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Heights of Heegner points
on Shimura curves
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Introduction

The purpose of this paper is to generalize some results of Gross-Zagier
[20] and Kolyvagin [28] to totally real fields. The main result and the plan of
its proof are described as follows.

Main results. Let F be a totally real number field and N a nonzero ideal of
OF . Let f be a newform on GL2(AF ), of (parallel) weight 2, level K0(N), and
with trivial central character, where K0(N) denotes the subgroup of GL2(F̂ ):

K0(N) =

{(
a b

c d

)
∈ GL2(ÔF )

∣∣∣∣c ∈ N̂
}
,

where for an abelian group M , M̂ denotes M ⊗ ∏p Zp. Let Of denote the
subalgebra of C over Z generated by eigenvalues a(f,m) of f under the Hecke
operators. For each embedding σ : Of → C, let fσ denote the newform with
the eigenvalues a(fσ,m) = a(f,m)σ. Assume that either [F : Q] is odd or
ordv(N) = 1 for at least one finite place v of F . Then there is an abelian variety
A over F of dimension [Of : Z] such that L(s,A) equals

∏
σ:Of→C L(s, fσ)

modulo the factors at places dividing N . Our main result is the following:

Theorem A. Assume the L-function L(s, f) has order ≤ 1 at s = 1.
Then for any A as above:

1. The Mordell -Weil group A(F ) has rank given by

rankA(F ) = [Of : Z] ords=1L(s, f);

2. The Shafarevich-Tate group X(A) is finite.

The theorem would hold with a weaker condition that either [F : Q] is odd
or ordv(N) is odd for at least one finite place, provided we could overcome one
technical difficulty. That is, it would be enough to prove Lemma 5.2.3 (below)
without the assumption that ord℘(N) ≤ 1.
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Shimura curves. As in the case F = Q treated by Gross-Zagier and
Kolyvagin, we will prove the theorem by studying Heegner points over some
imaginary quadratic extension. Let E be a totally imaginary quadratic ex-
tension of F which is unramified over places dividing N . Assume further
ε(N) = (−1)g−1 where g = [F : Q] and

ε = ⊗vεv : F×\F̂× → {±1}

is the character on A×F /F
× associated to the extension E/F . Let τ be a fixed

archimedean place, and let B be a quaternion algebra over F which is nonsplit
exactly at all archimedean places other than τ , and finite places v such that
εv(N) = −1. Fix an embedding ρ : E → B over F . Let R be an order of B of
type (N,E), that is an order of B of discriminant N which contains ρ(OE). Fix
an isomorphism Bτ ⊗R ' M2(R) such that ρ(E)⊗R is sent to the subalgebra

of M2(R) of elements

(
a b

−b a

)
. Then the group B+ of the elements in B×

with totally positive reduced norm acts on the Poincaré half-plane H. Thus
we obtain a Shimura curve

Xτ (C) = B+\H × B̂×/F̂×R̂× ∪ {cusps}

where {cusps} is not empty only if F = Q and εv(N) = 1 for any v|N . By
Shimura’s theory [35], Xτ (C) has a canonical model X defined over F .

The curve X over F is connected but not geometrically connected. Let
Jac(X) denote the connected component subgroup of Pic(X/F ). Then,

Jac(X) = Res
F̃ /F

Pic0(X/F̃ ),

where F̃ denotes the abelian Galois extension of F corresponding to the sub-
group F+ · (F̂×)2 · Ô×F via class field theory.

Theorem B. There is a unique abelian subvariety A of Jac(X) defined
over F of dimension [Of : Z] such that L(s,A) is equal to

∏
σ:Of→C L(s, fσ)

modulo the factors at places dividing N .

We will prove this theorem in Section 3, by combining the Eichler-Shimura
theory and a newform theory for X obtained by using Jacquet-Langlands the-
ory [24]. The key to the newform theory on X is Proposition 3.3.1. I am
indebted to H. Jacquet for showing me the proof in the supercuspidal case
using results of Waldspurger. (After the paper was submitted, I learned from
Gross and the referees that some related results have been obtained by Tunnell
[38] and Gross [19].)

Heegner points. Let x denote the image on Xτ (C) of {
√
−1} × {1} ∈

H × B̂×. By Shimura’s theory [35], x is defined over the Hilbert class field H

of E. We call x a Heegner point on X.
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In order to construct a point in the Jacobian Jac(X) from x, we need to
define a map from X to Jac(X). Write Xτ (C) as a union ∪Xi of connected
compact Riemann surfaces of the form

Xi = Γi\H ∪ {cusps}

with Γi ⊂ B+/F
× ⊂ PSL2(R). Then one has Jac(X)(C) =

∏
Jac(Xi). We

define a canonical divisor class of degree 1 in Pic(Xi)⊗Q by the formula

ξi :=

[Ω1
Xi ] +

∑
p∈Xi

(1− 1
up

)[p] + [cusps]


/∫

Xi

dxdy

2πy2
,

where for any noncuspidal point p ∈ Xi, up denotes the cardinality of the group
of stabilizers of p̃ in Γ, where p̃ is a point in H projecting to p. Now we define
a map φ : X → Jac(X)⊗Q which sends a point p ∈ Xi to the class of p− ξi.
It is easy to see that some positive multiple of φ is actually defined over F .

Let z denote the class

u−1
x

∑
σ∈Gal(H/E)

φ(xσ)

in Jac(X)(E)⊗Q. Let zf be the component of z in A⊗Q.

Gross-Zagier formula. Now we assume that a prime ℘ is split in E if either
℘ divides 2 or ord℘(N) > 1.

Theorem C. Let LE(s, f) denote the product L(s, f)L(s, ε, f), where
L(s, ε, f) is the L-function of f twisted by ε. Then LE(f, 1) = 0 and

L′E(f, 1) =
(8π2)g

d2
F

√
dE

[K0(1) : K0(N)](f, f)〈zf , zf 〉,

where

1. 〈zf , zf 〉 is the Néron-Tate height of zf ;

2. dF is the discriminant of F , and dE is the norm of the relative discrim-
inant of E/F ;

3. (f, f) is the inner product with respect to the standard measure on
Z(AF )GL2(F )\GL2(AF ).

If F = Q and every prime factor of N is split in E, this is due to Gross-
Zagier [21]. Again, the extra condition that ℘ is split in E when ord℘(N) > 1
can be eliminated if we know how to compute local intersections at ℘ when
the integral model of Shimura curves has some mild singularities over ℘.
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For the proof of the second part of Theorem A, we assume that L(s, f)
has order less than or equal to 1. By some results in [3] and [40] (the theorem
in [3] is stated for Q, but its proof can be easily generalized to any number
field), there is an E such that LE(f, s) has order equal to 1 at s = 1. It follows
from Theorem C that zf has infinite order. Now the second part of Theorem
A follows from Kolyvagin’s method [17], [28], [29], [30], which applies directly
to our case without any new difficulty. The only thing we need is to give a
correct system of CM-points which we will do at the end of this paper.

Plan of proof. Now we sketch the proof of Theorem C. Let Ψ and Φ be
two cusp forms on GL2(AF ) of weight 2 and level K0(N) characterized by the
following properties:

• The Fourier coefficients of Ψ are given by

a(Ψ,m) = 〈z,T(m)z〉

for all m.

• The form Φ satisfies the equality

L′E(f, 1) = c(f,Φ)

for any newform f on GL2(AF ) of weight 2, level K0(N), and with trivial
central character, where c is some constant, and (·, ·) denotes the Weil-
Petersson product.

Then the equality in Theorem C is equivalent to Φ ≡ const · Ψ modulo old
forms, and the proof of Theorem C is reduced to the computations of Fourier
coefficients of Ψ and Φ respectively. We will do this by using Arakelov theory
and the Rankin-Selberg method respectively. (In a separate paper [14], we will
provide a more simple and direct proof for the Fourier coefficients of Φ when
F = Q.)

