$, $m_{2}=\operatorname{dim} \mathfrak{g}_{-2 \alpha}, \rho=\frac{1}{2}\left(m_{1}+2 m_{2}\right) \alpha$ and $\mathfrak{a}_{+}=\{H \in \mathfrak{a}: \alpha(H)>0\}$. Finally let $\overline{\mathfrak{n}}=\mathfrak{g}_{-\alpha}+\mathfrak{g}_{-2 \alpha}, \bar{N}=\exp \overline{\mathfrak{n}}, K=\exp \mathfrak{k}, A=\exp \mathfrak{a}$ and $A_{+}=\exp \mathfrak{a}_{+}$and let $X=G / K$ be a symmetric space of real rank one.

The group G has an Iwasawa decomposition $G=\bar{N} A K$ and a Cartan decomposition $G=K \overline{A_{+}} K$. Our proofs are based on relating these two decompositions, and for real rank one groups one has the explicit formula in [6, Ch.2, Theorem 6.1]. A similar idea was used by Strömberg [12] for groups of arbitrary real rank. Let $H_{0} \in \mathfrak{a}$ be the unique element of \mathfrak{a} for which $\alpha\left(H_{0}\right)=1$ and let $a(s)=\exp \left(s H_{0}\right)$ for $s \in \mathbb{R}$ be a parametrization of the subgroup A. By [6, Ch.2, Theorem 6.1] one can identify the group \bar{N} with $\mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}$ using a diffeomorphism $\bar{n}: \mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}} \rightarrow \bar{N}$. This diffeomorphism has the property that if $t \geq 0$ then $\bar{n}(v, w) a(s) \in K a(t) K$ if and only if

$$
\begin{equation*}
(\cosh t)^{2}=\left[\cosh s+e^{s}|v|^{2}\right]^{2}+e^{2 s}|w|^{2} . \tag{2.1}
\end{equation*}
$$

In addition,

$$
\begin{equation*}
a(s) \bar{n}(v, w) a(-s)=\bar{n}\left(e^{-s} v, e^{-2 s} w\right) . \tag{2.2}
\end{equation*}
$$

Let $|\rho|=\rho\left(H_{0}\right)=\frac{1}{2}\left(m_{1}+2 m_{2}\right)$ and let $d g, d \bar{n}$ and $d k$ denote Haar measures on G, \bar{N} and K, the last one normalized such that $\int_{K} 1 d k=1$. Then the following integral formulae hold for any continuous function f with compact support:

$$
\begin{equation*}
\int_{G} f(g) d g=C_{1} \int_{K} \int_{\mathbb{R}_{+}} \int_{K} f\left(k_{1} a(t) k_{2}\right)(\sinh t)^{m_{1}}(\sinh 2 t)^{m_{2}} d k_{2} d t d k_{1}, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{G} f(g) d g & =C_{2} \int_{K} \int_{\mathbb{R}} \int_{\bar{N}} f(\bar{n} a(s) k) e^{2|\rho| s} d \bar{n} d s d k \tag{2.4}\\
& =C_{2}^{\prime} \int_{K} \int_{\mathbb{R}} \int_{\mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}} f(\bar{n}(v, w) a(s) k) e^{2|\rho| s} d v d w d s d k
\end{align*}
$$

The measures $d v$ and $d w$ are the usual Lebesgue measures on $\mathbb{R}^{m_{1}}$ and $\mathbb{R}^{m_{2}}$, and the constants C_{1}, C_{2} and C_{2}^{\prime} depend on the normalizations of the various Haar measures. We will need a new integration formula, which is the subject of the following lemma.

Lemma 1. Suppose that $f: G \rightarrow \mathbb{C}$ is a K-bi-invariant (i.e., $f\left(k_{1} g k_{2}\right)=f(g)$ for any $k_{1}, k_{2} \in K$) continuous function with compact support and $F(t)=$ $f(a(t))$ for any $t \in[0, \infty)$. Then for any $s \in \mathbb{R}$

$$
e^{|\rho| s} \int_{\bar{N}} f(\bar{n} a(s)) d \bar{n}=\int_{|s|}^{\infty} F(t) \psi(t, s) d t,
$$

where the kernel $\psi: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}_{+}$has the property that $\psi(t, s)=0$ if $t<|s|$ and

$$
\begin{equation*}
\psi(t, s) \approx \sinh t(\cosh t)^{m_{2} / 2}(\cosh t-\cosh s)^{\left(m_{1}+m_{2}-2\right) / 2} \tag{2.5}
\end{equation*}
$$

if $t \geq|s|$.
As usual, the notation $U \approx V$ means that there is a constant $C \geq 1$ depending only on the group G such that $C^{-1} U \leq V \leq C U$. This lemma is essentially proved in $[8$, Section 5]. For later reference we reproduce its proof.

Proof of Lemma 1. For any $t \geq|s|$, let

$$
\begin{equation*}
T_{t, s}=\left\{(v, w) \in \mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}:(\cosh t)^{2}=\left[\cosh s+e^{s}|v|^{2}\right]^{2}+e^{2 s}|w|^{2}\right\} \tag{2.6}
\end{equation*}
$$

be the set of points $P=P(v, w) \in \mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}$ with the property that $\bar{n}(P) a(s) \in K a(t) K$ (these surfaces will play a key role in the proof of Theorem A). Let $d \omega_{t, s}$ be the induced measure on $T_{t, s}$ such that

$$
\int_{\mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}} \phi(v, w) d v d w=\int_{t \geq|s|}\left[\int_{T_{t, s}} \phi(P) d \omega_{t, s}(P)\right] d t
$$

for any continuous compactly supported function ϕ. Then, since the function f is K-bi-invariant,

$$
\begin{aligned}
e^{|\rho| s} \int_{\bar{N}} f(\bar{n} a(s)) d \bar{n} & =C e^{|\rho| s} \int_{\mathbb{R}^{m_{1} \times \mathbb{R}^{m_{2}}}} f(\bar{n}(v, w) a(s)) d v d w \\
& =C e^{|\rho| s} \int_{t \geq|s|} F(t)\left[\int_{T_{t, s}} 1 d \omega_{t, s}\right] d t
\end{aligned}
$$

Let $\psi(t, s)=e^{|\rho| s} \int_{T_{t, s}} 1 d \omega_{t, s}$ and assume that $m_{2} \geq 1$. We make the change of variables $v=\left[e^{-s}(u \cosh t-\cosh s)\right]^{1 / 2} \omega_{1}$ and $w=e^{-s} \cosh t\left(1-u^{2}\right)^{1 / 2} \omega_{2}$, where $\omega_{1} \in S^{m_{1}-1}$ (the $m_{1}-1$ dimensional sphere in $\mathbb{R}^{m_{1}}$), $\omega_{2} \in S^{m_{2}-1}$ and $u \in\left[\frac{\cosh s}{\cosh t}, 1\right]$. We have
$\psi(t, s)=C \sinh t(\cosh t)^{m_{2}} \int_{\frac{\cosh s}{\cosh t}}^{1}(u \cosh t-\cosh s)^{\left(m_{1}-2\right) / 2}\left(1-u^{2}\right)^{\left(m_{2}-2\right) / 2} d u$,
which easily proves (2.5). The computation of the function ψ is slightly easier if $m_{2}=0$ and the result is also given by (2.5).

