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Hermitian, symmetric and symplectic
random ensembles: PDEs for the
distribution of the spectrum

By M. ADLER and P. VAN MOERBEKE*

Abstract

Given the Hermitian, symmetric and symplectic ensembles, it is shown
that the probability that the spectrum belongs to one or several intervals sat-
isfies a nonlinear PDE. This is done for the three classical ensembles: Gaussian,
Laguerre and Jacobi. For the Hermitian ensemble, the PDE (in the boundary
points of the intervals) is related to the Toda lattice and the KP equation,
whereas for the symmetric and symplectic ensembles the PDE is an inductive
equation, related to the so-called Pfaff-KP equation and the Pfaff lattice. The
method consists of inserting time-variables in the integral and showing that
this integral satisfies integrable lattice equations and Virasoro constraints.
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0. Introduction

Consider weights of the form p(z)dz := e V(#dz on an interval F =
[A, B] C R, with rational logarithmic derivative and subjected to the following
boundary conditions:
/ o] )
4 / g Zo biz k
(0.0.1) P v T S le}ngf() p(z)z" =0 for all k >0,

together with a disjoint union of intervals,

(0.0.2) E = U [022‘—1; CQZ‘] g F g R.
1

The data (0.0.1) and (0.0.2) define an algebra of differential operators

a
k+1
(0.0.3) § ) ) g0

Let H,, S, and 7,, denote the Hermitian (M = M "), symmetric (M = M ")
and “symplectic” ensembles (M = M, M = JMJ™'), respectively. Tra-
ditionally, the latter is called the “symplectic ensemble,” although the ma-
trices involved are not symplectic! These conditions guarantee the reality of
the spectrum of M. Then, H,(E), S,(F) and 7,(E) denote the subsets of
‘H,, S, and 7, with spectrum in the subset £ C F' C R. The aim of this paper
is to find PDEs for the probabilities

(0.0.4)
P,(E): = P,( all spectral points of M € E)
Sy, s0(E) o Ty €V MdAM
), sur) o Ty €V ODAM

Jn |A (2)|° Tz e VoW dz, .
= o A () PIT o Vs, 06 =2,1,4 respectively,

for the Gaussian, Laguerre and Jacobi weights. The probabilities involve pa-
rameters 3, a,b (see (0.1.1), (0.2.1) and (0.3.2)) and

554 ::2<<§>1/2_ (5)1/2>2:{ (1) igi 2;34'
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The method used to obtain these PDEs involves inserting time-parameters
into the integrals, appearing in (0.0.4) and to notice that the integrals obtained
satisfy

e Virasoro constraints: linear PDEs in ¢t and the boundary points of £, and

e integrable hierarchies:

ensemble ‘ I} ‘lattice

Hermitian | 8 = 2 | Toda
symmetric | § =1 | Pfaff
symplectic | § = 4 | Pfaff

As a consequence of a duality (explained in Theorem 1.1) between [-Virasoro
generators under the map § — 4/, the PDEs obtained have a remarkable
property: the coefficients @) and @); in the PDEs are functions of the variables
n, 3,a,b, and have the invariance property under the map

a b
—9 _Z -
n— —2n, a — 5 b— 5
to be precise,
a b
(005) Qi(_2n757__7__) = Qi(n7ﬂ7a7b)‘5:4'
27 27p=

Important remark. For 8 = 2, the probabilities satisfy PDEs in the bound-
ary points of E, whereas in the case § = 1,4, the equations are inductive.
Namely, for 5 =1 (resp. # = 4), the probabilities P, 2 (resp. P,11) are given
in terms of P,,_o (resp. P,—1) and a differential operator acting on P,.

0.1. Hermitian, symmetric and symplectic Gaussian ensembles. Given the
disjoint union £ C R and the weight e*bzz, the differential operators By, take

2r ol a
B =Y it =
1 802-

Also, define the invariant polynomials (in the sense of (0.0.5))

Q = 12v%n (n +1-— %) . Q2 =4(1+5] )b (2n + 07,1 - g))

on the form

6,
and 2
Q1 = (2 — (51674) ik
THEOREM 0.1.  The following probabilities for (5 = 2,1,4)
(0.1.1) P,(E) = JEn [An(2)]° [Theq eszl%dzk

f]R" |An(z)|’6 H;cl:l eszlzdzk’
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satisfy the PDE’s (F := F,, = log P,):
(0.1.2)
P

-2 7 . 2 when n is even and =1
50 S R th ind
1@ ( P2 WL ANAET Y 1 when n s arbitrary and G = 4

= (B + (Qa + 682, F)B2 | +4Q1 (383 — 4B_1By + 65,)) F.

0.2. Hermitian, symmetric and symplectic Laguerre ensembles. Given the
disjoint union E C R* and the weight 2% %%, the By, take on the form

i )
B, = .
1 8ci

Also define the polynomials, again respecting the duality (0.0.5),

Zn(n—l)(n+2a)(n+2a+1), for =1
Q = ,
gn(2n+1)(2n—|—a)(2n+a—1), for p=14
2
Q2 = <3ﬂn2—%+6an+4(1—§) +3>5f4+(1—a2)(1—5f4),
Q1 = (ﬁn2+2an—|—(l—§)a>, Qozb(2—51674)(n—|—%),
2
@1 = T (2-d).

THEOREM 0.2. The following probabilities

S [Bn(2)° TTiey 2"+ dzy,
B fRi |An(2)|° [Ty 2fe %0 d2g
satisfy the PDE!: (F := F,, = log P,)

(0.2.2)

P 2P
5ﬁ Q( n—y nti 1)
174 Py%

(0.2.1) Po(E)

= <B41 —2(67 4 +1)B%,
+ (Qa + 6B F — 4(30 , + 1)B_ F)B% | — 367,(Q1 — BL1F)B_,

+ Q_1(3Bg —4B1B_1 — 281) + Q0(2806_1 — Bo))F

Lwith the same convention on the indices n &2 and n £ 1, as in (0.1.2)
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0.3. Hermitian, symmetric and symplectic Jacobi ensembles. In terms of
E C [~1,1] and the Jacobi weight (1 — 2)%(1 + z)?, the differential operators
B, take on the form
2r & 8
Bo=S 11— )2
K 21: o (L=¢)g
Setting by = a—b, by = a+0b, we introduce the new variables, which themselves
have the invariance property (0.0.5):

r:%(b§+(b1+2—ﬁ)2) s:%bo(bl+2_@)

Gn = %(ﬁn+ by +2— B3)(Bn + by),

and the following polynomials in ¢ = ¢, 7, s, thus invariant under the map
(0.0.5):

(0.3.1) Q@ = 1_36 (( 2 gr 4¢3 —A(rs® — 4qs® — 457 + q2r)> ,
Q1 = 3s>—3qr—6r+2¢°+23q+ 24,
Qs = 3¢s®+9s% —4¢°r + 2qr + 4¢% + 1042,
Qs = 3qs®+6s>—3¢°r+ ¢ +4¢%,
Qi = 95 —3qr—67+¢*+22¢+24 = Q1 + (65> — ¢* — q).

THEOREM 0.3. The following probabilities

L AP TR (= 20" (1 + )
082) ) = AP oA (L= )1 + =)oy

satisfy the PDE (F = F,, = log P,):

for B =2:
(0.3.3)
(2841 +(q—7+4)B%, — (4B_1F — 5)B_1 + 3¢B83 — 2qBBy + 88,82,

—4((] — 1)81871 + (4B,1F — S)Bl + 2(4B,1F — 8)80871 + QQBQ)F

+4B2F (2BoF + 382 F) = 0
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=(g+1) (4q841 +12(4B_1F — s)B%, 4+ 2 (q 4 12) (4B_1F — s)BoB_1
+3¢°B3 —4(q —4) gBiB_1 + q(4B_1 F — 8)B1 +20¢BoB>  + 2q282> F

+ <Q2831 —sQ1B_1 + Q380> F +48(B_1F)" — 485(B_1F)® + 2Q4(B_1F)?
+12¢*(BoF)* +16q (2q — 1) (B2, F)(BoF) + 24 (¢ — 1) q(B>, F)?

+24 <231F - s> <(q +2)BoF + (g + 3)32_1F) B_iF.

0.4. ODEs, when E has one boundary point. Assume the set E consists
of one boundary point ¢ = z, besides the boundary of the full range. In that
case the PDEs in the previous section lead to ODEs in «:

(1) Gaussian (n x n) matriz ensemble (for the function g = 2,1,4):

d
fa(z) = —log Py(max \; < z)

dx
satisfies
P 2P o
n— n—+
(0.4.1) 67,Q (# - 1>
b2 2 b2x
=+ 6f2% + (47(516,4 —2)+ Q2> fo — 47(515,4 —2) fa.