The absence of a cuspidal divisor representative for ξi and the absence
of Dedekind’s η-function in the general case cause some essential difficulties
in our height computation. Fortunately, these difficulties can be overcome by
using Arakelov theory and the strong multiplicity-one argument. See Section 4
for a detailed explanation of our method. Even in the case X = X0(N), our
method simplifies the computation of Gross and Zagier.

Acknowledgment. Modulo the construction of the map from Shimura
curves to their Jacobians, the formula in Theorem C was first conjectured
by Gross in [18]. In some cases of F = Q, K. Keating [26] and D. Roberts [33]
have made some computations of local intersection numbers of some CM-points
based on desingularizations. See also S. Kudla’s paper [31].
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Notation.

• NF : the multiplicative monoid of nonzero ideals of OF .

• For any ideal m of OF , we define ε(m) such that ε is multiplicative on NF
and such that ε(℘) = ε℘(π) if ℘ is unramified in E and π is a uniformizer
of ℘ in O℘; otherwise, ε(℘) = 0.

• Let DF denote the inverse different ideal of F ,

D−1
F = {x ∈ F : trF/Q(xOF ) ⊂ Z}

and let DE denote the relative discriminant of E over F .

• Let dF , dE , dN denote the absolute norms of N , DF , and DE .

• For a quaternion algebra we let det (resp. tr) denote the reduced norm
map (resp. reduced trace map). For an order in a quaternion algebra, we
call the reduced discriminant simply a discriminant.

1. Shimura curves

In this section we introduce some of the theory of Shimura curves which
will be used in later sections. We start from the construction of the integral
model for general Shimura curves through a moduli interpretation in subsec-
tions 1.1. and 1.2. Then we give a description of the set of special fibers in 1.3.
In 1.4, we study Hecke operators and their reductions. After some modular
interpretations, we prove the Eichler-Shimura congruence relation in a special
case. Finally in 1.5, we move to the special Shimura curve X constructed in
the introduction and define the order R and its corresponding level structure.

1.1. Modular interpretation.

1.1.1. General properties of Shimura curves. Let F be a totally real field
of degree g. This means that all Archimedean places of F are real. Fix a real
place τ which allows us to consider F as a subfield of R by the embedding which
we still denote by τ . Let B be a quaternion algebra over F which is unramified
at τ but not at the other infinite places. Then we can fix an isomorphism

(1.1.1) B ⊗ R ' M2(R)⊕Hg−1
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where the first factor corresponds to τ , and H is the quaternion division algebra
over R. See [39] for basic properties of quaternion algebras. Let H± denote
the Poincaré double-half plane equal to C−R equipped with the usual action
by GL2(R). Thus the first projection in (1.1.1) gives an action of B on H±.

For each open subgroup K of B̂× which is compact modulo F̂×, we have
a Shimura curve

(1.1.2) MK(C) = B×\H± × B̂×/K,

where for any abelian group M , M̂ denote the completion M ⊗ ∏p Zp. For
any g ∈ B̂×, and open subgroups K1,K2 such that gK1g

−1 ⊂ K2, the right
multiplication on (B⊗F̂ )× by g−1 induces a morphism g : MK1(C)→MK2(C).
By Shimura’s theory (see [6]), the curve MK(C) has a canonical model MK

defined over F and the morphism g : MK1 →MK2 is also defined over F with
respect to these models.

By work of Drinfeld and Carayol [1], [4], [7], one can even define an integral
model MK over SpecOF such that MK is regular if K is sufficiently small.
This is what we need for the computation of heights in Sections 4 and 5.

If F = Q, then MK(C) parametrizes elliptic curves or abelian surfaces.
The canonical models and integral models can be obtained by extending the
corresponding modular problems to integers. See [25] and [1] for details.

If F 6= Q, MK(C) does not parametrize abelian varieties in a convenient
way. But MK(C) has a finite map to another Shimura curve MK′(C) which
apparently parametrizes abelian varieties. Thus extending the moduli problem
to integers gives the integral models. In the following we will describe the curve
MK′ and its moduli interpretation.

Let us fix a quadratic extension F ′ = F (
√
λ) of F , where λ is a negative

integer. Consider
√
λ as an element in C. Then τ can be extended to a complex

place for F ′:

(1.1.3) τ(x+ y
√
λ) = τ(x) + τ(y)

√
λ.

Let B′ denote B ⊗ F ′, let J be a compact open subgroup of F̂
′×, and let

K ′ denote the subgroup K · J of B̂′
×

. Then we have a Shimura curve

MK′(C) = F
′×B×\H± ×B×F̂ ′×/K ′(1.1.4)

= MK(C)×
F̂×

[
(F ′)×\F̂ ′×/J

]
.

Again by Shimura’s theory, this curve has a canonical model MK′ over F ′ and
the morphism

(1.1.5) MK(C)→MK′(C)

is defined over some extension of F ′. For example, we have the abelian exten-
sion corresponding to J via class field theory. The image of the morphism in
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(1.1.5) is another Shimura curve M
K̃

where

K̃ = K ·
[
F̂× ∩

(
F
′× · J

)]
.

1.1.2. A moduli problem over F ′. In the following we will explain how the
curve MK′(C) parametrizes certain abelian varieties over F ′ and, therefore,
has a model M ′K defined over F ′.

For this we write V for B′ as a left B′-module and write VR for V ⊗ R.
Then there is a decomposition:

VR = (B ⊗ R)⊗R F ′ ⊗ R = (M2(R)⊗ C)⊕ (H⊗ C)g−1,

where we use (1.1.1)) and (1.1.3) with τ replaced by all places of F . Now we
define a complex structure on VR such that

√
−1 acts on VR by right multipli-

cation of the following element j ∈ B ⊗ C:

j =

((
0 1
−1 0

)
, 1⊗

√
−1, · · · , 1⊗

√
−1

)
.

Then the space H± can be identified with the (B⊗R)× · (F ′⊗R)×-conjugacy
classes of j: each z = x+ yi ∈ H± corresponds to an element given by

(1.1.6) jz =

(
αz

(
0 1
−1 0

)
α−1
z , 1⊗

√
−1, · · · , 1⊗

√
−1

)

where αz is an element of GL2(BR) such that its action on H± gives αz(
√
−1)

= z.
Thus VR is a C vector space with an action by B′. The traces of elements

` of B′ acting on the C-space VR are given by the following formula:

tr(`, VR/C) = t(`)

where t is a map t : B′ → F ′ given by

(1.1.7) t(`) = 2trF/Q(x) + 2
(
trF/Q(y)− y

)√
λ

if trB′/F ′(`) = x + y
√
λ. The function t characterizes (VR, j) uniquely in the

sense that a complex B′-module W is B′-linearly isomorphic to (VR, j) if and
only if tr(`,W ) = t(`) for every ` ∈ B′.

Let v → v̄ denote the product of the involutions on both factors of B′ =
B ⊗F F ′, and let δ be a symmetric (δ̄ = δ) and invertible element in B′. Let
`→ `∗ be an anticonvolution on V defined by

`∗ = δ−1 ¯̀δ.

Notice that every anticonvolution of B′ which extends the convolution on E

can be obtained in this manner.
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Let ψF be a pairing on V with values in F given by

ψF (u, v) = trB′/F
(√

λuv̄δ
)
.

Then for any ` ∈ B′,
ψF (`u, v) = ψF (u, `∗v).

One can show that the similitudes of ψF consist of right multiplication on
V = B′ of elements of B× · F×.

Choose a δ such that ψF (v, vj) ∈ F ⊗ R is totally positive for v ∈ VR.