Our next proposition explains the role of the Lorentz space $L^{2,1}(G / / K)$ which, by definition, is the subspace of K-bi-invariant functions in $L^{2,1}(G)$:

Proposition 2. The Abel transform

$$
\mathcal{A} f(a)=e^{\rho(\log a)} \int_{\bar{N}} f(\bar{n} a) d \bar{n}
$$

is bounded from $L^{2,1}(G / / K)$ to $L^{\infty}(A / W)$. In other words, if f is a locally integrable K-bi-invariant function on G and $a \in A$ then:

$$
\begin{equation*}
e^{\rho(\log a)} \int_{\bar{N}} f(\bar{n} a) d \bar{n} \leq C| | f \|_{L^{2,1}(G)} \tag{2.7}
\end{equation*}
$$

Proof of Proposition 2. The usual theory of Lorentz spaces (see, for example, [11, Chapter V]) shows that it suffices to prove the inequality (2.7) under the additional assumption that f is the characteristic function of an open K-bi-invariant set of finite measure. For any $t \geq 0$, let $F(t)=f(a(t))$, so

$$
\begin{equation*}
\|f\|_{L^{2,1}(G)}=C\left[\int_{\mathbb{R}_{+}} F(t)(\sinh t)^{m_{1}}(\sinh 2 t)^{m_{2}} d t\right]^{1 / 2} \tag{2.8}
\end{equation*}
$$

In view of Lemma 1 and (2.8), it suffices to prove that for any $s \in \mathbb{R}$

$$
\begin{equation*}
\int_{t \geq|s|} F(t) \psi(t, s) d t \leq C\left[\int_{\mathbb{R}_{+}} F(t)(\sinh t)^{m_{1}}(\sinh 2 t)^{m_{2}} d t\right]^{1 / 2} \tag{2.9}
\end{equation*}
$$

for any measurable function $F: \mathbb{R}_{+} \rightarrow\{0,1\}$. Notice that if $t \geq 1+|s|$ then $\psi(t, s) \approx e^{|\rho| t},(\sinh t)^{m_{1}}(\sinh 2 t)^{m_{2}} \approx e^{2|\rho| t}$ and it follows from Lemma 3 below that

$$
\begin{equation*}
\int_{t \geq|s|+1} F(t) \psi(t, s) d t \leq C\left[\int_{t \geq|s|+1} F(t)(\sinh t)^{m_{1}}(\sinh 2 t)^{m_{2}} d t\right]^{1 / 2} \tag{2.10}
\end{equation*}
$$

In order to deal with the integral in t over the interval $[|s|,|s|+1]$ we consider two cases: $|s| \geq 1$ and $|s| \leq 1$. If $|s| \geq 1$ and $t \in[|s|,|s|+1]$, then $\psi(t, s) \approx e^{|\rho||s|}(t-|s|)^{\left(m_{1}+m_{2}-2\right) / 2},(\sinh t)^{m_{1}}(\sinh 2 t)^{m_{2}} \approx e^{2|\rho||s|}$ and, since $\left(m_{1}+m_{2}-2\right) / 2 \geq-1 / 2$, it follows that

$$
\begin{aligned}
& \int_{|s|}^{|s|+1} F(t) \psi(t, s) d t \leq C e^{|\rho||s|} \int_{|s|}^{|s|+1} F(t)(t-|s|)^{-1 / 2} d t \\
& \quad=C e^{|\rho||s|} \int_{0}^{1} F\left(|s|+u^{2}\right) d u \leq C\left[e^{2|\rho||s|} \int_{0}^{1} F\left(|s|+u^{2}\right) u d u\right]^{1 / 2} \\
& \quad \leq C\left[\int_{|s|}^{|s|+1} F(t)(\sinh t)^{m_{1}}(\sinh 2 t)^{m_{2}} d t\right]^{1 / 2}
\end{aligned}
$$

One of the inequalities in the sequence above follows from the estimate (2.11) below. This, together with (2.10), completes the proof of the proposition in the case $|s| \geq 1$. The estimation of the integrals over the interval $[|s|,|s|+1]$ is similar in the case $|s| \leq 1$.

Lemma 3. If $\delta \neq 0$ and $d \mu_{1}(t)=e^{\delta t} d t, d \mu_{2}(t)=e^{2 \delta t} d t$ are two measures on \mathbb{R} then

$$
\|f\|_{L^{1}\left(\mathbb{R}, d \mu_{1}\right)} \leq C_{\delta}\|f\|_{L^{2,1}\left(\mathbb{R}, d \mu_{2}\right)} .
$$

Proof of Lemma 3. One can assume that f is the characteristic function of a set. The change of variable $t=(\log s) / \delta$ and the substitution $g(s)=$ $f((\log s) / \delta)$ show that it suffices to prove that

$$
\begin{equation*}
\frac{1}{|\delta|} \int_{\mathbb{R}_{+}} g(s) d s \leq C_{\delta}\left[\frac{1}{|\delta|} \int_{\mathbb{R}_{+}} g(s) s d s\right]^{1 / 2} \tag{2.11}
\end{equation*}
$$

for any measurable function $g: \mathbb{R}_{+} \rightarrow\{0,1\}$, which follows by a rearrangement argument.

3. Proof of the maximal theorem

For any locally integrable function $f: X \rightarrow \mathbb{C}$ let

$$
\begin{equation*}
\widetilde{\mathcal{M}_{2}} f(z)=\sup _{r \geq 1} \frac{1}{|B(z, r)|^{1 / 2}} \int_{B(z, r)}\left|f\left(z^{\prime}\right)\right| d z^{\prime} \tag{3.1}
\end{equation*}
$$

Most of this section will be devoted to the proof of the following theorem:
ThEOREM 4. The operator $\widetilde{\mathcal{M}_{2}}$ is bounded from $L^{2,1}(X)$ to $L^{2, \infty}(X)$.
Notice that Theorem B is an easy consequence of Theorem 4: let

$$
\begin{aligned}
\mathcal{M}_{2}^{0} f(z) & =\sup _{z \in B, r(B) \leq 1} \frac{1}{|B|} \int_{B} f\left(z^{\prime}\right) d z^{\prime} \\
\mathcal{M}_{2}^{1} f(z) & =\sup _{z \in B, r(B) \geq 1} \frac{1}{|B|} \int_{B} f\left(z^{\prime}\right) d z^{\prime}
\end{aligned}
$$

where $r(B)$ is the radius of the ball B. We can assume that the Killing form on the Lie algebra \mathfrak{g} is normalized such that $\left|H_{0}\right|=1$. Let $o=\{K\}$ be the origin of the symmetric space X. Then the ball $B(o, r)$ is equal to the set of points $\{k a(t) \cdot o: k \in K, t \in[0, r)\}$ and one clearly has $|B(o, r)| \approx r^{m_{1}+m_{2}+1}$ if $r \leq 1$ and $|B(o, r)| \approx e^{2|\rho| r}$ if $r \geq 1$. The operator \mathcal{M}_{2}^{0}, the local part of \mathcal{M}_{2}, is clearly bounded on $L^{p}(X)$ for any $p>1$. On the other hand, if z belongs to a ball B of radius $r \geq 1$, then $B(z, 2 r)$ contains the ball B and $|B(z, 2 r)| \approx e^{2|\rho| \cdot 2 r} \approx|B|^{2}$. Therefore

$$
\frac{1}{|B|} \int_{B} f\left(z^{\prime}\right) d z^{\prime} \leq \frac{C}{|B(z, 2 r)|^{1 / 2}} \int_{B(z, 2 r)} f\left(z^{\prime}\right) d z^{\prime}
$$

which shows that $\mathcal{M}_{2}^{1} f(z) \leq C \widetilde{\mathcal{M}}_{2} f(z)$, and the conclusion of Theorem B follows by interpolation with the trivial L^{∞} estimate.