(2) Laguerre ensemble (for § = 2,1,4): all eigenvalues \; satisfy \; > 0
and

fnlx) = x% log Pn(mlax Ai <)

satisfies (with f := f,(z))

(0.4.2)
P 2P > 2,.2
n—1" n+t bz
074Q <_ Lo 1) - (355410 - 7(5{{4 —2) — Qox — 3654621) i
_ x?’f"l _ (2554 _ 1)$2f” + 6$2f/2

bZ 2
—x <4(5ﬁ4 +1)f - 7"3(554 —2) = 2QoT — Q2 + 267, + 1) 7.
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(3) Jacobi ensemble: all eigenvalues \; satisfy —1 < A\; <1 and
folx)=(1- xQ)% log Pn(mftx \i <)
satisfies (with f := f,(x)):
for g = 2:
(04.3) 2(® = 12f"” +4(a® = 1) (af" — 3?)
+<16a:f—q(:1:2—1)—231:—r)f'—f(4f—q:1:—s) =0

for B =1, 4:

Pn+2pn72
(0.44) © <P— - 1)

= 4g+ 1" 1) (—61(962 —)f" + (12f — gz — 3s) f” + 6q(q — 1)f/2>
—(®=1)f (24f(q+ 3)(2f — s) +8fq(5qg — 1)z — q(q + 1)(qz® + 25z + 8) + QQ)
+ f<48f3 + 48f2(q:r + 2z —s)+2f (8(123v2 +2¢a? — 12¢sz — 24sz + Q4)

—q(qg+ 1)x(3qx2 + sx — 2qx — 3q) + Q3x — le>.

For § = 2, f,(x) satisfies a third-order equation (of the so-called Chazy-
type) with quadratic nonlinearity in f/. Then f, also satisfies an equation,
which is second-order in f and quadratic in f”, which after some rescaling can
be put in a canonical form. Namely,

Gauss  gn(2) = b2 fn(2b71/%) + fnz,
Laguerre, gn(z) = fa(2) + §(2n+a)z + %2,
Jacobi  gu(z) i= —fu(e)lazze1 — 42+ 5

satisfies the respective canonical equations of Cosgrove [11] and Cosgrove-
Scoufis [12],

o ¢ = —4g®+4(2g — g)® + Arg + Ao, (Painlevé IV)

o (29" =(z4 —9) (—49/2 + Ai(zg' — 9) + A2) + Azg’' + A4, (Painlevé V)
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o (2(z—1)¢")* = (29"~ 9) (49/2 —49'(zg' — g) + Az)
+A19” + Asg' + Ay, (Painlevé VI)

with coefficients which will be determined in Section 4.3. Each of these equa-
tions can be transformed into the standard Painlevé equations.

For # = 1 and 4, the inductive partial differential equations (0.1.2), (0.2.2)
and (0.3.4) are new. For § = 2 and for general F, they were first computed
by Adler-Shiota-van Moerbeke [7], using the method of the present paper.
For § = 2 and for F having one boundary point, the equations obtained here
coincide with the ones first obtained by Tracy-Widom in [20], who saw them to
be Painlevé IV and V for the Gaussian and Laguerre distribution respectively.
In his Louvain doctoral dissertation, J. P. Semengue, together with L. Haine
[14], were led to Painlevé VI for the Jacobi ensemble, for § = 2 and F having
one boundary point, upon subtracting the Tracy-Widom differential equation
([20]) from the ones computed with the Adler-Shiota-van Moerbeke method
([7])- As we shall see, the classification of Cosgrove [11] and Cosgrove-Scoufis
[12], (A.3) leads directly to these results.

1. Beta-integrals

1.1. Virasoro constraints for [-integrals. Consider the data from (0.0.1)
to (0.0.3) and the t-deformations of the integrals (0.0.4), for general 5 > 0:
(t := (t1,t2,...) and ¢ = (c1, c2y ..., C2r))

(1.1.1) I,(t,c; 5) ::/ (2)|? H ( 27tz kp zk)dzk) for n > 0.

The main statement of this section is Theorem 1.1, whose proof will be outlined
in the next subsection. In Section 5 (Appendix), we give a less conceptual
proof, which is based on the invariance of the integral (1.1.2) below, under the
transformation z; — 2z; + e f(2)2; k41 of the integration variables. The central
charge (1.1.6) has already appeared in the work of Awata et al. [10].

THEOREM 1.1 (Adler-van Moerbeke [2]).  The multiple integrals

(112)  I(tcf) = /En BN TT (X7 5% p(za)dz) for n>0

k=1

and

(1.1.3)  Iy(t,¢ é) ::/ ()47 H ( Lt ka zk)dzk> , for m >0,
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with Iy = 1, satisfy respectively the following Virasoro constraints® for all
k> —1:

>0

>0

(1.1.4) (—Bk +> (ai P12, (8 n) — b 5J,§€Zi+17n(t,n)>> I(t,c; 8) =0,

Bbi 5.1 Bt 2n 4
Ty ﬁJl(c—i)-i—i-l,n(_?: _F>)> In(t, ¢; B) =0,

in terms of the coefficients a;, b; of the rational function (—log p)’ and the end
points ¢; of the subset E, as in (0.0.1) to (0.0.3). For alln € Z, the BJ,(jzb(t,n)

and *6:]121721(15,71) form a Virasoro and a Heisenberg algebra respectively, inter-
acting as follows:

- B ]{33 —k
sy [0, 0] = (k-0 BJ;‘Q&”H( = >5k,_g

A2 B = e I, Rk )6

: : k

_/BJ“) L] = G-

with central charge

aio) e=t-s((9)" ()Y w0 (3-1)

Remark 1. The 5J (2) ..'s are defined as follows:

(117 g = ﬁ S A gl (1—5) (k1) 25 = kI

2+] k 2

Componentwise, we have
5J,(€1731(t,n) = ﬁJ,gl) + nJ,gO) and BJ,ESL = nJ,EO) = ndok

and hence

018 (tn) = (g) 87 4 <nﬂ+(k+ (1 — §>) 870

T n((n— 1)§ 4 1)J,§°>,

2When E equals the whole range F, then the By’s are absent in the formulae (1.1.4).
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where
0 1
1.1.8) P = S (k)
118 I = g (R
2
I H S | AN e
k - i iJlj-
itji=k 00t ’B—i-i-j:k: ot~ B2 —i—j=k

We put n explicitly in ﬁJEQBL(t, n) to indicate that the n'™™ component contains
n explicitly, besides ¢.

Remark 2. The Heisenberg and Virasoro generators satisfy the following
duality properties:

1 2

(1.1.9) gJéi)Z(t,n) = (—%—%‘) ne
430 A 216 (_@ _2_n)
BJLn(t,n) = > Jon, 55 ) n > 0.

In (1.1.9), ﬁq]]fz (—Bt/2,—2n/[3) means that the variable n, which appears in
the n'" component, gets replaced by —2n/3 and t by —3t/2.

1.2.  Proof: p-integrals as fized points of vertexr operators. The most
transparent way to prove Theorem 1.1 is via vector vertex operators, for
which the (-integrals are fixed points. This is a technique which has been
used by us already in [1]. Indeed, define the (vector) vertex operator X, for
t= (tl,tg, ) eC>®, ueC:

o0 L i o u”t 9
(1.2.1) Xt u) = A~Ledot e P20 T o y ((u)),
where x(z) := (1,2,2%,...). The vertex operator acts on vectors f(t) =
(fo(t), fa(t),...) of functions, as follows®

(Xa(tw)7(0) = e 50 (Juf)" faca(t = Alu™)).

For the sake of convenience, in this section we introduce the following vector
Virasoro generators: ﬂq]]g) (t):= ( ﬂq]]gzl(t,n))nez.