Proposition 1.1.3. The curve M ′K is the coarse moduli space of the
following moduli functor F0

K′ over C: For an F ′-scheme S, F0
K′(S) is the set

of the isomorphism classes of objects [Ā, ι, θ̄, κ̄] where

1. Ā is an abelian scheme over S up to isogeny with an action ι : B′ →
EndS(Ā) such that for any ` ∈ B′ there is the equality

tr(ι(`),LieĀ) = t(`).

2. θ̄ is an F×-class of polarizations θ : A → A∨ for A ∈ Ā such that for
any ` ∈ B′, the associated Rosati involution takes ι(`) to ι(`∗).

3. κ̄ is a K ′-class of B′-linear isomorphisms κ : V̂ → V̂ (Ā) which are
F̂ -symplectic similitudes, where V̂ (Ā) = T̂ (Ā)⊗Q with T̂ (Ā) =

∏
Tp(Ā).

This means that each κ ∈ κ̄ is symplectic between the form ψA induced
by a polarization θ ∈ θ̄, and the form trF/Q(uaψF ) for some u ∈ F̂×,
a ∈ detK ′.

Proof. Let x be a point of MK′(C); we want to construct an element
[A, ι, θ̄, κ̄] in F0

K′(C) as follows. Assume that x is represented by (z, γ).

1. Ā is the abelian variety up to isogeny,

Ā = Λ\(VR, jz)

with Λ any lattice of V , where jA is the complex structure constructed
as in (1.1.6). Thus, V̂ (A) = V̂ .

2. ι : B′ → End(Ā) is induced by left multiplication of B′ on V .

3. κ̄ is the K ′-class of the map V̂ → V̂ (Ā) induced by right multiplication
of γ.

It follows from the definition that the isomorphic class [Ā, ρ, θ̄, κ̄] is an element
of F0

K′(C).



36 SHOUWU ZHANG

Conversely, we can construct a point x ∈MK′(C) from an element [A, ι, θ̄, κ̄]
of F0

K′(C) as follows. Let VA denote H1(A,Q) and let ψA be an alternative form
defined by one polarization in θ̄. Then VA is a B′-algebra which is isomorphic
to V at each place of F ′ by a map in κ̄. It follows that VA must be isomorphic
to V . We may identify VA with V = B′ by fixing such an isomorphism. By
the second condition, the alternative form ψA has the form

ψA(v1, v2) = trF/QψF (v1b, v2)

for some b′ ∈ B×. If κ ∈ κ̄ then κ is induced by the map v → vγ with γ ∈ B̂′×.
Condition 3 implies

(1.1.8) trF/Q(uψF (v1x, v2x)) = trF/Q(ψF (v1b, v2)).

This is equivalent to the equation uxx̄ = b. By Hasse’s principal (see [27,
§2.2.3]), this equation must have a solution x ∈ B

′×. After modifying the
isomorphism φ : VA → V , we may assume that b = 1. Then equation (1.1.8)
implies that γ ∈ B̂× · F̂ ′×. Such a γ is uniquely determined modulo right
multiplication of K ′ once φ is fixed. We may replace φ by bφ with b ∈ B× ·F ′×
which acts on V by left multiplication. Then γ is changed to bγ.

Let jA ∈ GLR(VR) be multiplication of
√
−1 in the complex structure on

Lie(A). Then jA commutes with the action of B′R so that it is given by right
multiplication of an element which we still denote by jA. Since jA preserves
the alternative form ψA or equivalently the form ψF , we see that jA ∈ B×R ⊗R.
Now,

jA = (α1 ⊗ β1, · · · , αg ⊗ βg)
where for each i, either αi = 1, βi =

√
−1 or α2

i = −1, βi = 1. By computing
the trace of BR over VA which must satisfy condition 1, we see that jA must
have the form

jA = (α⊗ 1, 1⊗
√
−1, · · · , 1⊗

√
−1)

with α2 = −1. Now α must be conjugate to

(
0 1
−1 0

)
so that jA must be jz

for some z ∈ H±. Again this z is unique if φ : V → VA is fixed. If we change φ
to bφ then z is changed to b(z). It follows that the image x of (z, γ) in MK′(C)
is a well-defined point.

1.1.4. Second version. We may also describe MK′ as a coarse moduli space
of abelian varieties, rather than abelian varieties up to isogeny. For simplicity,
we assume that K is compact. Then there is a maximal order OB of B such
that K is included in Ô×B . (Notice that this is not the exact case wanted, as
the Shimura curve X defined in the introduction is the compactification of MK

with K = R̂× · F̂×.) Let OB′ be the order OB ⊗OF ′ of B′. Write VZ for OB′
as a left OB′-module.
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Let U be a subset of F̂× representing

F\F̂×/detK ′)

such that for each u ∈ U , the alternating pairing uψF is integral on VZ. Let
ν(K ′) denote detK ′ ∩ F× of O×F .

Proposition 1.1.5. The functor F0
K′ is isomorphic to FK′ defined as

follows: For an F ′-scheme S, FK′(S) is the set of isomorphism classes of
objects [A, ι, θ̄, κ̄] where:

1. A is an abelian scheme over S with an action ι : OB′ → EndS(A) such
that for any ` ∈ OB′ there is the equality

tr(ι(`) : LieA) = t(`).

2. θ̄ is a ν(K ′)-class of polarizations θ : A→ A∨ such that for any ` ∈ OB′ ,
the associated Rosati involution takes ι(`) to ι(`∗).

3. κ̄ is a K ′-class of OB′-linear isomorphisms κ : V̂Z → T̂ (A) which is
symplectic with respect to ψu,a := tr

F̂ /Q̂
(uaψF ) for some u ∈ U and

a ∈ detK ′.

Proof. There is an obvious morphism from FK′ to F0
K′ . Now we want to

define its converse. Let [Ā, ρ, θ̄, κ̄] be an object in F0
K′(S). Then the lattice

κ(V̂Z) does not depend on the choice of κ ∈ κ̄. Let A be the corresponding
abelian variety isogenous to Ā. Then A has the action by OB′ such that con-
dition 1 is satisfied. As κ varies in κ̄ = K ′κ and θ varies in θ̄ = F×θ, u in con-
dition 3 in Proposition 1.1.3 varies in a single double-coset of F×\F̂×/detK ′.
Thus we may choose a θ0 ∈ θ̄ such that u ∈ U , and the set of such θ’s forms
a class ν(K ′)θ0. As trF/Q(uaψF ) is always integral, ψA’s corresponding to
θ0 ∈ ν(K ′)θ0 take integral values on T (A). It follows that every such θ0 de-
fines a polarization of A. Condition 2 in this proposition is obviously satisfied.
This defines a morphism F0

K′ → FK′ which is obviously the inverse of the
obvious morphism FK′ → F0

K′ .

1.1.6. Remark. Let x ∈MK′(C) be represented by (z, γ). From the proof
of Propositions 1.1.3 and 1.1.5, we see that the object [A, ι, θ̄, κ̄] in FK′(C)
parametrized by x has the following form:

1. A = VZγ
−1\(VR, jz).

2. ι is induced by left multiplication by OB′ on VZγ
−1.
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3. θ̄ is the unique class induced by alternative forms{
trF/Q(tψF ) : t ∈ F× ∩ (

∐
u∈U

u det γK ′)

}
.

4. κ̄ is the K ′-class of the morphism V̂Z → V̂Zγ
−1 induced by right multi-

plication by γ−1.

Proposition 1.1.7. When K ′ is sufficiently small, then FK′ (therefore
F0
K′) is representable.

Proof. For each u ∈ U , let FK′,u denote the subfunctor of FK′ ⊗ F ′F̃
with given u in condition 4 of Proposition 1.1.5, where F̃ is the extension of F
corresponding to F× detK ′ via class field theory. Wishing to show that FK′,u
is representable, we need the following:

Lemma 1.1.8. There is a positive integer n such that

(1 +mOF )× := (1 +mÔF )× ∩ F× ⊂ [(1 +mOF )×]2

with some n ≥ 3.