Proof of Theorem 4. Let χ_{r} be the characteristic function of the K-bi-invariant set $\{g \in G: d(g \cdot o, o)<r\}$. Since the measure of a ball of
radius r in X is proportional to $e^{2|\rho| r}$ if $r \geq 1$, one has

$$
\widetilde{\mathcal{M}_{2}} f(g \cdot o) \approx \sup _{r \geq 1}\left[e^{-|\rho| r} \int_{G} f\left(g^{\prime} \cdot o\right) \chi_{r}\left(g^{\prime-1} g\right) d g^{\prime}\right] .
$$

The change of variables $g=\bar{n} a(t) k, g^{\prime}=\bar{n}^{\prime} a\left(t^{\prime}\right) k^{\prime}$ and the integral formula (2.4) show that

$$
\begin{align*}
& \widetilde{\mathcal{M}_{2}} f(\bar{n} a(t) \cdot o) \tag{3.2}\\
& \quad \leq C \sup _{r \geq 1}\left[e^{-|\rho| r} \int_{\mathbb{R}}\left(\int_{\bar{N}} f\left(\bar{n}^{\prime} a\left(t^{\prime}\right) \cdot o\right) \chi_{r}\left(a\left(-t^{\prime}\right) \bar{n}^{\prime-1} \bar{n} a(t)\right) d \bar{n}^{\prime}\right) e^{2|\rho| t^{\prime}} d t^{\prime}\right] .
\end{align*}
$$

We first deal with the integral over the group \bar{N} and dominate the righthand side of (3.2) using a standard maximal operator on the nilpotent group \bar{N}. For any $u>0$ let \mathcal{B}_{u} be the ball in \bar{N} defined as the set $\{\bar{n}(v, w):|v| \leq u$ and $\left.|w| \leq u^{2}\right\}$. Clearly, $\int_{\mathcal{B}_{u}} 1 d \bar{n}=C u^{2|\rho|}$. The group \bar{N} is equipped with nonisotropic dilations $\delta_{u}(\bar{n}(v, w))=\bar{n}\left(u v, u^{2} w\right)$, which are group automorphisms, therefore the maximal operator

$$
\mathcal{N} g(\bar{n})=\sup _{u>0}\left[\frac{1}{u^{2|\rho|}} \int_{\mathcal{B}_{u}}\left|g\left(\bar{n} \bar{m}^{-1}\right)\right| d \bar{m}\right]
$$

is bounded from $L^{p}(\bar{N})$ to $L^{p}(\bar{N})$ for any $p>1$ ([13, Lemma 2.2]). For any locally integrable function $f: X \rightarrow \mathbb{R}_{+}$and any $\bar{n} \in \bar{N}$ and $a \in A$ let

$$
\mathcal{M}_{3} f(\bar{n} a \cdot o)=\sup _{u>0}\left[\frac{1}{u^{2|\rho|}} \int_{\mathcal{B}_{u}}\left|f\left(\bar{n} \bar{m}^{-1} a \cdot o\right)\right| d \bar{m}\right] .
$$

Since the maximal operator \mathcal{N} is bounded on $L^{p}(\bar{N})$ one has $\left\|\mathcal{M}_{3} f\right\|_{L^{p}(X)}$ $\leq C_{p}\|f\|_{L^{p}(X)}$ for any $p>1$. We will now use the function $\mathcal{M}_{3} f$ to control the integral over \bar{N} in (3.2). Notice that (2.1) and (2.2), together with the fact that $d(k a(t) \cdot o, o)=t$ for any $t \geq 0$ and $k \in K$, show that if $\chi_{r}\left(a\left(-t^{\prime}\right) \overline{m a}(t)\right)=1$ for some $\bar{m} \in \bar{N}$ then \bar{m} has to belong to the ball $\mathcal{B}_{e^{\left(r-t-t^{\prime}\right) / 2}}$; therefore

$$
\begin{aligned}
\int_{\bar{N}} f\left(\bar{n}^{\prime} a\left(t^{\prime}\right) \cdot o\right) \chi_{r}\left(a\left(-t^{\prime}\right) \bar{n}^{\prime-1} \bar{n} a(t)\right) d \bar{n}^{\prime} & \leq \int_{\mathcal{B}_{e^{\left(r-t-t^{\prime}\right) / 2}}} f\left(\bar{n} \bar{m}^{-1} a\left(t^{\prime}\right) \cdot o\right) d \bar{m} \\
& \leq C e^{|\rho|\left(r-t-t^{\prime}\right)} \mathcal{M}_{3} f\left(\bar{n} a\left(t^{\prime}\right) \cdot o\right)
\end{aligned}
$$

If we substitute this inequality into (3.2) we conclude that

$$
\begin{equation*}
\widetilde{\mathcal{M}_{2}} f(\bar{n} a(t) \cdot o) \leq C e^{-|\rho| t} \int_{\mathbb{R}} \mathcal{M}_{3} f\left(\bar{n} a\left(t^{\prime}\right) \cdot o\right) e^{|\rho| t^{\prime}} d t^{\prime} \tag{3.3}
\end{equation*}
$$

We can now estimate the $L^{2, \infty}$ norm of $\widetilde{\mathcal{M}_{2}} f$: for any $\lambda>0$, the set $E_{\lambda}=\left\{z \in X: \widetilde{\mathcal{M}_{2}} f(z)>\lambda\right\}$ is included in the set

$$
\left\{\bar{n} a(t) \cdot o: e^{-|\rho| t} \int_{\mathbb{R}} \mathcal{M}_{3} f\left(\bar{n} a\left(t^{\prime}\right) \cdot o\right) e^{|\rho| t^{\prime}} d t^{\prime}>\lambda / C\right\}
$$

The measure $d z$ in X is proportional to the measure $e^{2|\rho| t} d \bar{n} d t$ in $\bar{N} \times \mathbb{R}$ under the identification $z=\bar{n} a(t) \cdot o$. Therefore the measure of this last set is less than or equal to

$$
\frac{C \int_{\bar{N}}\left[\int_{\mathbb{R}} \mathcal{M}_{3} f\left(\bar{n} a\left(t^{\prime}\right) \cdot o\right) e^{|\rho| t^{\prime}} d t^{\prime}\right]^{2} d \bar{n}}{\lambda^{2}}
$$

hence

$$
\begin{equation*}
\left\|\widetilde{\mathcal{M}_{2}} f\right\|_{L^{2, \infty}}^{2} \leq C \int_{\bar{N}}\left[\int_{\mathbb{R}} \mathcal{M}_{3} f\left(\bar{n} a\left(t^{\prime}\right) \cdot o\right) e^{|\rho| t^{\prime}} d t^{\prime}\right]^{2} d \bar{n} \tag{3.4}
\end{equation*}
$$