PROPOSITION 1.2.  The multiplication operator zF and the differential
operators %zkﬂ with z € C*, acting on the vertex operator Xg(t, z), have re-
alizations as commutators, in terms of the Heisenberg and Virasoro generators

) 2 3
3For a € C, define [o] := («, S %) € C°. The operator A is the shift matrix, with zeroes

everywhere, except for 1’s just above the diagonal, i.e., (Av)p = V1.
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830(t) and BIP (¢):

(1.2.2) HXa(tz) = [ PI00),Xs(t,2)]
5.7 IRt 2) = [ P32 (1), Xs(t,2)] -

COROLLARY 1.3.  Given a weight p(z)dz on R satisfying (0.0.1), we have
(1.2.3)

%zk+1f(z)X5(t,z)p(z) = [Z (ai ﬂJ;(jzi(t) —b; 5«]];:42“1@)) , Xp(t, Z)P(Z)] .

i>0
Proof. Using (1.2.2) in the last line, compute

(124) TR (1 2)0()

_ (p/<z))f(z)> FHX (L, 2)p(2) + p(z)83 (5 F(2)X5s(t, 2))

0

bi 5J](€1+)i+17 Xﬁ(ta Z)p(Z) +

= — (ibizk+i+lxﬁ(t’ z)) p(2) + p(2) g <Zaz RHFIX o, z))
0
>

S a; P30, Xt z>p<z>] :

0 0
establishing (1.2.3). O

Given the weight pg(u)du = p(u)lg(u)du, with p and E as before, and
with I the indicator function of F, define the integrated vector vertex operator

(1.2.5) Ys(t, p5) /dup W)Xs(t, ),
and the vector operator
(12.6) Dy = B, — Vi
2r
0 2
= Y e = (a PI2 0 — b P ()
1 dei 53

consisting of a c-dependent boundary part By and a (t,n)-dependent Virasoro
part Vg.

PROPOSITION 1.4.  The following commutation relation holds:

(1.2.7) [Dy, Y5(t, pi)] = 0.



160 M. ADLER AND P. VAN MOERBEKE

Proof. Integrating both sides of (1.2.3) over E, one computes:

(1.2.8)
2r

[ o (@Rt 02) = 31 e Kl ol

1

2r 8
_ zljcfﬂ Fled g /E Xs(t, 2)p(2)dz

= [By, Ys(t,pp)];

while on the other hand

(1.2.9) /Edz [Z (az BJW — b, ﬁJSjiH) ,X5(t, 2)p(2)

i>0

=[Z@ﬂﬁhwﬁmm)émmmww]

i>0

Subtracting both expressions (1.2.8) and (1.2.9) yields, using (1.2.3),

0=[B;— Vk,Yﬂ(tnOE)] = [Dkﬂyﬁ(t’pE)] )

concluding the proof of Proposition 1.4.
PropPoOSITION 1.5.  The column vector,
n o .
I(t) == (/ An(2)]? T] €2 tizkﬂ(zk)dzk>
" k=1

is a fized point for the vertex operator Yg(t, pg):

n>0

(1.2.10) (Ys(t, p)),, = L 1 = 1.

Proof. We have
(1.2.11)

L = [ 1A, WII( g () )

R

(=) H ( 21 % pp Zk)dzk)

Rnl
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- / dupp(u)edat 1 [u|? D)
*52 7 at /Rn 1 ’ﬁ H ( tzzka Zk)dzk)

= [ duppu)lu DR T (1)
R

= (Vattpm)10))

n

It suffices to do the above argument for all ¢; > 0, enabling one to replace
et by |€Zl %2 Then one continues the result for all ¢; € C. O

Proof of Theorem 1.1. From Proposition 1.4 it follows that for n > 1,
(1.2.12) 0 = [Py (Yalt.pe))"] 1
= DipYp(t, pp)"I — Ya(t, pp)"Dil.

Taking the n'" component for n > 1 and k > —1, setting

Xs(t,u) = X tiwt g0 ot

and using (1.2.10), we have

0 = (DkI—Yﬁ(t pE)nDkI)
— (OuD)n ~ [ dup()Xs(tu)(ul”)" ... [ dups(u)Xa(tu) (D)o
= (Dkl)n.

Indeed (Dyl)p = 0 for k > —1, since Iy = 1 and Dy, involves Bk,ﬂJ,?), ﬁJ,gl)
and J\ for k > —1:

By, and #.J ,52) are pure differentiations for k > —1;

p J,gl)is pure differentiation, except for k = —1;

B JH %, appears with coefficient n(, which vanishes for n = 0;

Ji © appears with coefficient n((n — 1) + 1), vanishing for n = 0.

The proof of the 2"¢ formula in (1.1.4) follows immediately from the du-
ality (1.1.9). O

1.3. Examples. Example 1 (Gaussian (-integrals). The weight and the a;
and b;, as in (0.0.1), are given by (setting b =1 in (0.1.1))

plz)=e VB =V =g/f =2,
ag = 1,bg = 0,b; = 2, and all other a;, b; = 0.
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From Theorem 1.1, the integrals
n ) o )
(1.3.1) I, = /E AL (2))° H e_Zk+Zi:1tizkdzk
k=1

satisfy the Virasoro constraints
(1.3.2)

2r
0
“Bily ==Y o o dn = (= B+ 200y, Ly k= -1,0,1,.
1 Ci
Introducing the following notation

t+1 . t+1 .
- )ﬁ—l—z—i—l—bo:(n—T)ﬁ—l-z—i-l,

o, = (n

and upon setting F' = log I,, we find that the first three constraints have the
following form:

0 0
BaF = |22 -S| F—nty,
! ( ot1 ;Z 8ti_1) i
0 0 n
BoF = |2 -S| P Lo,
Bo ( it ;zt ati) 91
0 0 0
BF = |20 o Nt | F
By ( Bt Ul@tl gzt 8ti+1)

For later use, take linear combinations such that each expression contains
the pure differentiation term 0F/0t;:

1 1 1 o1
(1.3.3) 1 28 1, Do 280, 3 5 (Bl—l— 5 B 1),

which yields

6 1 6 ’I’Ltl
134) DiF = | -S| -1
(1.3.4) Dy oty 2;2 at“) 2
0 1 0 n
DF = | N -0,
2 oty Q;Z at,-> 171
0 1 0 1 0 n
DoF = | oS- = iti— | F— "oty
8 it P Dti1 P at; 1) 471
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Ezample 2 (Laguerre B-integrals). Here, the weight and the a; and b;, as
n (0.0.1), are given by (again setting b =1 in (0.2.1))

-V a,—z / g z—a
V = — =
! z
ag=0, ag =1, bp = —a, by =1, and all other a;,b; = 0.

Thus from (1.1.4), the integrals

(1.3.5) I, = / 1An(2) P T 2fe 22 tohdz,
E’IL

k=1

satisfy the Virasoro constraints, for k > —1,

0
(1.36) B, = Z A gt = (= P~ 0 PR 0 T

Introducing the following notation, as before,

z—i- 14

1
B+i+1—bg=(n— )B+i+1+a,

o = (n—

and upon setting F' = Fn = log I,,, we see that the first three have the form:

0 0
—-B_ 1 F = — = t; F——
! oty ;Z 6tz) (Ul +a),
0 0 0
—ByF = — —01=— — iti—— | F,
0 oty lot ;Z atm)
o) o) o B B (OF\?
“BiF = _ LA A I i
! ats "oty ;Z Dtive 2 aﬁ) <8t1)
Replacing the operators B; by linear combinations D;, we see that
(1.3.7) D = —-B_
D2 = —B[) — 0'1871
D3 = —By—09By—0109B_1

yields expressions, each containing a pure derivative 0F/0t;
(1.3.8)

n
DWF =
1 8t1 ; 01+a)

15) 0 n
Dy P = i —— VF-Z= 7
2 8t2 -+ ; iti ( Vot Btm) 501+ a)on
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0 0 0 n
D3sF = — — it;| o10° +o +——|F — —=(0o1 +a)ojo
3 ; z( 1 26 28tz+1 8ti+2> 2( 1 Jo102

B 82_F+(6_F>2
2 \ 0t oty '

Ezample 3 (Jacobi (-integral). The weight and the a; and b;, as in (0.0.1),
are given by

g _a—b+(atb)z
f 1— 22 ’

ag=1,a1 =0,a3 = —1,bp = a — b,by = a+ b, and all other a;,b; = 0.

pap(2) =V = (1—2)%(1+2)" V' =

The integrals

(1.3.9) / A ()P T = 20)(1 + 2)Pe it i dzy
" k=1
satisfy the Virasoro constraints (k > —1):
SY ST
1.3.10) —Bil, = -3 11—,
(1310) B, >k q)acl_

_ (2
- ( B“HIH-Q n “]I + bo ﬁ“]Ik-&-l n + b1 ﬁJk+2 n) L.
Introducing the following notation,
1+ 1

o = (n— )B+i+1+0bg,

and upon setting F' = F,, = log I,,, we see that the first four have the following
form:

(1.3.11)
-B_1F = 01— 4 Zztz ZZtZ F+ n(bo — tl),
ot 8tz+1 e~ _
0 3 02
—BF = — ti( F
Bo (02 dts 00t ZZ atz+2 8tl) 3 8t§)
B (OF\? n
+§ (8—t1> —5(01—51)7
0 0 8 o0 0
—BF = ot by— — t(
L (‘738753 gy, ~ o bge +;Z ity Ot
0? OF OF
— | F -
+5 0t18t2> b Oty Oty’
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0 0 0
—BF = - -
. (04 Oty b0 Ot ~ (o2 + Z iti( 8tz+4 ati+2)
B,0% 9 0? 6] < oF , _OF 8F>
2(at§ o +28t16t3) Fr 2 (8t2) (8151) * Oty Ot

2. Matrix integrals and associated integrable systems

2.1.  Hermitian matriz integrals and the Toda lattice. Given a weight
p(z) = e=V(®) defined as in (0.0.1), the inner-product

(2.1.1) (Foah = [ FEgEn(e)dz with prim ST 5 p(a),
leads to a moment matrix

(2.1.2) mn(t) = (i (t))o<ij<n = ((2', 27 )1)0<i j<n;

which is a Hankel matriz®, thus symmetric. Hinkel is tantamount to Ames, =
Mmoo T. The semi-infinite moment matrix mes, evolves in ¢ according to the
equations

Opij 0
(2.1.3) Hij Witk j, and thus Moo _ Afmog (

commuting
oty oty

vector fields

Another important ingredient is the factorization of mq, into a lower- times
an upper-triangular matrix®

Mmoo (t) = S(t) 7S ()
where S(t) is lower-triangular with nonzero diagonal elements.

THEOREM 2.1.  The vector 7(t) = (7, (t))n>0, with

n

(2.1.4) Tn(t) := det my,(t) = / H (z)dzg

satisfies:

(i) Virasoro constraints (1.1.4) for f = 2,

(2.1.5) ( chﬂf (¢i)=— Z( i —bi JIE:+)1+1)) 7=0

Ci 12>0

4Hinkel means pij depends on i + j only.
5This factorization is possible for those t’s for which 7, (t) := det my (t) # 0 for all n > 0.
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(ii) the KP-hierarchy®
~ 1 0
(O -

 20t0tgy s

of which the first equation reads:

o \* 9 \2 82 82 2
((8_t1) +3(8—tg> _4—8t18t3> log7, +6 (8_75%10ng> =0,

k=0,1,2,...
(iii) The standard Toda lattice; i.e., the tridiagonal matric

9 ]og Tt <70—52>1/2 0

8_751 70 T

1
1/2 9 1/2
T0T2 9 log 2 TIT3
(2.1.6)  L(t) :== S()AS(t) L = ( 2 )" g17/12 ( 73 )
TLT: 0 T:
0 ()" e

satisfies the commuting equations’
oL 1
2.1.7 = |- (L")s,L|.
(21.7) 5 = |@s 1]

(iv) Orthogonal polynomials: The n'' degree polynomials py(t;z) in z,
depending on t € C*, orthonormal with respect to the t-dependent
inner product (2.1.1)

(Pk(t; 2), pe(t; 2)) = O

are eigenvectors of L, i.e., (L(t)p(t; z))n = zpn(t; 2), n >0, and enjoy
the following representations

1
(1:2) = (S(D)x(2) L__q m” ;
pn(t; z) = t)x(z = ——=det
! ! Tn () Tn1(t)
TR
Y Y el C) | R O}
Tn (t) Tn(t)
6for the customary Hirota symbol p(d:)f o g := p((%)f(t +y)g(t —vy) . The py’s are the

y=0
Oyl . ~
elementary Schur polynomials 621 - Epopi(tl’ ta,...)z" and py(0) := pg(a;?l, %6%’ co)e
7()s means: take the skew-symmetric part of () in the decomposition “skew-symmetric” -+

“lower-triangular.”
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The functions qn(t;2) == 2 [on p’;(ftzlu)pt(u)du are “dual eigenvectors”

of L, i.e., (L(t)q(t;2))n = zaqn(t;2), m > 1, and have the following
T-function representation: (see the remark at the end of this section)

(2.1.8) gqn(t;2) := z/n Mpt(u)du = (STil(t)X(zfl))

zZ—U n

= (Stmx(=")

Lnp=1/2 Tnt1(t + [271)

n

Tn(t)
(v) Bilinear relations: for all n,m > 0, and a,b € C*>, such that a — b =
t—t
o i d
(2.1.9) }{ Tt = [ ([ ot

0 iz n—m-— dZ
:f;zofnﬂ@ﬂz])m(t’—[z])ezl R

In the case § = 2, the Virasoro expressions take on a particularly elegant
form, namely for n > 0,

3w = Y 1030w = 120 + 200 () + n2oo
i+j=k
I = IO+ ndo,
with8
(1) 0 1
2.1.1 e Ay
2
(2) 0 L, 0 1 L
Jk = Z A T Z iti— + — Z Ztijtj.
i+j=k atzatj —it+j=k at] 4 —i—j=k

Statement (i) is already contained in Theorem 1.1, whereas the other state-
ments can be found in [1], [2], and [5]. Notice that the standard Toda lattice
is a reduction of the semi-infinite 2-Toda lattice, where 7,(t,s) = 7,(t — s).
The 2-Toda lattice arises in the context of a factorization of a generic semi-

infinite matrix me (¢, s), satisfying the simple equations ag‘T;O = Amee, Bng =

—meoATF, whereas the standard Toda lattice is related to the same factoriza-
tion of M (t, s), but where mqo(t, s) is Hinkel (i.e., Amoo = mooAT).

8The expression J,gl) =0 for k = 0.
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Remark. The vectors p and q are eigenvectors of L. Indeed, remembering

x(z) = (1,2,22%,...)", we have
Ax(z) = zx(z) and ATx(z71) = 2x(z7!) — ze1, with e; = (1,0,0,...)".
Therefore, p(z) = Sx(z) and q(z) = ST~y (271) are eigenvectors, in the sense
Lp = SAS™'Sx(z) = 2Sx(z) = zp,
LTg = STIATSTST-1 (1)
= 28T (T — 28T e = 2 — 28T ey,

Then, using L = LT, one is lead to

((L—zI)p), =0, forn>0 and ((L—=2[)q), =0, for n>1.

2.2. Symmetric/symplectic matriz integrals and the Pfaff lattice. Consider
an inner-product, with a skew-symmetric weight p(y, 2),
(2.2.1

)
(f.g)r = / /R F)g(z)eXr U p(y, 2)dy dz, with p(z,y) = —p(y, 2).

Then, since

(fvg>t = _<g7f>t

the (semi-infinite) moment matrix, depending on ¢ = (1, t2,...),

M (t) = (pij(t))o<ijen—1 = (U, 2/ ))o<i j<n—1

is skew-symmetric and the semi-infinite matrix mq, evolves in ¢ according to
the commuting vector fields

Oty ) om
(222) 8'5: = Mitk,j T Higjik, 1.6 8t]:o = Akmoo + mooATk'

It is well known that the determinant of an odd skew-symmetric matrix equals
0, whereas the determinant of an even skew-symmetric matrix is the square of
a polynomial in the entries, the Pfaffian, with a sign specified below. So

det(mgnfl(t)) = 0
1
(det mon ()2 = pf(man(t)) = —(dao Adwy A A daon_1)7"
Z ij (t)d.%l A d.l‘j .
0<i<j<2n—1

Define now the Pfaffian 7-functions:

(2.2.3) Ton(t) := pf man (),
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and the semi-infinite skew-symmetric matrix, 0 everywhere, except for the 2 x 2
blocks, along the diagonal:

-1 0

(2.2.4) J = -1 0 , with J2 = —1.