Proof. We fix an n ≥ 3 and let S be a finite subset of (1 + nOF )× which
contains 1 and represents the quotient

(1 + nOF )×/[(1 + nOF )×]2.

For each s ∈ S − {1}, let ps be a prime not dividing 2m such that s is not a
square in (OF /psOF )×. Then

m := n
∏

m∈S−{1}
ps

will satisfy the requirement. Indeed, the definition of m implies that the mor-
phism

(1 + nOF )×

[(1 + nOF )×]2
→ (OF /mOF )×

[(OF /mOF )×]2

is injective. Thus (1 +mOF )× is included in [(1 + nOF )×]2.

We return to our proof of Proposition 1.1.5. Assume that K ′ is sufficiently
small so that

detK ′ ⊂ (1 +mÔB)× · (1 +mÔF ′)×.
Then ν(K ′) ⊂ (1 + nOF )×2. Let T denote the set of elements in (1 + nOF )×

whose squares are in ν(K ′). Let K̃ ′ denote K ′ ·T . If t ∈ T , then multiplication
by t induces an isomorphism

[A, ι, θ̄, κ̄]→ [A, ι, θ̄, tκ̄]
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of objects in FK′,u(S). Here if κ is symplectic with respect to ψu,a, then tκ is
symplectic with respect to ψu,at2 . As T 2 = ν(K ′) = ν(K̃ ′), it follows that the
canonical morphism FK′,u → FK̃′,u is an isomorphism.

Let F̃
K̃′,u

denote the functor defined in the same way as F
K̃′,u

but with
ν(K ′)-class θ̄ to replace a single θ. Then multiplication by t induces an iso-
morphism

[A, ι, θ, κ̄]→ [A, ι, t2θ, κ̄]

of objects in F̃
K̃,u

(S). So the canonical morphism F̃
K̃′,u

→ F
K̃′,u

is also an
isomorphism.

In this way we have shown that FK′,u is isomorphic to F̃
K̃′,u

. Now we

want to show the representability of F̃
K̃′,u

. Let d denote the degree of ψu,1.
Let A denote the moduli functor which classifies abelian varieties of dimension
4g, with a full level n structure and a polarization of degree d. As n ≥ 3, A
is representable by a scheme Md,n ([32, Prop. 7.9]). The functor F̃

K̃′,u
has a

finite morphism to A. The conditions in the definition of F̃
K̃′,u

defines a finite

scheme M̃K′,u over Md,n ⊗ F ′F̃ which represents F̃
K̃′,u

, also FK′,u. Now the

union M̃K′ of M̃K′,u represents FK′ ⊗ FF̃ . Notice that M̃K′ has an action by

Gal(F̃ /F ) = F×\F̂×/detK ′

which induces a model MK′ of M̃K′ defined over F ′. This model represents
FK′ . As MK′(C) is a smooth Riemann surface, MK′ is a regular scheme.

1.2. Integral models.

1.2.1. A new version of FK′⊗F℘. Let ℘ be a prime of F of characteristic p.
Assume that λ is prime to p and and that

(
λ
p

)
is 1; we fix a square root µp in

Qp. Then F ′ can be embedded into F℘ over F by sending
√
λ to µp. We want

to extend MK′ ⊗F℘ to a modelMK′,℘ over O℘, the ring of integers in F℘. For
this we need a new version of the moduli problem FK′ over F℘-schemes. We
start with some notation.

The algebra OF ′,p = OF ′ ⊗ Zp is the sum of all completions OF ′,q at its
places q over p. We have the following decomposition:

OF ′,p = O1
F ′,p +O2

F ′,p

where O1
F ′,p (resp. O2

F ′,p) denotes the sum of all completions OF ′,q such that
the map OF ′ → OF ′,q takes

√
λ to µp (resp. −µp). For any OF ′,p module M ,

we let M1 (resp. M1
℘, M2, M2

℘) denote O1
F ′,pM (resp. O2

F ′,pM). Let O℘F ′,p
denote the sum of components of OF ′,p not over ℘ and let M℘ (resp. M℘)
denote O℘F ′,pM (resp. OF ′,℘M).
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Choose δ and U such that for each u ∈ U , uψF has degree prime to p, and
u has component 1 at places dividing p. Then we have the following:

Proposition 1.2.2. The functor FK′ ⊗F℘ is equivalent to the following
functor FK′,℘: for any F℘-scheme S, FK′,℘(S) is the isomorphism classes of
objects [A, ι, θ̄, κ̄p, κ̄p] where

1. A is an abelian scheme over S with an action ι : OB′ → End(A/S) such
that the following two condition are satisfied :

(a) Lie(A)2
℘ is a locally free OS module of rank 2 such that the action

of ι(F ) is given by the inclusion F → F℘ → OS ;

(b) Lie(A)2,℘ = 0.

Here Lie(A) may be viewed as an OB′,p via the action ι.

2. θ̄ is a ν(K ′)-class of polarizations on A of degrees prime to p, such that
the Rosati involutions take ι(`) to ι(`∗).

3. κ̄2
p is a Kp-class of OpB′-linear isomorphisms:

κ2
p : V 2

Z,p → Tp(A)2.

4. κ̄p is a K
′p-class of OpB′-linear isomorphisms

κp : V̂ p
Z → T̂ (A)p

which is symplectic with respect to some ψpu,a. Here, for a ÔF -module
M =

∏
qMq, let Mp denote the product of components Mq for q 6 | p.

Proof. Let us first define a morphism from FK′ ⊗ F℘ to FK′,℘. Let
[A, ι, θ̄, κ̄] be an object in FK′(S) where S is an F℘-scheme. Then we can
decompose any κ̄ into parts

(1.2.1) κ̄ = κ̄p ⊕ κ̄p : VZ,p ⊕ V̂ p
Z → Tp(A)⊕ T̂ (A)p.

Furthermore we can decompose κp into two parts:

κ1
p ⊕ κ2

p : V 1
Z,p ⊕ V 2

Z,p → Tp(A)1 ⊕ T 2
p .

We claim that the object [A, ι, θ̄, κ̄p, κ̄p] is an object of FK′℘(S). We need
only verify condition 1 in Proposition 1.1.5. Indeed, by a result of Carayol,
condition 1 in Proposition 1.1.5, which states that

tr(ι(`),LieA) = t(`), ` ∈ B′,
can be replaced by the first condition in Proposition 1.2.2 together with one
further condition that

A is an abelian variety of dimension 4g.
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This is a slight generalization of Carayol’s proposition in [4, p. 171]. In
his case ℘ is split in B. His proof can be generalized to our case without any
difficulty. In this way, we obtain a morphism FK′ ⊗ F℘ → FK′,℘.

Now we want to construct the converse of the morphism of functors con-
structed as above. Since the fact that A has dimension 4g is implied by con-
dition 4 in Proposition 1.2.2, we need only show that for a given K ′p-class κ̄2

p

as in Proposition 1.2.2, we can find κ̄p with a decomposition as in (1.2.1) such
that κ̄p is a K ′p-class of isomorphisms κp : VZ,p → Tp(A) which is OB′,p-linear
and symplectic with respect to traψF and some ψA induced by a θ in θ̄, where
a is some element in detK ′p.

Notice that condition 2 in Propositions 1.1.5 and 1.2.2 implies that all
these subspaces are null spaces under symplectic forms. So each pair of these
spaces forms a complete dual. Now we may take κ1

p to be the dual of κ2
p.

1.2.3. Definitions. Let S be a scheme over O℘, G an OB,℘-module scheme
over S.

1. We say that G is a special OB,℘-module if the induced action of OB,℘ on
Lie(G) makes Lie(G) a locally free module of rank one over OS⊗O℘OE,℘,
where OE,℘ is any unramified quadratic extension of O℘ contained in
OB,℘.