One can now use the following simple lemma to dominate the right-hand side of (3.4):

Lemma 5. If U and V are two measure spaces with measures $d u$ and $d v$ respectively, and $H: U \times V \rightarrow \mathbb{R}_{+}$is measurable then

$$
\left[\int_{U}\|H(u, .)\|_{L^{2,1}(V, d v)}^{2} d u\right]^{1 / 2} \leq C\|H\|_{L^{2,1}(U \times V, d u d v)} .
$$

The proof of this lemma is straightforward. Combining Lemma 3 (at the end of the previous section) and Lemma 5, one has

$$
\begin{align*}
\int_{\bar{N}}\left[\int_{\mathbb{R}} \mathcal{M}_{3} f\left(\bar{n} a\left(t^{\prime}\right) \cdot o\right) e^{|\rho| t^{\prime}} d t^{\prime}\right]^{2} d \bar{n} & \leq C \int_{\bar{N}}\left\|\mathcal{M}_{3} f(\bar{n} a(.) \cdot o)\right\|_{L^{2,1}\left(\mathbb{R}, e^{2|\rho| t^{\prime}} d t^{\prime}\right)}^{2} d \bar{n} \tag{3.5}\\
& \leq C\left\|\mathcal{M}_{3} f\left(\bar{n} a\left(t^{\prime}\right) \cdot o\right)\right\|_{L^{2,1}\left(\bar{N} \times \mathbb{R}, e^{2|\rho| t^{\prime}} d \bar{n} d t^{\prime}\right)}^{2} \\
& \leq C\left\|\mathcal{M}_{3} f\right\|_{L^{2,1}(X)}^{2} .
\end{align*}
$$

Finally, since the maximal operator \mathcal{M}_{3} is bounded on $L^{p}(X)$ for any $p>1$, it follows by the general version of Marcinkiewicz interpolation theorem that $\left\|\mathcal{M}_{3} f\right\|_{L^{2,1}(X)} \leq C\|f\|_{L^{2,1}(X)}$ and Theorem 4 follows from (3.4) and (3.5).

4. A covering lemma

A simple connection between covering lemmas and boundedness of maximal operators is explained in [2]. In our setting we have:

Corollary 6. If a collection of balls $B_{i} \subset X, i \in I$, has the property that $\left|\cup B_{i}\right|<\infty$ then one can select a finite subset $J \subset I$ such that

$$
\begin{align*}
& \left|\cup_{i \in I} B_{i}\right| \leq C\left|\cup_{j \in J} B_{j}\right| \tag{4.1}\\
& \left\|\sum_{j \in J} \chi_{B_{j}}\right\|_{L^{2, \infty}(X)} \leq C\left|\cup_{i \in I} B_{i}\right|^{1 / 2} \tag{i}
\end{align*}
$$

It follows from (4.1) that

$$
\left\|\sum_{j \in J} \chi_{B_{j}}\right\|_{L^{q}(X)} \leq C_{q}\left|\cup_{i \in I} B_{i}\right|^{1 / q}
$$

for any $q \in[1,2)$. Thus, in the terminology of [2], the family of natural balls on symmetric spaces of real rank one has the covering property V_{q} if and only if $q \in[1,2)$.

5. Proof of the convolution theorem

In this section we will prove Theorem A. In view of the general theory of Lorentz spaces, it suffices to prove that

$$
\begin{equation*}
\iint_{G \times G} f(z) g\left(z^{-1} z^{\prime}\right) h\left(z^{\prime}\right) d z^{\prime} d z \leq C\|f\|_{L^{2,1}}\|g\|_{L^{2,1}}\|h\|_{L^{2,1}} \tag{5.1}
\end{equation*}
$$

whenever $f, g, h: G \rightarrow\{0,1\}$ are characteristic functions of open sets of finite measure. We can also assume that g is supported away from the origin of the group, for example in the set $\underset{t>1}{\cup} K a(t) K$. The main part of our argument is devoted to proving that the left-hand side of (5.1) is controlled by an integral involving suitable rearrangements of the functions f, g and h, as in (5.19). Let $z=\bar{n} a(t) k, z^{\prime}=\bar{n}^{\prime} a\left(t^{\prime}\right) k^{\prime}$ and the left-hand side of (5.1) becomes

$$
\begin{equation*}
\int_{K} \int_{K} \int_{\mathbb{R}} \int_{\mathbb{R}} I\left(k, k^{\prime}, t, t^{\prime}\right) e^{2|\rho|\left(t+t^{\prime}\right)} d t^{\prime} d t d k^{\prime} d k, \tag{5.2}
\end{equation*}
$$

where

$$
\begin{equation*}
I\left(k, k^{\prime}, t, t^{\prime}\right)=\iint_{\bar{N} \times \bar{N}} f(\bar{n} a(t) k) g\left(k^{-1} a(-t) \bar{n}^{-1} \bar{n}^{\prime} a\left(t^{\prime}\right) k^{\prime}\right) h\left(\bar{n}^{\prime} a\left(t^{\prime}\right) k^{\prime}\right) d \bar{n}^{\prime} d \bar{n} \tag{5.3}
\end{equation*}
$$

We will show how to dominate the expression in (5.2) in four steps.
Step 1. Integration on the subgroup \bar{N}. As in the proof of the maximal theorems, we start by integrating on \bar{N}. Define $F_{1}, H_{1}: K \times \mathbb{R} \rightarrow \mathbb{R}_{+}$by

$$
F_{1}(k, t)=\int_{\bar{N}} f(\bar{n} a(t) k) d \bar{n}
$$

and

$$
H_{1}\left(k^{\prime}, t^{\prime}\right)=\int_{\bar{N}} h\left(\bar{n}^{\prime} a\left(t^{\prime}\right) k^{\prime}\right) d \bar{n}^{\prime} .
$$

Using the simple inequality

$$
\begin{aligned}
& \iint_{\bar{N} \times \bar{N}} a(\bar{n}) b\left(\bar{n}^{-1} \bar{n}^{\prime}\right) c\left(\bar{n}^{\prime}\right) d \bar{n}^{\prime} d \bar{n} \\
& \quad \leq\left(\int_{\bar{N}} b(\bar{n}) d \bar{n}\right)\left[\min \left(\left(\int_{\bar{N}} a(\bar{n}) d \bar{n}\right),\left(\int_{\bar{N}} c(\bar{n}) d \bar{n}\right)\right)\right]
\end{aligned}
$$

which holds for any measurable functions $a, b, c: \bar{N} \rightarrow[0,1]$ with compact support, it follows that the integral $I\left(k, k^{\prime}, t, t^{\prime}\right)$ in (5.3) is dominated by

$$
\begin{equation*}
\min \left[F_{1}(k, t), H_{1}\left(k^{\prime}, t^{\prime}\right)\right]\left[\int_{\bar{N}} g\left(k^{-1} a(-t) \bar{n}_{1} a\left(t^{\prime}\right) k^{\prime}\right) d \bar{n}_{1}\right] \tag{5.4}
\end{equation*}
$$