Since meo is skew-symmetric, mey, does not admit a Borel factorization in
the standard sense, but mq, admits a unique factorization, with the matrix J
inserted (see [6]):

meo(t) = Q711 QT (1),

where
(2.2.5)
0
0
Q2n72n 0
Qt) = 0 Qanon c K.
Q2n42,2n+2 0
*
0 Q2n+2,2n+2

K is the group of lower-triangular invertible matrices of the form above, with
Lie algebra € of matrices of precisely the same form. In this problem, the Lie
algebra splitting of semi-infinite matrices is given by

t = {lower-triangular matrices of the form (2.2.5)}

( ) o) { n = sp(oco) = {a such that Ja'J = a},

with unique decomposition (a4 refers to projection onto strictly upper- (strictly
lower) triangular matrices, with all 2 x 2 diagonal blocks equal to zero)

(227) a = (a)+ (a)n

= <(a_ — J(ay)"T) + %(ao - J(GO)TJ))

+ (<a+ +J(as) " J) + %(ao + J(aofJ)) :
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Considering as a special skew-symmetric weight (2.2.1),
(2.2.8) p(y,2) :=2D"(y — 2)p(y)p(2) , with o = F1, p(y) =e VW),

the inner-product (2.2.1) becomes® (see [8])

(o = [ [ 1 @)geZ 02005 — 2)p(w)a:)dy d=
/R2f(y)g(z)ezfo ti(yi”LZi)S(y —2)p(y)p(z)dydz, for a = —1

/R{f, g} (y)eXr 2 5(y)2dy, for o = +1,

and (see [16], [4])
(2.2.9)
pf (<yivzj>t>

0<i,j<2n—1

1 2n o i
o 12 TL T
k=1
- / (VOIS EX) X for g = —1
— (2”)' S2n ’ 7
1 L o0 94 i o
1A T e 22 () dzn
FJRT k=1
L[ anx g for g = 41,
n! Jz, ’
Setting
p(z) = p(2)Ig(z) for a = -1
p(z) = p2(2)Ip(z), t —t/2 for a = +1

in the identities (2.2.9), we are led to the identities between integrals and
Pfaffians, which are spelled out in Theorem 2.2:

THEOREM 2.2. The integrals I, (t,c),

Bo= [ 8 T o)

9 (y) = sign(y), and {f, g} := f’'g — fg’. Also notice that &’ = 25(z).
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g ([ visety = e 402 gz )

= nlr,(t, c), n even, for 3 =1

0<i,j<n—1

nlpf ( /E {yi,yj}eZTotkykp(y)dy> = nl7o,(t/2,¢),

0<i,j<2n—1

n arbitrary, for g =4

and the 1,(t, c)’s above satisfy the following equations:

(i) The Virasoro constraints!® (1.1.4) for 8 = 1,4,

(2.2.10) ( ch“f (ci) g + Z (ai P32, — b ﬁJ,(jjm,n)) I,=0

(ii) The Pfaff-KP hierarchy: (see footnote 6)

~ 1 & -
2.2.11 — | 10T, = " n—
( ) (pk+4(8) 28t18tk+3> Tn © Tn = Pi(0) Tni2 0 T

n even, k=0,1,2,... .

of which the first equation reads

9 \* 0 \* 02 0 ’ Tn—2Tn+2
Y —4—1 1 — (g2 2
((6%1) +3(8t2) 8t18t3> OgT”+6<82 Ong> 2

n even.

(iii) The Pfaff lattice: The time-dependent matrix

(2.2.12) L(t) = Q)AQ(t)™*
satisfies the Hamiltonian commuting equations, given by the Adler-
Kostant-Symes splitting theorem, applied to the splitting gl(oo) = £Pn,
as in (2.2.6) and (2.2.7),
oL
ot;
(iv) Skew-orthogonal polynomials: The vector of time-dependent polyno-
mials q(t;z) = (qn(t;2))n>0 = Q(t)x(2) in z satisfy the eigenvalue
problem

(2.2.13) L(t)q(t,z) = zq(t, 2)

= [~ (L"), L], (Pfaff lattice)

’
0here the a;’s and b;’s are defined in the usual way, in terms of p(z); namely, —% = Z
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and enjoy the following representations:

n(t — [z _1]) Ton+2(t)
n t, = 2nh 1/2—7—2 ( 5 h n — —+
a2n(t;2) 2n Ton(?) @)
) _ o121 i) -1
q2n+1 (t, Z) = Z h2n Tgn(t) <Z + 8t1 Tgn(t [Z ])

They are skew-orthogonal polynomials in z; i.e.,

(qi(t; 2), qj(t; 2))e = Jij.

(v) The bilinear identities: For all n,m > 0, the 2,’s satisfy the following
bilinear identity

(2214) \% 7—2n(t — [2_1])7'2m+2(t/ + [Z_l])BZ:O(ti—t;)ziZQn—Qm—Qg
S ™

dz

f rmsalt 4 EDran (¢ — ST e e

Note that (2.2.10) is a consequence of Theorem 1.1, while items (ii) to
(v) are shown in [4], [6]. (See [8] for the Pfaff lattice, viewed as a reduction
of the 2-Toda lattice.) A semi-infinite matrix me(t, s), satisfying am‘x’ =
ANemg, ag;‘o" = —mooAT*, leads to the semi-infinite 2-Toda lattice. When the
initial condition Moo(0,0) is skew-symmetric, then mqo (¢, —t) remains skew-
symmetric in time and 7,(t) = (7,,(t, —t))/? = pfmy(t, —t) is a Pfaff lattice
7-function.

3. Expressing t-partials in terms of boundary-partials

3.1. Gaussian and Laguerre ensembles. Given first-order linear operators
Dy,D2,D3 in ¢ = (c1,...,co;) € R?* and a function F(t,c), with t € C*,
satisfying the following partial differential equations in ¢ and c:

(311) Dk‘F_ _+ Z ’ij +’W€+6kt17 k:172737"'7
—1<5<k

with V;(F') nonlinear differential operators in ¢; of which the first few are given
here:

_ OF f O*F OF\ 2 )
3.1.2) Vi(F)= iti = + =02 —+<—> ., —1<j<2.
B2 M= 2 2”(@% o1 )

In (3.1.1) and (3.1.2), 8 > 0,79k, Yk, Ox are arbitrary parameters; also dy; = 0
for j # 2 and d9; = 1 for j = 2. The claim is that the equations (3.1.1) enable
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one to express all partial derivatives,

811++1k F(t, C)

(3.1.3) —
ot otk

, along £ :={all t; =0, ¢ = (c1, ..., co,) arbitrary},
L

uniquely in terms of polynomials in Dj,...D;, F(0, ¢). Indeed, the method con-

in terms of Dy f| , using (3.1.1). Second deriva-
t=0 t=0
tives are obtained by acting on DiF with Dy, by noting that D, commutes
with all ¢-derivatives, by using the equation for DyF', and by setting in the end
t=0:

sists of expressing oL
k

D/DyF = De—+ > i De(V;(F))
—1<5<k

= at + S 4V | De(F), provided Vj(F) does not
k —-1<j<k

contain nonlinear terms

oF
- (atk+ Z Vkj )<8t + Z 75] ] )+52t1>

—-1<j<k —1<5<4

2F .
= ——— + lower-weight terms.

Ot 0ty
When the nonlinear term is present, it is taken care of as follows:
OF OF _ OF
D = 2—Dy—
t (8t1> ot, ‘ot

or o
T ot ot ¢

_ LR 0 (oF
ot 0t \ Oty

> wViF) + v+ 5et1) ;

—1<5<4

higher derivatives are obtained in the same way. Explicit expressions for only
a few partials, useful in the next subsection, will be given here:

(3.1.4)

oF

il - DF —
6t1 1 1,

L
O*F

—| = (DI —=m0D1)F +y10m — b1,
ot |, ( )
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>PF 3 2 2
rri (171 — 3710071 + 2’71091) F + 2v10(01 — 71710),
Llg
O*'F
ok | = (Dil — 6710D7 + 1175, DF — 67%0771) F — 6730(81 = m710),
Lig
oF
(97 = DoF — s,
2|
O*F 5 5
—=| = (D3 —2v20D2 + By21732D1
7 |,
— (271 + 710)7217328 + 272,-1)D1 — 2721173>F
+ Bv21732(D1F)* + By217v32(V3 + v1071 — 01)
+ 2(y2173 + Y2072 + V172,-1)5
oOF
— = (D3 - é%ﬂ)% + E’Ysz(?% + %0)271) F— é732(D1F)2
Ots P 2 2 2
B 5 2
+ 5732( 1= Y1710 — V1) — 735
*F
= (D1D3 - 57321):15 + By32(v1 + 27v10) D
8t18t3 c 2

3
- 7ﬁ710732(271 +710)D1 — 371,-1D2 — 3710733>F

+ ?’710732(171117)2 — By32(D1F)(DIF)

N W

+ (271073 + Brs2710(7E + Y10m1 — 61) + 271,-172).