2. Let n ∈ N and x ∈ G[n](S). We say x is a Drinfeld base of G of level n
if, as cycles in G, there exists the identity:

[G[n]] =
∑

a∈OB,℘/℘n
[nx].

Proposition 1.2.4. Assume that J is maximal at all places dividing p.
Then the functor FK′,℘ can be extended to the following functor over O℘ which
is still denoted by FK′,℘: For any O℘-scheme S, FK′0,℘(S) is the set of isomor-
phism classes of objects [A, ι, θ, x̄, κ̄2,℘, κ̄p] where

1. A is an abelian scheme over the scheme S with an action ι : OB′ →
End(A/S) such that the following two condition are satisfied :

(a) G := A[℘∞]2 is a special formal OB,℘-module.

(b) A[p∞]2,℘ is an étale O2,℘
B′,p-module.

2. θ is a ν(K ′)-class of polarizations on A of degrees prime to p, such that
the Rosati involutions take ι(`) to ι(`∗).

3. x̄ is a K℘-class of Drinfeld bases of G of level n, where n is a positive
integer such that K℘ contains 1 + ℘nOB,℘.
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4. κ̄2,℘ is a K℘
p -class of O2,℘

B′,p-linear isomorphisms:

κ2,℘ : V 2,℘
Z,p → Tp(A)2,℘.

5. κ̄p is a K
′p-class of OpB′-linear isomorphisms

κp : V̂ p
Z → T̂ (A)p

which is symplectic with respect to some tr(uaψF ) for some u ∈ U and
a ∈ detK ′, and some ψA induced by some element in θ̄.

Moreover, when K℘ = (1 + ℘nOB,℘)× and K
′p is sufficiently small, the

functor FK′,℘ is representable by a regular schemeMK′,℘ over O℘. In general,
the functor FK′,wp has a coarse moduli space MK′,℘ over O℘.

Proof. It is easy to see that the conditions in Proposition 1.2.4 are equiv-
alent to the conditions in Proposition 1.2.2 when S is a F℘-scheme. The rep-
resentability can be proved in the same way as in Proposition 1.1.5. Here we
need to choose K

′p to be sufficiently small and take care of Drinfeld bases. See
[4, §5.3 and §7.3]. Also the regularity can be proved using the same argument
as in [4, §5.4 and §7.4].

If K
′p is not sufficiently small or if K℘ does not have the form

(1 + ℘nOB,℘)×, then FK′,℘ may not be representable. But we may choose
a sufficiently small normal subgroup K̃ ′ of K ′ so that the functor F

K̃′,℘
is

representable. The quotient M
K̃′,℘

/K ′ does not depend on the choice of K̃ ′

and it is actually the coarse moduli space of FK′,℘
1.2.5. Modules MK and modules GK . Recall that MK has a finite mor-

phism to MK′ . We, therefore, obtain a model MK,℘ for the Shimura curve
MK by taking the normalization of MK′,℘ in MK . One can show that this
model does not depend on the choice of F ′ and J . By gluing these models, one
has a modelMK over SpecOF for MK , which is regular when K is sufficiently
small.

Assume that K ′ is sufficiently small so that FK′,℘ is represented by a
regular scheme MK′,℘. Then over MK′,℘, we have a divisible OB,℘-module
GK′ := GA , where A is the universal abelian variety on MK′ . Let GK be the
pull-back of GA on MK . Then GK0 does not depend on the choice of J .

Let K0 denote O×B,℘ ·K℘. Then the scheme MK over MK0 classifies the
K℘-class of Drinfeld bases in GK0 [℘n].

Let x be a geometric point of the special fiber of MK0 . Then over the
completion of the strict localization M̂K0,x, GK0 is the universal deformation
of GK0 |x.

1.3. Reductions of models. We want to study the set of irreducible com-
ponents of the special fibers of MK .
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1.3.1. Split case. Assuming that B is split at ℘, we can fix an isomorphism
between OB,℘ and M2(O℘), thus obtaining the decomposition of O℘ modules
over MK0 :

GK0 = G1 ⊕ G2, G1 =

(
1 0
0 0

)
GK0 , G2 =

(
0 0
0 1

)
GK0 .

The twoO℘-modules G1, G2 are isomorphic by the element

(
0 1
1 0

)
. It is easy

to see that in this setting,MK overMK0 classifies the K℘-class of morphisms

φ : (O℘/℘n)2 → G1[℘n]

such that this homomorphism is surjective on cycles.
Let x be a geometric point in the special fiber of MK0,℘. Then the

O℘-module G1
x has two possibilities:

1. Ordinary case: The group G1
x is isomorphic to the product of (F℘/O℘)

and a formal O℘ -module Σ1 of height 1.

2. Supersingular case: The group G1
x is isomorphic to a formal O℘-module

Σ2 of height 2.

The set of connected geometric components of the special fiber of MK0

over ℘ is the same as that of the generic fiber. Fix a geometrically irreducible
component D of the special fiber of MK0 over ℘. Then we have:

Proposition 1.3.2. Assume that ℘ is split in B. Then the set of the
irreducible geometric components of MK over ℘ is indexed by P1(O℘)/K℘.
More precisely, for each line C ⊂ O2

℘, the corresponding component of MK

over ℘ will classify the morphism

φ : (O℘/℘)2 → G1[℘n]

such that kerφ contains C (mod ℘).

1.3.3. Nonsplit case. It remains to study the reduction ofMK in the case
that B is not split at ℘. In this case, one can show that GK is a formal group.
It follows that the map

MK →MK0

is purely inseparable at the fiber over ℘. So the set of irreducible components
in the special fiber of MK over ℘ is the same as that of MK0 .

To study the irreducible components of MK0 over ℘ we can use the uni-
formization theorem of Cerednik – Drinfeld [1], but we need some notation.
Let M̂K0 denote the formal completion of MK0 along its special fiber over ℘.
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Let B(℘) denote the quaternion algebra over F obtained by switching the
invariants of B at τ and ℘. Fix an isomorphism:

B̂(℘) ' M2(F℘) · B̂℘

where the superscript ℘ means that the component at the place ℘ is removed.
Let Ω̂ denote Deligne’s formal scheme over O℘ obtained by blowing-up P1 along
its rational points in the special fiber over the residue field k of O℘ successively.
The generic fiber Ω of Ω̂ is a rigid analytic space over F℘ whose F̄℘ points are
given by P1(F̄℘)−P1(F℘). The group GL2(F℘) has a natural action on Ω̂. The
theorem of Cerednik-Drinfeld gives a natural isomorphism

M̂K0 ' B(℘)×\Ω̂⊗̂Ônr℘ × B̂×,℘/K℘

where Ônr℘ denote the completion of the maximal unramified extension of O℘.
To obtain a description of the special fiber of M̂K0 , we notice that the

irreducible components of special fibers of Ω̂ correspond one-to-one to the
classes modulo F× of O℘ lattices in F 2

℘. Consequently, we have the following:

Proposition 1.3.4. Assume that ℘ is not split in B. Then the set of
irreducible geometric components of M̂K0 over ℘ is indexed by the set

B(℘)×\GL2(F℘)/F×℘ GL2(O℘)× B̂×,℘/K℘

' B(℘)×\B̂(℘)
×
/F×℘ GL2(O℘)K℘.

1.4. Hecke correspondences.

1.4.1. Definition. LetMK be a Shimura curve with a compactK contained
in Ô×B . Let m be an ideal of OF such that at every prime ℘ dividing m, K
has maximal components and B is split. Let Gm (resp. G1) be the set of
element g of ÔB which has component 1 at places not dividing m, and such
that det(g) generates m (resp. is invertible) at each place dividing m. Then
we may consider G1 as a subgroup of K. The Hecke operator T(m) on MK is
defined by the formula

(1.4.1) T(m)x =
∑

γ∈Gm/G1

[(z, gγ)],

where (z, g) is a representative of x in H× B̂×, and [(z, gγ)] is the projection
of (z, gγ) on X. It is easy to see that the correspondence has the degree

deg T(m) = σ1(m) =
∑
a|m

N(a).