By (2.2), the map $\bar{n}_{1} \rightarrow a(-t) \bar{n}_{1} a(t)=\bar{n}_{2}$ is a dilation of \bar{N} with $d \bar{n}_{1}=$ $e^{-2|\rho| t} d \bar{n}_{2}$; therefore

$$
\begin{array}{rl}
\int_{\bar{N}} g & g\left(k^{-1} a(-t) \bar{n}_{1} a\left(t^{\prime}\right) k^{\prime}\right) d \bar{n}_{1}=e^{-2|\rho| t} \int_{\bar{N}} g\left(k^{-1} \bar{n}_{2} a\left(t^{\prime}-t\right) k^{\prime}\right) d \bar{n}_{2} \tag{5.5}\\
& =C e^{-2|\rho| t} \int_{\mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}} g\left(k^{-1} \bar{n}(v, w) a\left(t^{\prime}-t\right) k^{\prime}\right) d v d w \\
& =C e^{-2|\rho| t} \int_{u \geq\left|t^{\prime}-t\right|} \int_{T_{u, t^{\prime}-t}} g\left(k^{-1} \bar{n}(P) a\left(t^{\prime}-t\right) k^{\prime}\right) d \omega_{u, t^{\prime}-t}(P) d u
\end{array}
$$

The surfaces $T_{u, s}$ defined in (2.6) for $\left\{(u, s) \in \mathbb{R}_{+} \times \mathbb{R}: u \geq|s|\right\}$ and the associated measures $d \omega_{u, s}$ have the same meaning as in the proof of Lemma 1. Let

$$
\begin{equation*}
G_{1}\left(k, k^{\prime}, u, s\right)=\left(\int_{T_{u, s}} 1 d \omega_{u, s}\right)^{-1}\left[\int_{T_{u, s}} g\left(k^{-1} \bar{n}(P) a(s) k^{\prime}\right) d \omega_{u, s}(P)\right] \tag{5.6}
\end{equation*}
$$

be the average of the function $P \rightarrow g\left(k^{-1} \bar{n}(P) a(s) k^{\prime}\right)$ on the surface $T_{u, s}$ (the domain of definition of G_{1} is $\left\{\left(k, k^{\prime}, u, s\right) \in K \times K \times \mathbb{R}_{+} \times \mathbb{R}: u \geq|s|\right\}$, and $\left.G_{1}\left(k, k^{\prime}, u, s\right) \in[0,1]\right)$. If we substitute this definition in (5.5), we conclude that

$$
\begin{aligned}
\int_{\bar{N}} g\left(k^{-1}\right. & \left.a(-t) \bar{n}_{1} a\left(t^{\prime}\right) k^{\prime}\right) d \bar{n}_{1} \\
& =C e^{-|\rho|\left(t+t^{\prime}\right)} \int_{u \geq\left|t^{\prime}-t\right|} G_{1}\left(k, k^{\prime}, u, t^{\prime}-t\right) \psi\left(u, t^{\prime}-t\right) d u
\end{aligned}
$$

The function $\psi(u, s)$ was computed in the proof of Lemma 1 and is given by (2.5). Finally, if we substitute this last formula in (5.4), we find that the integral $I\left(k, k^{\prime}, t, t^{\prime}\right)$ is dominated by

$$
C e^{-|\rho|\left(t+t^{\prime}\right)} \min \left[F_{1}(k, t), H_{1}\left(k^{\prime}, t^{\prime}\right)\right] \int_{u \geq\left|t^{\prime}-t\right|} G_{1}\left(k, k^{\prime}, u, t^{\prime}-t\right) \psi\left(u, t^{\prime}-t\right) d u
$$

which shows that the left-hand side of (5.1) is dominated by

$$
\begin{align*}
& C \int_{K} \int_{K} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{u \geq\left|t^{\prime}-t\right|} \min \left[F_{1}(k, t), H_{1}\left(k^{\prime}, t^{\prime}\right)\right] \tag{5.7}\\
& \quad G_{1}\left(k, k^{\prime}, u, t^{\prime}-t\right) \psi\left(u, t^{\prime}-t\right) e^{|\rho|\left(t+t^{\prime}\right)} d u d t^{\prime} d t d k^{\prime} d k
\end{align*}
$$

For later use, we record the following properties of the functions F_{1} and H_{1} :

$$
\begin{align*}
\|f\|_{L^{2,1}(G)} & =\left[C_{2} \int_{K} \int_{\mathbb{R}} F_{1}(k, t) e^{2|\rho| t} d t d k\right]^{1 / 2} \tag{5.8}\\
\|h\|_{L^{2,1}(G)} & =\left[C_{2} \int_{K} \int_{\mathbb{R}} H_{1}\left(k^{\prime}, t^{\prime}\right) e^{2|\rho| t^{\prime}} d t^{\prime} d k^{\prime}\right]^{1 / 2}
\end{align*}
$$

Step 2. Integration on the subgroup A. Let χ_{1} and χ_{2}, be the characteristic functions of the sets $\left\{\left(k, k^{\prime}, t, t^{\prime}\right): F_{1}(k, t) \leq H_{1}\left(k^{\prime}, t^{\prime}\right)\right\}$ and $\left\{\left(k, k^{\prime}, t, t^{\prime}\right)\right.$ $\left.: H_{1}\left(k^{\prime}, t^{\prime}\right) \leq F_{1}(k, t)\right\}$ respectively. For any $k, k^{\prime}, t, t^{\prime}$ one has

$$
\left\{\begin{array}{l}
F_{1}(k, t) \chi_{1}\left(k, k^{\prime}, t, t^{\prime}\right) \leq H_{1}\left(k^{\prime}, t^{\prime}\right) \tag{5.9}\\
H_{1}\left(k^{\prime}, t^{\prime}\right) \chi_{2}\left(k, k^{\prime}, t, t^{\prime}\right) \leq F_{1}(k, t) .
\end{array}\right.
$$

Since $\chi_{1}+\chi_{2} \geq 1$, the expression (5.7) is less than or equal to the sum of two similar expressions of the form

$$
\begin{aligned}
C \int_{K} \int_{K} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{u \geq\left|t^{\prime}-t\right|} & F_{1}(k, t) \chi_{1}\left(k, k^{\prime}, t, t^{\prime}\right) \\
& G_{1}\left(k, k^{\prime}, u, t^{\prime}-t\right) \psi\left(u, t^{\prime}-t\right) e^{|\rho|\left(t+t^{\prime}\right)} d u d t^{\prime} d t d k^{\prime} d k .
\end{aligned}
$$