3.2. Jacobi ensemble.

1. From the expressions (1.3.11), upon evaluating B_1F|,_,, B*  F|,_,,
BoF|,_, , one finds the following equations, both sides of which are evaluated
at t =0,

0
—F +b
o1 ot + bon,

1 2
g1

B F =
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9 9 B0\
~BoF = (b F+2((2) F
Bo < a1, +020t2> T3 ((8t1> *

From these expressions, one extracts

O*F
ot

oF
Oty |4—

oF

in terms of B;'-F

0 " Ota |10

(2
otq

))-

175

2. From the expressions for BilF’t:o , BoB_1F|,_y, B1F|,_y, namely

0 0 0 0’F  OF OF
F = bo—— b)) — =
By < 0, Tl bgs U38t3> —p (6751(%2 t, Ot
1 0?2 0 0 % B (0*F OF O*F
—ByB_1F TR SN ) 0 p
oy D0B-1 (UQatlatQ Yo on 08t%> T3 <6t3 o0 o
1 . , 0 o? o .0
B3 F = =z 2 419 |\ F
— (Ul o6 M non  Con ot )
one extracts
oF 9°F 2
s lio’ OFF | " 011082,

in terms of B} F, using the previous extractions.

n
5(0'1 — bl)

o),

)

3. From the expressions for BoF|,_, BiB_1F|,_, BgF‘t:O , BoleF|t:0,
B! F| 1—o» hamely, (where both sides are evaluated at ¢ = 0)

(3.2.1) ) ; ,
BF = (—0'48—1‘/4—1708—@4‘(0'2_ )_ B)

s (2FY aF _OF OF

ot1 8752 Ot1 Ot3

1 g 0
o BBt = (8_t4 "ot T ™anon T 8t16t3
+ B aQFa_F + 8_F 62F
92 Oty | Ot 910t )

2p = 9 L, 0  BO 500
BF = (boat +028t2 o0 o an

2
(b OF  OF 0 OF

5
Otitn 8t1

82
(W S a2
62
— (o= )8t2
Ié] 2F
* 5( ot

B

i

or

oty

82
2 F
Ot10t3 ) )

3
O \r
20t )

’).
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1 2 B ad ad 0
O'_lBOB_IF - atl( 6t1 +t18t2)

ba_F+o— 8_F+ - ‘t( or 78F)+é 62F+(8_F>2
9t 7?0ty — ot 0t 2\ 0R  \on ’

P P P P P o 0
”16t1< 8t1+t16t2) (”lat g+ 2h(G0 - 8—151)>

oF OF oF oF
( at +t1 +Z iti( at7,+1 875%'1)4-5071—71!‘11)7

one extracts
82
" O3

0*F
T oty 8t3

PF
=0 Ot70ta|,_,

OF
4
ot |,_,

oF
" Oty

Y

t=0

(3.2.2)

again in terms of B;-F , using all the previous extractions.

3.3. Fwaluating the matrix integrals on the full range. The denominators
of the probabilities (0.0.4), for 8 = 1, 4; namely:

[ 18 T ez,
R k=1
I = / An(2)[? ] #fe v dz ,
" k=1
/ |B H 1 — Zk 1 + zk)bdzk
[—1,1]"

can be evaluated, using Selberg’s 1ntegral (see Mehta [16, p. 340]):

= (2m)"/2(2b) " (B(n—1)+2)/4 H I'((j+1)3/2+1)

IB/2+1)
_ p—n(B(n—1)+2a+2)/2 a+1+]6/2) ((J+1)B/2+1)
o] = i ]HO T(B/2+1)

_ 2n(2a+2b+ﬂ(n—1)+2)/2

”1:[1 Tla+78/2+ 10+ 58/2+1)I((j+1)8/2+1)
L(B/2+ 1) (a+b+(n+j—1)3/2+2)

J=0

LEMMA 3.1.  For future use, the following expressions

n({é;gl) (Gauss)
b(’gzl) — (n')2 IV(LQZIS«:Q _ n(nfl)(ntggz(nJrQaJrl)
" (n—2)!(n+2)! (L(ll))2 (Laguerre)
< (Jacobi)
Qs
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Qn(i:jl) (Gauss)
b(ﬁ:4) _: (TL')2 I'r(14—)1I7(ﬁ21 _ 2n(2n+1)(2nb—l—a)(2n+a—1)
" (n—1Dl(n+1)! (I,(;J:))2 (Laguerre)

Q .

o (Jacobi)

satisfy the following functional dependence:
b

b (n,a,b) = b <—2 2 ——>.

O na,0) = o (~20,-5, -
In the expressions above, Q (already appearing in (0.3.1)), and a new expression
Qéﬁ are expressible in terms of the variables q,r, s introduced in (0.3.1):

48(n —1)n(2a+n)(2a +n+1)(20+n) (2b+n + 1)
(2b+2a+n+1)(2b+2a+n+2), for (B=1)

9%6n(2n+1)(a+2n—1) (a+2n) (b+2n—1)
(b+2n) (b+a+2n—-2) (b+a+2n—-1), for (B =4)
3

= 16 ((32 —qr +q¢*)? — 4(rs* — 4qs* — 45> + qzr))

=48 (b+a+n) (b+a+n+1)>(b+a+n+2)(2b+2a+2n—1)
(2b+2a+2n+1)% (2b+2a+2n+ 3), for 3=1

=30b+a+4n—4)(b+a+4n—3)(b+a+ 4n — 2)?
(b+a+4n—1)%2(b+a+4n)(b+a+4n+1), for 3 =4

= 3¢(q+1)(¢—3) (g+4+4/g+1) {f ﬁx g;i

Proof. For instance, in the Jacobi case, one computes

1 " N . .
Ly gonrsararrs D 40+ DU 40+ OO + o)l (%52 + 1)
Y Fn+a+b+3T(n+a+b+2)
P22+ a2 + )P0 ()
F(n+a+b+2)T(n+a+b+3)
iy gintatp L(2n+a+0)(2n+a+1I'(2n+b+1)I(2n +3)
Y T(dn+a+0)T(An+a+b+2)

11 qg+1=2n+2b+2a+1for=1and /g+1=4n+b+a—1for =4
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and so,
(n!)? 738—) 17(z+)2 _ Q
= AF
(n—2)!(n +2)! ( ) P Q6 |
(> 1P Q
(n =D+ 1)t (1{P)2 - Qz 54 O

4. Proof of Theorems 0.1, 0.2, 0.3

From Theorems 2.1 and 2.2, the integrals I,,(t,c) , depending on § =
2,1,4, on t = (t1,t2,...) and on the boundary points ¢ = (cy,...,co,) of E,
relate to 7-functions, as follows:

4.0.1) It = / 1‘[ (X7 % p(zi) )
nlr,(t,c), n arbitrary, [ =2
= nlr,(t,c), n even, 8=1

nlro,(t/2,¢), n arbitrary, [ =4.

I,,(t) refers to the integral (4.0.1) over the full range. It also follows that 7, (, c)
satisfies the KP-like equation'?

(4.0.2)
Tn—2(t,c)Tnya(t,c) 3 n arbitrary for G = 2
12 Tn(t, c)? 014 = (KP)slog ma(t, c), n even for B =1,4
where

o\ 8 \2 2 92 \°
(KP)F ((8_tl> +3<8t2) _4—3t18t3>F+6<8t2 ) .

4.1. f = 2,1. Evaluating the left-hand side of (4.0.2)(for 5 = 1) yields,
taking into account P, := P,(E) = I,(0,¢)/1,(0):

Tn—2(t, €)Tnta(t, €) B (n!)? I, _o(t, c)I42a(t, c)
B wor L, T Pmooimtol . Lo |,
— 19 nn—1) I, 2(0)1,12(0) Pn2Ppy2
B (n+1)(n+2) 1,,(0)2 P2

Pp—s(E)Prs2(E)
— 1260 +
12 P

12Remember 67, =1 for §=1,4, and = 0 for § = 2.
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with bﬁf) given by Lemma 3.1. Concerning the right-hand side of (4.0.2),
it follows from Section 2.1 that F,(t;c¢) = logI,,(t;¢), as in (4.0.1), satisfies
Virasoro constraints, corresponding precisely to the situation of Sections 3.1
and 3.2 for Gauss, Laguerre and Jacobi. As explained in (3.1.4), (3.2.1) and
(3.2.2), we express

0*F
, ot

0*F
T Ot10ts

0*F
" Ot}

N*F

,  F=logly(t,c),
ot} "

t=0

t=0 t=0 t=

in terms of Dy, and By, which when substituted in the right-hand side of (4.0.2),
i.e., in the KP-expressions, leads to (upon comparing the expressions (1.3.4)
and (1.3.8) with (3.1.1) for Gauss and Laguerre and using (3.2.1) directly for
Jacobi):

Y-1=—%Mm0=m=006=-%
e Gauss with{ 72,1 = 0,720 = —1/2,72,1 = 0,72 = —§01,62 =0
V3,1 =—301,730 = 0,731 = —%3,732 =73 = 0,83 = —Zo7.
(KP),log 1, (t, c) ‘t:O
= (D} +6nD? 4 3D2 — 3D, — 4D D3)F + 6(D3F)? + %(2 — B)n(n —1)

1
~ 16 <(Bi1 +8(n+ (2—P)(n—1))B2, + 1287 + 248y — 168,51 F

F6(B2,F)? +12(2 — B)n(n — 1))

1,1 = 0,710 = —1,71 = —5(01 + a),

. Y2,-1 = 0,70 = —01,%2,1 = —1,72 = —501(01 + a),
e Laguerre with
V3,1 = 0,730 = —0102,73,1 = —02,
132 =—1,73 = —50102(01 + a).