To see that T(m) is a correspondence given by algebraic cycles, decompose
Gm into a union of double cosets:

Gm =
∐

G1giG1.
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For each i, let Ki denote the group giKg−1
i ∩K. Then we obtain two morphisms

p1, p2 from MKi to MK , induced by right multiplication on B̂× by 1 and gi
respectively. The image of MKi in MK×MK by (p1, p2), as an algebraic cycle,
defines a correspondence Ti. Then T(m) is defined to be the sum of Ti.

If MK is the integral model constructed as before then the Hecke corre-
spondences T(m) can be extended to MK by taking Zariski closure of cycles
in MK ×MK . See moduli interpretation in the next section.

1.4.2. Moduli interpretation. Let F ′ = F (
√
λ) be a quadratic extension as

in 1.1.1. Let J be a compact subgroup of F̂
′× which has maximal components

for places dividing m. Let K ′ = K · J . Then we can use the same formula
(1.4.1) to define Hecke correspondence T(m) on MK′ . In the following we want
to describe a moduli interpretation for T(m).

1.4.3. Definition. Let [A, ρ, θ̄, κ̄] be an object in FK′(S) as in Proposition
1.1.5, let m be an ideal of OF , and let D be an OB′-submodule of A[m]. We
say that D is an admissible submodule of level m if the following conditions
are satisfied:

1. D is its own annihilator under a Weil pairing

(1.4.2) (·, ·) : A[m]×A[m]→ ⊕`|mO`/mO`

induced by a polarization in θ̄.

2. D1 and D2 have the same order.

Proposition 1.4.4. Assume that each prime factor ` of m is split in
both B and F ′. Let [A, ρ, θ̄, κ̄] be an object in FK′(S).

1. Let D be an admissible submodule of A of level m, let AD denote the
abelian variety A/D, and let ρD denote the action of OB′ on AD induced
from that on A. Then there are a unique ν(K)-class θ̄D of polarizations
on AD inside of F×θ̄, and a unique K ′-class κ̄D of level structure which
have the same components as κ̄ out side of ` such that [AD, ρD, θ̄D, κ̄D]
defines an element in FK′(S).

2. The Hecke operator as a correspondence acting on MK′ is given by the
following formula:

T(m)[A, ρ, θ̄, κ̄] =
∑
D

[AD, ρD, θ̄D, κ̄D]

where D runs over all admissible submodule of A of level m.
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Proof. Choose a root µ` of λ in F` for each ` dividing m. Then we have
an isomorphism

OF ′,` → O` ⊕O`,
√
λ→ (µ`,−µ`).

Any ⊕`|mOF ′,`-module M has a corresponding decomposition M = M1 +M2.
Since T(m) is multiplicative for coprime m’s, we may assume that m is a

power of a prime ideal `.

1.4.5. Models for OB′,` and VZ,`. In the decomposition

OB′,` = O1
B′,` ⊕O2

B′,`,

the Rosatti convolution switches two factors. Now, we can fix an isomorphism

(1.4.3) OB′,` = OB,` ⊕OB,`,

such that the following conditions are satisfied:

• The second projection is the projection onto O2
B′,` composing with the

canonical isomorphism O2
B′,` ' OB,`.

• The Rosatti operator is given by

(a, b)∗ = (b̄, ā).

Similarly, we fix a model for VZ,` as follows. First of all, since

(1.4.4) ψF (ax, y) = ψF (x, a∗y),

it follows that in the decomposition

VZ,` = V 1
Z,` ⊕ V 2

Z,`,

ψF has the form

ψF (x1 + x2, y1 + y2) = ψF (x1, y2)− ψF (y1, x2)

for xi, yi ∈ V i
Z,`. It follows that ψF gives a perfect pairing between V i

Z,`’s. So
we have an isomorphism

(1.4.5) VZ,` ' OB,` ⊕OB,`
such that:

• The second projection is the projection onto V 2
Z,` composing with the

canonical isomorphism
V 2
Z,` ' OB,`.

(Recall that VZ = OB′ in its definition.)

• The pairing ψF is given by
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(1.4.6) ψF ((x1, x2), (y1, y2)) = trB/F (x̄1y2)− trB/F (ȳ1x2)

for xi, yi ∈ OB,`.

With respect to the decompositions (1.4.3) and (1.4.5), the action of the
second factor of OB′,` on VZ,` is given by left multiplication on the second
factor of VZ,`. It follows from (1.4.4), that the same is true for the first factor.

Now we want to find a formula for another action OB,` on VB,` which is
originally given by right multiplication in its definition. Let us denote this
action by r. Let a ∈ OB,`. Since r(a) is OB′,`-linear, r(a) must be given
by right multiplication of some element (a1, a2) of OB′,` with respect to the
decomposition (1.4.3). From the definitions of the decomposition, a2 = a.
Recall that r(a) is a similitude of ψF :

ψF (r(a)x, r(a)y) = det(a)ψF (x, y).

Combining this with (1.4.6), we must have a1 = a. So the action r is still given
by right multiplication.

1.4.6. First statement. Let κ be one element in κ̄. Then tensoring with
Q we obtain an isomorphism

κ : V̂ → T (A)⊗Q.

Notice that the natural map A→ AD induces inclusions

T (A) ⊂ T (AD) ⊂ T (A)⊗Q.

We want to find γ ∈ Gm such that V̂Zγ−1 = κ−1(T (AD)). Notice that such a
γ is unique modulo G1 if it exists. We need only work at the place `.

Let W denote κ−1(T`(AD)). Then D is isomorphic to W/VZ,`. Notice that
the Weil pairing on A[m] is induced up to an invertible factor by the pairing

(1.4.7) α2ψF : m−1VZ,` ×m−1VZ,` → O`,

where α ∈ F̂× is a generator of m. Since D is its own annihilator, it follows
that the pairing

αψF : W ×W → O`
is perfect.

With respect to the decomposition (1.4.5), W must have the form

W = OB,`γ−1
1 ⊕OB,`γ−1

2

with γi ∈ OB,`. Notice that Di is isomorphic to OB,`γ−1
i /OB,` respectively. So

Di has order (det(γi)). Since D1 and D2 have the same order, it follows that
both det γ1 and det γ2 generate m. Now as αψF is perfect on W , γ2 must be
equal to γ1 times a unit. So W = VZ,`γ

−1
1 .
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Let γ be an element of Gm which has the component γ1 at the place `;
then we have κ−1(T (AD)) = V̂Zγ

−1. Now we can define κ̄D as the class of the
composition

κ ◦ γ−1 : V̂Z → V̂Zγ
−1 = κ−1(T (AD))→ T (AD).

As in the proof of Proposition 1.1.5, there will be a unique class θD inside F×θ
such that [AD, ρD, θ̄D, κ̄D] is an object in FK′(S).

1.4.7. Second statement. Let γ be an element in Gm. Recall that in the
proof of Proposition 1.1.3, if [(z, g)] represents an object [Ā, ρ, θ̄Ā, κ̄] in F0

K′(C)
then [z, gγ] represents the object [Ā, ρ, θ̄Ā, κ̄γ

−1]. Also recall that in the proof
of Proposition 1.1.5 of the equivalence F0

K′ and FK′ , these two objects are
equivalent to

[A, ρ, θ̄, κ̄] and [A′, ρ, θ̄′, κ̄γ−1]

where A (resp. A′) is the abelian variety isogenous to Ā such that

κ(V̂Z) = T (A)
(
resp. κ ◦ γ−1(V̂Z)) = T (A′)

)
.