The change of variable $t^{\prime}=t+s$ in the expression above shows that it is equal to

$$
\begin{align*}
C \int_{K} \int_{K} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{u \geq|s|} & F_{1}(k, t) \chi_{1}\left(k, k^{\prime}, t, t+s\right) \tag{5.10}\\
& G_{1}\left(k, k^{\prime}, u, s\right) \psi(u, s) e^{2|\rho| t} e^{|\rho| s} d u d t d s d k^{\prime} d k
\end{align*}
$$

and the first of the inequalities in (5.9) becomes

$$
\begin{equation*}
F_{1}(k, t) \chi_{1}\left(k, k^{\prime}, t, t+s\right) e^{2|\rho| t} \leq H_{1}\left(k^{\prime}, t+s\right) e^{2|\rho| t} \tag{5.11}
\end{equation*}
$$

Let $F(k)=\left[\int_{\mathbb{R}} F_{1}(k, t) e^{2|\rho| t} d t\right]^{1 / 2}, H\left(k^{\prime}\right)=\left[\int_{\mathbb{R}} H_{1}\left(k^{\prime}, t^{\prime}\right) e^{2|\rho| t^{\prime}} d t^{\prime}\right]^{1 / 2}$ and

$$
A\left(k, k^{\prime}, s\right)=\int_{\mathbb{R}} F_{1}(k, t) \chi_{1}\left(k, k^{\prime}, t, t+s\right) e^{2|\rho| t} d t
$$

The expression (5.10) becomes

$$
\begin{equation*}
C \int_{K} \int_{K} \int_{\mathbb{R}} \int_{u \geq|s|} A\left(k, k^{\prime}, s\right) G_{1}\left(k, k^{\prime}, u, s\right) \psi(u, s) e^{|\rho| s} d u d s d k^{\prime} d k . \tag{5.12}
\end{equation*}
$$

Clearly, $A\left(k, k^{\prime}, s\right) \leq F(k)^{2}\left(\right.$ since $\left.\chi_{1} \leq 1\right)$ and $A\left(k, k^{\prime}, s\right) \leq e^{-2|\rho| s} H\left(k^{\prime}\right)^{2}$ by (5.11); therefore

$$
e^{|\rho| s} A\left(k, k^{\prime}, s\right) \leq \begin{cases}e^{|\rho| s} F(k)^{2} & \text { if } e^{|\rho| s} \leq H\left(k^{\prime}\right) / F(k), \\ e^{-|\rho| s} H\left(k^{\prime}\right)^{2} & \text { if } e^{|\rho| s} \geq H\left(k^{\prime}\right) / F(k)\end{cases}
$$

If we substitute this inequality in (5.12) we find that the left-hand side of (5.1) is dominated by

$$
\begin{align*}
& C \int_{K} \int_{K} \int_{e|\rho| s \leq H\left(k^{\prime}\right) / F(k)} \int_{u \geq|s|} F(k)^{2} G_{1}\left(k, k^{\prime}, u, s\right) \psi(u, s) e^{|\rho| s} d u d s d k^{\prime} d k \tag{5.13}\\
& \quad+C \int_{K} \int_{K} \int_{e^{|\rho| s} \geq H\left(k^{\prime}\right) / F(k)} \int_{u \geq|s|} H\left(k^{\prime}\right)^{2} G_{1}\left(k, k^{\prime}, u, s\right) \psi(u, s) e^{-|\rho| s} d u d s d k^{\prime} d k .
\end{align*}
$$

We pause for a moment to note that our estimates so far, together with the proof of Lemma 1 in the second section, suffice to prove that $L^{2,1}(G) *$ $L^{2,1}(G / / K) \subseteq L^{2, \infty}(G)$: if g is a K-bi-invariant function, then $G_{1}\left(k, k^{\prime}, u, s\right)$ depends only on u, and (2.9) shows that

$$
\int_{u \geq|s|} G_{1}\left(k, k^{\prime}, u, s\right) \psi(u, s) d u \leq C\|g\|_{L^{2,1}} .
$$

As a consequence, both terms in (5.13) are dominated by

$$
C\|g\|_{L^{2,1}} \int_{K} \int_{K} F(k) H\left(k^{\prime}\right) d k^{\prime} d k ;
$$

therefore

$$
\begin{aligned}
\iint_{G \times G} f(z) g\left(z^{-1} z^{\prime}\right) h\left(z^{\prime}\right) d z^{\prime} d z & \leq C\|g\|_{L^{2,1}} \int_{K} \int_{K} F(k) H\left(k^{\prime}\right) d k^{\prime} d k \\
& \leq C\|f\|_{L^{2,1}}\|g\|_{L^{2,1}}\|h\|_{L^{2,1}} .
\end{aligned}
$$

Here we used the fact that, as a consequence of (5.8),

$$
\begin{align*}
& \|f\|_{L^{2,1}(G)}=\left[C_{2} \int_{K} F(k)^{2} d k\right]^{1 / 2}, \tag{5.14}\\
& \|h\|_{L^{2,1}(G)}=\left[C_{2} \int_{K} H\left(k^{\prime}\right)^{2} d k^{\prime}\right]^{1 / 2} .
\end{align*}
$$

Step 3. A rearrangement inequality. In the general case (if g is not assumed to be K-bi-invariant) we will show that both terms in (5.13) are dominated by some expression of the form

$$
C \int_{0}^{1} \int_{0}^{1} \int_{\mathbb{R}_{+}} F^{*}(x) H^{*}(y) G^{* *}(x, y, u) e^{|\rho| u} d u d y d x
$$

where $F^{*}, H^{*}:(0,1] \rightarrow \mathbb{R}_{+}$are the usual nonincreasing rearrangements of the functions F and H (recall that the measure of K is equal to 1$)$ and $G^{* *}:(0,1] \times$ $(0,1] \times \mathbb{R}_{+} \rightarrow\{0,1\}$ is a suitable "double" rearrangement of g. The precise definitions are the following: if $a: K \rightarrow \mathbb{R}_{+}$is a measurable function then the nonincreasing rearrangement $a^{*}:(0,1] \rightarrow \mathbb{R}_{+}$is the right semicontinuous nonincreasing function with the property that

$$
|\{k \in K: a(k)>\lambda\}|=\left|\left\{x \in(0,1]: a^{*}(x)>\lambda\right\}\right| \text { for any } \lambda \in[0, \infty) .
$$

Assume now that $a: K \times K \rightarrow \mathbb{R}_{+}$is a measurable function. For almost every $k \in K$ let $a^{*}(k, y), y \in(0,1]$, be the nonincreasing rearrangement of the function $k^{\prime} \rightarrow a\left(k, k^{\prime}\right)$ and let $a^{* *}(x, y)$ be the nonincreasing rearrangement of the function $k \rightarrow a(k, y)$ (clearly $\left.a^{* *}:(0,1] \times(0,1] \rightarrow \mathbb{R}_{+}\right)$. The following lemma summarizes some of the well-known properties of nonincreasing rearrangements (see for example [11, Chapter V]):

Lemma 7. (a) If $a: K \rightarrow \mathbb{R}_{+}$is a measurable function then

$$
\left[\int_{K} a(k)^{2} d k\right]^{1 / 2}=\left[\int_{(0,1]} a^{*}(x)^{2} d x\right]^{1 / 2} .
$$

(b) If $a: K \times K \rightarrow \mathbb{R}_{+}$is a measurable function then

$$
\begin{equation*}
\int_{K} \int_{K} a\left(k, k^{\prime}\right) d k^{\prime} d k=\int_{0}^{1} \int_{0}^{1} a^{* *}(x, y) d y d x . \tag{i}
\end{equation*}
$$