(KP),log (2, ¢)],_,
- (pt-20- 01
- (2n(n —1)(B-2)(8—1)+ (8 —2)(4an + 4n + 5) — 4n? — dan — 1) D2

-3(6-2) <5n2—ﬁn+2an+2n+1)D1

+ 3D% + ﬁ(ﬁ(n — 1) +a+ 2)D2 — 6D3 — 4D1D3> Fn
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—3(8 = 2)(D1 F,)” + 6(D} log ) — 4(3 — 3)(D1 F) (D)
—Z(g —)n(n — 1)(Bn — 28+ 2a +2)(Bn — B+ 20+ 2)

= (841 +2(8-3)B3,

~((B=2)(3(8=1)(n—1)*+3n>+ 6an — da+2) + (> — 1)) B,
+3(8-2) ((5 —1)(n—1)2+n+2an — a) B_i —4BB_, — 2B,
+2 (Bn + a) BoB_1 + 352 — (Bn + a) 30> F
+6(B2,F)? +4(8—3) (B_1F)(B2,F)+3(2— ) (B_F)?

38— 2nln —1)(Bn — 28+ 2a+2)(Bn — B+ 2a + 2).

4
e Jacobi'3
for g =2,
Q(qz - 4) (KP)t log Tn(ta C)|t:0

= (28&1 +(q—r+4)B%, — (4B_1F — 5)B_1 + 3qB83 — 2qBBy + 88,82,

ool

— 4(q — 1)313_1 + (43_1F — 3)31 + 2(48_1F — 8)303_1 + QQBQ)F

1482 F (2BOF + 3831F)
for g =1,

Qét (KP)t log 7, (t, c) |t:0

— (g4 1) <4qB4_1 F12(4BF — $)B%, +2(q + 12) (4B_1 F — 5)BoB
+ 3¢°B2 — 4 (q —4) qB1B_1 4+ q(4B_1F — 5)B; + 20¢B,B? | + 2q282)F

+ <Q2831 — s B_1+ Q3B()>F + 48([)’_117)4

— 485(B_1F)? +2Q4(B_1 F)?
+12¢*(BoF)? +16q (2q — 1) B2 [FBoF + 24 (¢ — 1) ¢(B* | F)?

+ 24 (28_1F — s) B_lF((q +2)BoF + (¢ + 3)321}7) +Q,

13In the Jacobi 8 = 2 case, we have bg = a—b, by = a+b; thus r = 2(b(2)+b%),qn =2(2n+a+0b)2
and q(¢2 —4) = 16(2n+v+8)2(2n+~v+5—1)(2n+v+ 35+ 1).
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where the Q1,Q2,Q3,Q4,Q are given by (0.3.1) and where the auxiliary Qéﬁ
happens to be exactly the one of Lemma 3.1. This establishes Theorems 0.1,
0.2 and 0.3 for 8 = 2,1, at least when b = 1 in the exponent of the Gaussian and
Laguerre ensembles, upon noting that By log P,(E) = Bi log I,,(0,¢)/1,(0) =
Bi log 7,,(0, ¢).

Finally, a simple argument captures the case b # 1. Indeed, setting aF :=
2r

1 [ coi—1, a0 o) C F, for a > 0, the elementary identities

L,(t,c) = / A (2)° e v dzy = C’/ AP TT e #rdz
w0 = [P [T =c [ o 1an@P [T Han
In(t,c) = / An(2))? I 2 ¥ dzy = C An(2)|? T st dz.

where C(a,b,n,3) is a constant independent of E, lead to the same Virasoro
constraints as in Examples 1 and 2 (§1.3), but with the following mapping for
the differential operators

(4.1.1) (B_1, By, B1) — (E,BO,BN@ (Gauss)
Vb
(4.1.2) — (B_l,bBo,bQBl) (Laguerre).

Therefore, the equations (0.1.2) and (0.2.2) for the probabilities (0.1.1)
and (0.2.1) are obtained by making the substitutions (4.1.1) and (4.1.2) in
the PDEs (0.1.2)[p=1 and (0.2.2)|p=1; this process yields the precise equations
(0.1.2) and (0.2.2), with b # 1. This ends the proof of Theorems 0.1, 0.2 and
0.3 for the cases g =1, 2.

4.2. B = 4, using duality. From (4.0.1), the integral for f = 4 is ex-
pressible in terms of a 7-function, in which ¢ is replaced by t/2. Hence (4.0.2)
becomes:

TQn—Q(téQn,(ct)/gszgQ(t/Z c) = (KP),5(log 720)(/2, ¢).

So, the left-hand side of (4.2.1) equals (P, := P,(F) = 1,(0,¢)/I,(0))

(4.2.1) 12

19T2n=2(t/2, ) Ton42(8/2, ¢) _ 19 (n!)? In—1(t; ) Int1 (2, )
Ton (t/2, ¢)? =0 (n—1Yn+1)! I,(t,c)? —o
— 19 n In—l(O)In—l-l(O) Pn—lpn+1
(n+1) 1,(0)? 155
12b(4) Pnfl(E)Pn‘i’l(E)
! Pi(E) ’
where b\ = b (n,a,b) is given by Lemma 3.1 and satisfies

b®(n,a,b) = bV (—Qn, —%, —g) .
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Recall from Theorem 1.1 (1.1.4) that fag (t,c;a;,b;) and fasded (t,c; a;,b;) (where
we indicate the explicit dependence on the coefficients a; and b; of p’/p) satisfy
the same equations, with altered parameters:

(Bk a Vlgﬁ) (t;n, a;, bz)) I,(f) (t,c;a4,b;) =0,

2
<Bk - Véﬂ)(—ét; ——=n,a;, _éb») IT(L4/B)(t, Cy Ay, bl) =0.
' 2 15} 2
Setting 8 = 1 in the equations above, extracting t-partials in terms of
B’s, and using the procedure explained in this section, we have that

(KP)t(logIr(Ll)(t7c;aivbi))‘tio = R(B;n,a;,b;)log IV(0, ¢; a;, by)
= R(B;n,a;,b;)log P7(Ll) (E),

(KP),p(log I (1 csasb))| = (KP)_yp(log I (1 csai, b))

= R(B;—2n,a;, b/2)10gI )(Ocal,b,)
= R(B;—2n,a;,~b;/2) log P\ (E),

where R(B; a;, b;,n) denotes the right-hand side of the equations (0.1.2), (0.2.2)
and (0.3.4) for 8 = 1. The coeflicients a; and b; of the rational function —p'/p
are as follows: the a; and b; all vanish, except for

Hermite ay=1 a1 =0 a3 =0 bop=0 b1 =2b
Laguerre ap=0 a1 =1 ay=0 bo = —a by =b
Jacobi ap=1 a1=0 ao=-1 bg=a—b by =a+b;

thus the map
(n7 ag, b’b) B (—277,7 ag, _bz/z)

translates into the map
(4.2.2) (n,a,b) — (—2n, —a/2,—b/2),

which shows that the PDEs (0.1.2), (0.2.2) and (0.3.4) for the case § = 4 are
obtained by means of the map (4.2.2) from the same PDEs for § = 1. But
according to (0.0.5), this is the precise way the coefficients ¢, s, Q_1, Qo, Q1, @2,
Q3, Q4, Q, evaluated at 3 = 4, are obtained from the same coefficients at § = 1.
This ends the proof of Theorem 0.3. O

4.3. Reduction to Chazy and Painlevé equations (f = 2). Setting E =
[—o0,z], E = [0,z], E = [-1,z] in the PDEs (0.1.2), (0.2.2) and (0.3.4) re-
spectively, leads to the equations (0.4.1), (0.4.2) and (0.4.3) respectively, as
announced in Section 0.4. Furthermore setting 8 = 2, the inductive terms on
the left-hand side of (0.4.1) and (0.4.2) vanish and one obtains the ODEs:
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e Gauss: P,(max\; < z) = exp(—/ f(u)du), where f satisfies:

" 46 f? +4b(2n — bz?) f' + 4b*z f = 0.

e Laguerre: P,(max\; < x) = exp (—/ Mdu), where f satisfies
1 T u

D" 4 af" + 6xf? — Aff — ((a— bx)? — Anbz)f — b(2n + a - bx)f = 0.