Here θ̄ (resp. θ̄′ ) is the unique ν(K ′)-class inside θ̄Ā to make this an object in
FK′(C).

The inclusion V̂Z ⊂ V̂Zγ
−1 induces an isogeny A → A′ with kernel D

isomorphic to
V̂Zγ

−1/V̂Z.

We want to show that D is admissible of level m. As the Weil pairing on A[m]
up to an invertible scale is induced by a pairing as in (1.4.7), it follows easily
that D is its own annihilator. Also D1 and D2 have the same cardinality as
both of them are isomorphic to OB,`γ−1/OB,`. Thus D is admissible.

By the first statement, [A′, ρ, θ̄′, κ̄γ−1] is equal to [AD, ρ, θ̄D, κ̄D]. From
the above arguments, one sees that the correspondence between admissible
submodules of level m and γ’s in Gm/G1 is bijective. The second statement of
the proposition thus follows.

1.4.8. Remarks. First of all, we may extend Definition 1.4.3 and Propo-
sition 1.4.4 to MK′,℘ where ℘ is a prime of F . Indeed, everything is exactly
the same as above except when ` = ℘. In this case, we need the following
assumptions:

1. Assume further that λ is split in F℘ and choose a square root µ℘ in F℘.

2. Assume the Weil pairing in (1.4.2) has the values in

Σ1[m]⊕⊕`6|mm−1O`/mO`
where Σ1 is the formal O`-module of height 1.
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Secondly, D is uniquely determined by D2 as D1 is the annihilator of D2

in A[m]1. Actually, the correspondence D 7−→ D2 gives a bijection between
admissible submodules of A[m] and submodules of A[m]2 of order m2.

Moreover, if each `|m is split in B then we may give a further decompo-
sition for M2. For this we fix an isomorphism OB,` ' M2(O`). Then M2 has
a decomposition:

M2 = M2,1 +M2,2

where

M2,1 =

(
1 0
0 0

)
M2, M2,2 =

(
0 0
0 1

)
M2.

The element w =

(
0 1
−1 0

)
switches M2,1 and M2,2.

If D is an admissible submodule of A of level m, then D2,1 is an
O℘-submodule of A[m]2,1 of order N(m). The map M 7−→ M2,1 is bijec-
tive between the set of admissible submodules of A of level m, and the set of
submodules of A[m]2,1 of order N(m). Indeed, for a given OF -submodule D1

of A[m]2,1 of order m, we can obtain a module D2 = D1 + wD1 as an OB,m
module of A[m]2. Let D3 be the annihilator of D2 in A[m]; then D = D2 +D3

is an admissible submodule of level m.

1.4.9. The Eichler -Shimura congruence relation. Let ℘ be a prime in OF
over which K has the maximal component and B is split. Let Frob(℘) be the
Frobenius correspondence onMK,k where k is the residue field of OF,℘. Then
we have the following Eichler-Shimura congruence relation:

Proposition 1.4.10. Let Frob(℘)∗ denote the dual correspondence of
Frob(℘). Then

T(℘) = Frob(℘) + Frob(℘)∗.

Proof. Let F ′ = F (
√
λ) be as before, such that ℘ is split in F ′. We

will only give a proof for the special case where MK can be embedded into
MK′ for some K ′ which is sufficient to apply to the curve X defined in the
introduction. (The proof of the general case can be found in Carayol’s paper
[4, §10.3] where he uses a slightly different definition of MK′ so that every MK

can be embedded into his MK′ .)
It is obvious that we need only prove the same identity for MK′ . Fur-

thermore, it is true if the identity is true for one K ′ then it is true for a
smaller one, as the identity in the proposition is stable under pushforward of
cycles. So we may assume that K ′ is compact. Now we need only verify the
identity for points in MK′,℘(k̄). We may only restrict ourselves to the dense
subset of smooth and ordinary points. These points are reductions of points
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inMK′,℘(W ) where W is the completion of the maximal unramified extension
of F℘.

Let [A, ρ, θ̄, κ̄] be one object in FK′(W ). Then

T(℘)[A, ρ, θ̄, κ̄] =
∑
D

[AD, ρD, θ̄D, κ̄D]

where D runs through the set of admissible submodules of level m. We want
to study the reduction of this identity module ℘.

As explained in 1.4.8, D is completely determined by a submodule D2,1

of A[℘]2,1 of order ℘. Since our object is ordinary, A[℘∞]1,2 is isomorphic to

Σ := Σ1 ⊕ F℘/O℘
where Σ1 is a formal O℘-module on W of height 1. The generic fiber of Σ
isomorphic to F℘/O℘⊕F℘/O℘. For any t ∈ O℘/℘, let Σt denote the submodule
of Σ whose generic fiber is a group of points (tx, x). The submodules of Σ order
℘ are exactly those of Σt and Σ1.

As the universal deformation space of [A, ρ, θ̄, κ̄] is isomorphic to that of
A[℘∞]2,1, it is easy to see that the isogeny A → AD is purely inseparable if
D2,1 corresponds to Σ1, and is étale if D2,1 does not correspond to Σ1. Thus
in the first case,

[AD, ρD, θ̄D, κ̄D] = Frob(℘)[A, ρ, θ̄, κ̄] (mod ℘)

and in the second case

[A, ρ, θ̄, κ̄] = Frob(℘)[AD, ρD, θ̄D, κ̄D] (mod ℘).

Now the congruence relation in the proposition follows.

1.5. Order R and its level structure.

1.5.1. Construction of R and X. Let N be a nonzero ideal of OF and let
E be a totally imaginary quadratic extension of F whose relative discriminant
is prime to N . Assume that ε(N) = (−1)g−1, where

ε : F×\F̂× → {±1}

is the character associated to the extension E/F . Then up to isomorphisms,
there is a unique quaternion algebra B such that B is ramified exactly at the
place τ and finite places ℘ where ε℘(N) = −1, as this ramification set has even
cardinality by our assumption. Also by construction, every ramification place
of B is not split in E. So we may fix an embedding ρ : E → B over F . This
allows us to consider E as a subalgebra of B.

In the following we want to construct an order R of B of type (N,E); this
means that R contains OE and has discriminant N . For each prime ℘ dividing
N , let ℘K be a prime of OE dividing ℘. Let NE be an ideal of OE which is a
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product of powers of ℘E and which has relative norm N/NB. The existence of
such NE follows easily from our assumptions. Indeed, if we write

Ñ =
∏

ε(℘)=1

℘
ord℘(N)
E ·

∏
ε(℘)=−1

℘
[ord℘(N)/2]
E

then
NE =

∏
℘

℘
ord℘(Ñ)
E .

Let OB be a maximal order of B containing OE . Then we obtain an order of
B by the following formula:

R = OE +NEOB.

Conversely, any order of type (N,E) of B has the above form with some
choice of the maximal order OB.

As in the introduction, our primary curve of study is the compactification
X of the Shimura curve associated to the noncompact group F̂× · R̂×.

1.5.2. Cyclic submodule structures. LetK be an open subgroup of R̂ which
has the same components as R̂ over places dividing N . Let J be some compact
open subgroup of F̂

′× which has maximal components at places dividing N .
Let K0 denote the subgroup of Ô×B which is obtained by replacing components
of K over places diving N with maximal ones. Let K ′ denote K · J and K ′0
denote K0 · J . Then we have a morphism of functors

FK′ → FK′0 .

In the following we want to show that the fiber of this morphism is given by
so-called cyclic submodule structures.

For every prime p which is divided by at least one prime factor ℘ in N ,
we assume that

(
λ
p

)
= 1, and fix a square root µp of

√
λ in Qp. In this way

any OF ′/N module M has decomposition M = M1 ⊕M2 in the same fashion
as before.