(ii) The function $a^{* *}$ is nonincreasing: $a^{* *}(x, y) \leq a^{* *}\left(x^{\prime}, y^{\prime}\right)$ whenever $x \geq x^{\prime}$ and $y \geq y^{\prime}$.
(iii) For any measurable sets $D, E \subset K$ with measures $|D|$ and $|E|$

$$
\int_{D} \int_{E} a\left(k, k^{\prime}\right) d k^{\prime} d k \leq \int_{0}^{|D|} \int_{0}^{|E|} a^{* *}(x, y) d y d x .
$$

Returning to our setting, let F^{*} and H^{*} be the nonincreasing rearrangements of F and H, let $\tilde{g}: K \times K \times \mathbb{R}_{+} \rightarrow\{0,1\}$ be given by $\tilde{g}\left(k, k^{\prime}, u\right)=$ $g\left(k^{-1} a(u) k^{\prime}\right)$ and let $G^{* *}:(0,1] \times(0,1] \times \mathbb{R}_{+} \rightarrow\{0,1\}$ be the double rearrangement of the function \tilde{g} (i.e., $G^{* *}(., ., u)$ is the double rearrangement of $\tilde{g}(., ., u)$ for all $u \geq 0)$. Recall that we assumed that the function g is the characteristic function of a set included in $\underset{u>1}{\cup} K a(u) K$; therefore

$$
\begin{equation*}
\|g\|_{L^{2,1}(G)} \approx\left[\int_{\mathbb{R}_{+}} \int_{0}^{1} \int_{0}^{1} G^{* *}(x, y, u) e^{2|\rho| u} d y d x d u\right]^{1 / 2} \tag{5.15}
\end{equation*}
$$

We will now show how to use these rearrangements to dominate the two expressions in (5.13). For any integers m, n let $D_{m}=\{k \in K: F(k)$ $\left.\in\left[e^{|\rho| m}, e^{|\rho|(m+1)}\right]\right\}, E_{n}=\left\{k^{\prime} \in K: H\left(k^{\prime}\right) \in\left[e^{|\rho| n}, e^{|\rho|(n+1)}\right]\right\}$ and let $D_{-\infty}=$ $\{k \in K: F(k)=0\}, E_{-\infty}=\left\{k^{\prime} \in K: H\left(k^{\prime}\right)=0\right\}$ such that $K=\cup_{m} D_{m}=$ $\cup_{n} E_{n}$. Let δ_{m}, respectively ε_{n}, be the measures of the sets D_{m}, respectively ${ }_{E}^{n}$, as subsets of K. The first of the two expressions in (5.13) is dominated by

$$
\begin{equation*}
C \sum_{m, n} \int_{D_{m}} \int_{E_{n}} \int_{s \leq(n-m+1)} \int_{u \geq|s|} e^{2|\rho|(m+1)} G_{1}\left(k, k^{\prime}, u, s\right) \psi(u, s) e^{|\rho| s} d u d s d k^{\prime} d k . \tag{5.16}
\end{equation*}
$$

Combining the definition (5.6) of the function G_{1} (recall that the surfaces $T_{u, s}$ are defined as the set of points $P \in \mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}$ with the property that $\bar{n}(P) a(s) \in K a(u) K)$, the fact that $d k$ is a Haar measure on K and the last statement of Lemma 7, we conclude that

$$
\int_{D_{m}} \int_{E_{n}} G_{1}\left(k, k^{\prime}, u, s\right) d k^{\prime} d k \leq \int_{0}^{\delta_{m}} \int_{0}^{\varepsilon_{n}} G^{* *}(x, y, u) d y d x
$$

for any s with the property that $|s| \leq u$. Substituting this inequality in (5.16), we find that the expression in (5.16) is dominated by

$$
\begin{align*}
C \sum_{m, n} \int_{\mathbb{R}_{+}} e^{2|\rho| m} & {\left[\int_{0}^{\delta_{m}} \int_{0}^{\varepsilon_{n}} G^{* *}(x, y, u) d y d x\right] } \tag{5.17}\\
& {\left[\int_{s \leq(n-m+1),|s| \leq u} \psi(u, s) e^{|\rho| s} d s\right] d u }
\end{align*}
$$

The formula (2.5) shows that the last of the integrals in the expression above is dominated by $C e^{|\rho| u} e^{|\rho|(n-m)}$; therefore the first of the two expressions in (5.13) is dominated by

$$
\begin{equation*}
C \int_{\mathbb{R}_{+}} \sum_{m, n}\left[e^{|\rho|(m+n)} \int_{0}^{\delta_{m}} \int_{0}^{\varepsilon_{n}} G^{* *}(x, y, u) d y d x\right] e^{|\rho| u} d u \tag{5.18}
\end{equation*}
$$

Let

$$
S(x, y)=\sum_{m, n}\left[e^{|\rho|(m+n)} \chi_{\delta_{m}}(x) \chi_{\varepsilon_{n}}(y)\right]
$$

where $\chi_{\delta_{m}}, \chi_{\varepsilon_{n}}$ are the characteristic functions of sets $\left(0, \delta_{m}\right)$, respectively $\left(0, \varepsilon_{n}\right)$. If $m_{x}=\max \left\{m: \delta_{m}>x\right\}$ and $n_{y}=\max \left\{n: \varepsilon_{n}>y\right\}$ then $S(x, y) \leq$ $C e^{|\rho|\left(m_{x}+n_{y}\right)}$. Clearly $F^{*}(x) \geq e^{|\rho| m_{x}}, H^{*}(y) \geq e^{|\rho| n_{y}}$; therefore the expression (5.18) is dominated by

$$
C \int_{\mathbb{R}_{+}} \int_{0}^{1} \int_{0}^{1} F^{*}(x) H^{*}(y) G^{* *}(x, y, u) e^{|\rho| u} d y d x d u
$$

One can deal with the second of the two expressions in (5.13) in a similar way; therefore

$$
\begin{align*}
& \iint_{G \times G} f(z) g\left(z^{-1} z^{\prime}\right) h\left(z^{\prime}\right) d z^{\prime} d z \tag{5.19}\\
& \quad \leq C \int_{\mathbb{R}_{+}} \int_{0}^{1} \int_{0}^{1} F^{*}(x) H^{*}(y) G^{* *}(x, y, u) e^{|\rho| u} d y d x d u
\end{align*}
$$

Step 4. Final estimates. Let \mathcal{K} be a suitable constant (to be chosen later) and let $\mathcal{U}=\left\{(x, y, u): F^{*}(x) H^{*}(y) \leq \mathcal{K} e^{|\rho| u}\right\}$ and $\mathcal{V}=\{(x, y, u)$ $\left.: F^{*}(x) H^{*}(y) \geq \mathcal{K} e^{|\rho| u}\right\}$. Вy (5.15),

$$
\begin{aligned}
& \int_{\mathcal{U}} F^{*}(x) H^{*}(y) G^{* *}(x, y, u) e^{|\rho| u} d y d x d u \\
& \quad \leq \int_{\mathbb{R}_{+}} \int_{0}^{1} \int_{0}^{1} \mathcal{K} G^{* *}(x, y, u) e^{2|\rho| u} d y d x d u \leq C \mathcal{K}\|g\|_{L^{2,1}}^{2}
\end{aligned}
$$