1
e Jacobi: P,(max\; < z) = exp (—/ f(u)2 du), where f satisfies:
[ x — U

1

2(z% — 1)2f" + 4(2® — 1) (:cf” - 3f’2) + (16wf —qn(2® — 1) — 25 — r) f
—f4f —quz —5) =0,

where 7, s, g, are defined in (0.3.1).

These three equations are of the form

P 6 4P’ P 4Q
(4.3‘1) f,//+Ff”_‘_ﬁfg_ﬁff,_'_ﬁfQ_‘_ﬁ

with the following coefficients P, Q, R:
Gauss P(z)=1 4Q(z) = —4b*z? + 8bn R=0
Laguerre P(x) =2z 4Q(z) = —(bx — a)? + 4bnx R=0
Jacobi P(z)=1-2% 4Q(z) = —i(qn(2® —1)+2sz+7r) R=0.

20/ . 2R
f,_ﬁf_‘_ﬁzoa

The general Chazy class of differential equations are equations of the form
" =F(zf f,f"), where F is rational in f, f’, f and locally analytic in z,

subjected to the requirement that the general solution be free of movable
branch points; the latter is a branch point whose location depends on the
integration constants. In his classification, Chazy found thirteen cases, the
first of which is given by (4.3.1), with arbitrary polynomials P(z), Q(z), R(z)
of degree 3,2, 1 respectively.

Cosgrove ([11], [12]), (A.3), shows this third-order equation has a first
integral, which is second-order in f and quadratic in f”,

(432)  f" +% ((Pf’2 +Qf +R)f —(Pf?+ Qf +R)f

1 1
+§(P//f/ + Q//>f2 _ 6P///f?) +C> =0,
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with an integration constant c. In the three cases, discussed above, ¢ = 0.
Notice equations of the general form

=G, f, ')

are invariant under the map

a1z + as asf + agz + ar
—— and frob ————.
asz + ay asz + a4

Using this map, the polynomial P(z) can be normalized to
P(z) =z(z—1), z, or L.

Equation (4.3.2) is a master Painlevé equation, containing the six Painlevé
equations. If f(x) satisfies the first three equations above, then the new func-
tion g(z), defined below,

Gauss 9(2) = b7 V2f(2b71/2) + Znz
f) +2en+a)z+ %

Jacobi  g(2) = =5 f(#)]p=2--1 — 2+ 4

Laguerre g¢g(z)

satisfies the following canonical equations of Cosgrove and Scoufis ([11], [12]):

o ¢ = —4¢5 + 4(zg' — g) + Arg' + Ao, (Painlevé IV)

o (29" = (24 — g) (—49'2 + Ay(2g — g) + AZ) + Agg + As,

(Painlevé V)

o (2(z—1)g")? = (29 — g) (49’2 —4¢'(z9' — g9) + A2> + A1g”% + Azg' + Ay

(Painlevé VI)
with respective coefficients
2 3
a=a(g) - ()
o A =1 Ay =02((n+%)2+%), Ay = —a’b(n+ %), Ay = (“12’)2
((n+ 9%+ %),

—35)242
° A1 = 2q8+T7 AQ: %7 A3: 7((1 8254+ qr, A4: %(2524‘(]7’)

Each of the equations above can be transformed into the standard Painlevé
equations.
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5. Appendix. Self-similarity proof of
the Virasoro constraints (Theorem 1.1)

Given the data (0.0.1) to (0.0.3), namely p = e and —p'/p = V' =
g/f =38bi2") XX aizt and E = ] [c2i-1,c2] € F C R, we show that the
multiple integral

(5.0.1) I,(t,c;0) ::/ (z)|? H ( 2yt kp :vk)d:ck> forn >0

satisfies the Virasoro constraints of Theorem 1.1, using a (much less concep-
tual!) self-similarity argument. Setting

Al (2) = |An ()| H (e "k p(ag) )

we state the following lemma:

LEMMA 5.1.  The following variational formula holds:

(5.0.2)
d o 0]
Tdln(ai o aitef (@)t =3 (ae P50, b P8 ) dE

=0 y=0
Proof. Upon setting

(5.0.3) E(x,t) := Hezzlt"%p(zk)

n
He x’“’t), where V(z,t) th ,
1
the following two relations hold:
(5.0.4)
1 0? n
—z - 0o | E = :Ux —|—— zo | £,
2 i+j=k 8tlat] 2 1<;<n B 1<az<n
i,7>0 i,7>0
i+j=k
(ier;kO) = | X 2| B, forank>0
oty, > “] -
<a<n

So, the point now is to compute the e-derivative

(5.0.5) d%(|An(x)\ﬁeZZ=1<—V<rk>+Zfiltiw%;)dxl...dxn)

)

e=0

LT +£f(xi)xf+l

which consists of three contributions:
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Contribution 1:

(5.0.6)

9| A+ s @)t
Oe
e=0
0
= AA@T Y o-log(lea — o +e(f(wa)ebt - flay)ak )
1<a<y<n e=0
fxa)abtt — f(ay)abt!
= BlA@)” -
1<a<y<n Ta = Ty
ghttHl gk
= PlA(x \’Bzaz > !
(=0 1<a<y<n Lo — Ty
= )8 iy _ ek nn—1)
ﬁ’A ‘ Zaf i+;+k Lo Ty + (n 1) 1<z:< Lo 9 5€+k,0
07>0 sasn
1<a<y<n
g
= BEA(z |’g ae <— Ok+£,0
zg>0
k+4+1 0 n(n—1
+ (Tl — 5 ) <3tk+£ + n5k+e,0> - <T)5k+€,O>E
= BE7A(x |Bzaz
k:—|-€+1> 0 n(n —1)
+ ) E.
( l};“ at ot ( 2 Otiore 2 o
1,7>0
Contribution 2:
(5.0.7) H (zo + ef (xq)xtL)
1 e=0
S (ot + e ) T

(l+k+1a Z ’ﬂ“Hdm

=0 a=1

> 9
EYN(+k+1Day(=——+nd ETT dxi,
Stk Jor (i + s H .
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Contribution 3:

(5.0.8) H exp ( (a:a + Ef(:pa)xk-i-l)

—l—Zt Z (xa—i-af(xa) k“) )

a=1

e=0

_ (‘ S Ve flaa)aht + Y i 3 <%>‘”3+k> .
=1 a=1

a=1

= i be z": gh el 4 Z ayit; Z gkt

/=0 a=1 £>0
i>1

> 0
= (- > b ( + n5k+£+1,0>

= \Otpie

+Za5§:” (

As mentioned, to conclude (5.0.2), we must add up the three contributions
(5.0.6), (5.0.7) and (5.0.8), resulting in:

(5.0.9)
0
e

+ N0 hte o) ) E.
z+k+

——dl, (-731 — x; + 5f(l'z) k+1)

e=0

(Zw( T+ B+ (E+k+1 )(1—§))J,f}+)€

+n((n — 1)§ + 1)5k;+e,o> - b (J;Sr)g“ + n5k+£+1,o)> dl(z).
=0

where J,gi) = ﬁJ,gi), as in (1.1.8). Thus we use (1.1.8) to end the proof of
Lemma 5.1. O

Proof of Theorem 1.1. The change of integration variable xz; — x; +
ef(z;)z% ™ in the integral (5.0.1) leaves the integral invariant, but it induces a
change of limits of integration, given by the inverse of the map above; namely
the ¢;’s in E = J{[c2i—1, c2i], get mapped as follows:

i ¢ —ef ()l + O(E2).
Therefore, setting

r

E* = Jleai1 — ef (c2i1)e5 ™) + O(%), cai — e f (ca) s + O(7)],
1
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we find, using Lemma 5.1 and the fundamental theorem of calculus,

2n
0o - 2 / |Agn(z +ef ()" T] e V@t @0 g0, 4o f () a !
Oe J(pe)ym =1 ’
a k+1 9 s B7(2) Bl
= —ZCZ» f(Cz)% +Z (aé Jk—i—ﬂ,n _bf Jk+g+17n) In(t,C,ﬁ)-
i=1 v 4=0
This ends the alternative proof of Theorem 1.1. O
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