Using Lemma $7(\mathrm{a}),(5.14)$ and the fact that $G^{* *}(x, y, u) \leq 1$ one has

$$
\begin{aligned}
\int_{\mathcal{V}} F^{*}(x) H^{*}(y) G^{* *}(x, y, u) e^{|\rho| u} d y d x d u & \leq C \int_{0}^{1} \int_{0}^{1} \frac{\left[F^{*}(x) H^{*}(y)\right]^{2}}{\mathcal{K}} d y d x \\
& \leq C \frac{\|f\|_{L^{2,1}}^{2}\|h\|_{L^{2,1}}^{2}}{\mathcal{K}}
\end{aligned}
$$

Finally one lets $\mathcal{K}=\left(\|g\|_{L^{2,1}}\right)^{-1}\left(\|f\|_{L^{2,1}}\|h\|_{L^{2,1}}\right)$ and the theorem follows.

6. A general rearrangement inequality

We will now extend the rearrangement inequality (5.19) to the case when f, g, h are arbitrary measurable functions (not just characteristic functions of sets). For any measurable function $f: G \rightarrow \mathbb{R}_{+}$we define the function $F^{*}:(0,1] \rightarrow \mathbb{R}_{+}$by the following procedure: first, let $\tilde{f}: K \times(0, \infty) \rightarrow \mathbb{R}_{+}$be defined, for almost every $k \in K$, as the usual nonincreasing rearrangement of the function $f_{k}: \bar{N} \times A \rightarrow \mathbb{R}_{+}, f_{k}(\bar{n} a)=f(\bar{n} a k)$ with respect to the measure $e^{2 \rho(\log a)} d \bar{n} d a$. Using the function \tilde{f} we define the function $\tilde{F}:(0,1] \times(0, \infty) \rightarrow$ \mathbb{R}_{+}: for each $r>0$ fixed, the function $\tilde{F}(., r)$ is the usual the nonincreasing rearrangement of the function $k \rightarrow \tilde{f}(k, r)$. Finally let

$$
\begin{equation*}
F^{*}(x)=\frac{1}{2} \int_{0}^{\infty} \tilde{F}(x, r) r^{-1 / 2} d r \tag{6.1}
\end{equation*}
$$

be the $L^{2,1}$ norm of the function $r \rightarrow \tilde{F}(x, r)$. Notice that this definition of the function F^{*} agrees with our earlier definition if f is a characteristic function.

ThEOREM 8. If $f, g, h: G \rightarrow R_{+}$are measurable functions then

$$
\begin{align*}
& \iint_{G \times G} f(z) g\left(z^{-1} z^{\prime}\right) h\left(z^{\prime}\right) d z^{\prime} d z \tag{6.2}\\
& \quad \leq C \int_{\mathbb{R}_{+}} \int_{0}^{1} \int_{0}^{1} F^{*}(x) H^{*}(y) G^{* *}(x, y, u) \phi(u) d y d x d u
\end{align*}
$$

where $G^{* *}:(0,1] \times(0,1] \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is the double rearrangement of the function $\left(k, k^{\prime}, u\right) \rightarrow g\left(k^{-1} a(u) k^{\prime}\right)$ (the same definition as before), F^{*} and H^{*} are defined in the previous paragraph and $\phi(u)=u^{m_{1}+m_{2}}$ if $u \leq 1$ and $\phi(u)=e^{|\rho| u}$ if $u \geq 1$.

Proof of Theorem 8. Notice that

$$
\phi(u) \approx \sup _{r \in[-u, u]} e^{-|\rho| r} \int_{s \leq r,|s| \leq u} \psi(u, s) e^{|\rho| s} d s
$$

Notice also that if f and h are characteristic functions of sets then (6.2) is equivalent to (5.19). If f, h are simple positive functions, one can write (uniquely up to sets of measure zero) $f=\sum_{1}^{M_{1}} c_{i} f_{i}, h=\sum_{1}^{M_{2}} d_{j} h_{j}$, where $c_{i}, d_{j}>0$ and f_{i}
and h_{j}, are characteristic functions of sets U_{i} and V_{j} with the property that for all i and j one has $U_{i+1} \subset U_{i}$ and $V_{j+1} \subset V_{j}$. Simple manipulations involving rearrangements show that $F^{*}=\sum_{1}^{M_{1}} c_{i} F_{i}^{*}$ and $H^{*}=\sum_{1}^{M_{2}} d_{j} H_{j}^{*}$ (this explains the reason why we chose the apparently complicated definition of the function F^{*} in (6.1)), and (6.2) follows by summation. Finally, a standard argument shows that (6.2) holds for arbitrary measurable functions f, g and h for which the right-hand side integral in (6.2) converges.

Princeton University, Princeton, NJ
Current address: Institute for Advanced Study, Princeton, NJ
E-mail address: aionescu@math.ias.edu

References

[1] J.-Ph. Anker, L_{p} Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. of Math. 132 (1990), 597-628.
[2] A. Cordoba and R. Fefferman, A geometric proof of the strong maximal theorem, Ann. of Math. 102 (1975), 95-100.
[3] M. Cowling, The Kunze-Stein phenomenon, Ann. of Math. 107 (1978), 209-234.
[4] _, Herz's "principe de majoration" and the Kunze-Stein phenomenon, in Harmonic Analysis and Number Theory (Montreal, PQ, 1996), 73-88, CMS Conf. Proc. 21, A.M.S., Providence, RI, 1997.
[5] J.-L. Clerc and E. M. Stein, L^{p}-multipliers for noncompact symmetric spaces, Proc. Natl. Acad. Sci. USA 71 (1974), 3911-3912.
[6] S. Helgason, Geometric Analysis on Symmetric Spaces, A.M.S., Providence, RI, 1994.
[7] A. D. Ionescu, A maximal operator and a covering lemma on non-compact symmetric spaces, Math. Res. Lett. 7 (2000), 83-93.
[8] T. H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, in Special Functions: Group Theoretical Aspects and Applications, 1-85, Math. Appl. Reidel, Dordrecht-Boston, MA, 1984.
[9] N. Lohoué and T. Rychener, Some function spaces on symmetric spaces related to convolution operators, J. Funct. Anal. 55 (1984), 200-219.
[10] R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic analysis of the 2×2 unimodular group, Amer. J. Math. 82 (1960), 1-62.
[11] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Series, No. 32, Princeton Univ. Press, Princeton, NJ, 1971.
[12] J.-O. Strömberg, Weak type L^{1} estimates for maximal functions on noncompact symmetric spaces, Ann. of Math. 114 (1981), 115-126.
[13] N. J. Weiss, Fatou's theorem for symmetric spaces, in Symmetric Spaces (Short Courses, Washington Univ., St. Louis, MO, 1969-1970), 413-441, Pure and Appl. Math. 8, Marcel Dekker, New York, 1972.

[^0]: *The author was supported by an Alfred P. Sloan graduate fellowship.