1.5.3. Definition. Let A be an object of FK0(S). By a cyclic submodule
structure on A of level NE , we mean an OE/NE-submodule C of A[NE ]2 such
that locally there is an element x ∈ A[NE ] with the following properties:

1. The element x is a Drinfeld base for C. This means that as cycles one
has:

[C] =
∑

a∈OE/NE
[ax].

2. If ℘ is a prime of F over which B is not split, then x is also a Drinfeld
base for OB/Ñ -module A[Ñ ]2.
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Notice that the second condition here is equivalent to the fact that x is
not divisible by uniformizers of B in A[Ñ ].

Proposition 1.5.4. The functor FK′ is equivalent to the functor which
sends an F ′-scheme S to the set of objects [A,C], where A is an object in
FK′0(S), and where C is a cyclic submodule structure of level NE′ on A.

Before the proof of this proposition, we need the following crucial lemma.
Let E′ = E ⊗ F ′. Then every prime factor ℘E of OE can be lifted to a prime
℘E′ which is the preimage of ℘E via the map

OE′ → OE,℘E ,
√
λ→ −µp.

Let NE′ be the lifting of NE to the ideal in OE′ . Now we have the formulas

NF ′ =
∏
℘

℘
ord℘(Ñ)
F ′ .

Lemma 1.5.5. The following identities hold in B̂:

Ô×B · Ô×F ′ =
{
g ∈ B̂× · F̂ ′× : ÔB′g = ÔB′

}
,

R̂× =
{
g ∈ Ô×B : N̂−1

E g = N̂−1
E (mod ÔB)

}
,

R̂× · Ô×F ′ =
{
g ∈ Ô×B · Ô×F ′ : N̂−1

E′ g = N̂−1
E′ (mod ÔB′)

}
.

Proof. 1.5.6. First identity. We need only prove the inclusion “⊃” for
each place ℘. Let a ∈ B×℘ and b ∈ F ′×℘ such that c = ab ∈ O×B′,℘.

If F ′℘ is a field unramified over F℘, then b = db′ with d ∈ F×℘ and b′ ∈ O×F ′,℘.
So we may write c = a′b′ with

a′ = ad = cb
′−1 ∈ B℘ ∩ O×B′,℘ = O×B,℘.

If F ′℘ is split, then we have a decomposition

F ′℘ = F℘ ⊕ F℘, B′℘ = B℘ ⊕B℘.

Write b = (b1, b2) with respect to these decompositions. Then ab1 and ab2 are
both in O×B,℘. It follows that b1b−1

2 ∈ O×F,℘. So we may write c = a′b′ with

b′ = (b1b−1
2 , 1) ∈ O×F ′,℘ and a′ = ab1 ∈ O×B,℘.

Finally let us assume that F ′℘ is a ramified quadratic extension of F℘.
Let π′ be a uniformizer for F ′℘. By replacing b with a multiple of elements in
F×℘ · O×F ′ , we may assume that b is either 1 or π′. In the first case, a must be a
unit and we are done. Now we assume that b = π′. Since ℘ is ramified in F ′,
℘ must be split in B. By writing a as a 2 by 2 matrix over F℘, we see that the
integrality of aπ′ implies that of a. But this implies that c = aπ′ cannot be a
unit.
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1.5.7. Second identity. This identity follows from the definition because

N̂−1
E g = N̂−1

E (mod ÔB) ⇐⇒ N̂−1
E g = N̂−1

E + ÔB
⇐⇒ g ∈ ÔE +NEÔB = R̂.

1.5.8. Third identity. For this, we need only show the following:

(1.5.1) Ô×B ∩
(
ÔE′ + N̂E′ÔB′

)
⊂ R̂×,

since by similar reasoning to that above,

N̂−1
E′ g = N̂−1

E′ (mod ÔB′)⇐⇒ g ∈ ÔE′ + N̂E′ÔB′ .

We need only check (1.5.1) for each place ℘ of F . This is clear if ℘ does not
divide N . But if ℘ divides N , then it is split in F ′ and we have decompositions:

B′℘ = B℘ ⊕B℘,
√
λ→ (µp,−µp),

NE′,℘ = OE,℘ ⊕NE,℘.

It follows that
OE′,℘ +NE′OB′,℘ = OB,℘ ⊕R℘.

Thus (1.5.1) is proved.

1.5.9. Proof of Proposition 1.5.4. Let S be an F ′-scheme, and [A, κ̄] an
element of FK′(S) with A ∈ FK′0(S) and κ̄ a class modulo K ′ isomorphisms
κ : V̂Z → T̂ (A). This κ will induce an isomorphism κ : V̂ → V̂ (A) and a map

κ̃ : V̂ → V̂ (A)/T̂ (A) = Ator.

Thus, we have an OE′-submodule Cκ := κ̃(N−1
E′ /OE′) of A[NE′ ]. By the above

lemma, Cκ does not depend on the choice of κ in the class κ̄.
Since N−1

E′ /OE′ is a free module of rank 1 over OF ′/NF ′ and generates
OB′/NF ′-module N−1

F ′ OB′/OB′ , it follows that Cκ is generated by a Drinfeld
base x of the order NF ′ .

Conversely, for any OE′-submodule C of A[NE′ ] which is generated by a
Drinfeld base of order NF ′ , and any level structure κ0 for the compact subgroup
K ′0, we have a unique level structure κ so that κ0 = κ (mod K ′0) and C = Cκ.

In a similar manner, we have the following:

Proposition 1.5.10. Let ℘ be a prime of F of characteristic p. Assume
that J is maximal at places over p. Then the functor FK′,℘ is equivalent to
the functor which sends the W -scheme S to the set of isomorphism classes of
objects [A,C] where A is an object in FK′0,℘(S) and C is a cyclic submodule
structure on A of order NF ′ .
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2. Heegner points

In this section we study Heegner points. We start in Section 2.1 with the
general definition of CM-points and Heegner points as complex points, and
their modular interpretations. Then we move to the study of their reductions
which are so-called distinguished points, first the structure of formal group in
Section 2.2 and then the structure of endomorphism rings in Section 2.3 using
Honda-Tate theory. Finally in Section 2.4, we study the lifting of distinguished
points by Serre-Tate theory and Gross’s theory. In this section we assume that
every prime factor of 2 is split in E.

2.1. CM-points.

2.1.1. Definitions and general properties. Our primary object of study in
this paper is the class of Heegner points on the curve X defined in 1.5.1 by the
noncompact group F̂×R̂×. From the modular point of view, it is more natural
to study Heegner points on the Shimura curve Y defined by the compact group
R̂×:

Y = B×\H± × B̂×/R̂×.

The curveX is then a quotient of Y by the action of F̂×. As in the introduction,
we fix a splitting

B ⊗τ R = M2(R)

such that ρ(E)⊗R is sent to the subalgebra of M2(R) of elements

(
a b

−b a

)
.

We then extend τ : F → R to τ : E → C such that

τ(x) = a+ bi⇐⇒ ρ(x) =

(
a b

−b a

)
.

We say a point z in Y is a CM-point (by E), if z is represented by an
element of H± × B̂× of the form (

√
−1, g).

For a CM-point z, let φz denote the morphism

g−1ρg : E → B̂.

Then up to conjugation by R̂×, φz does not depend on the choice of g. The
order End(z) := φ−1

z (R̂) in E, which does not depend on the choice of g, is
called the endomorphism ring of z. The ideal c of OF , such that

End(z) = Oc := OF + cOE ,

is called the conductor of z.
For a place ℘ prime to c, the homomorphism φz defines an orientation in

U℘ = Hom(OE,℘, R℘)/R×℘ .
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This set has only one element if ℘ does not divide N ; otherwise it has two
elements: the image of ρ which we called the positive orientation, and the
image of ρ̄ which we called the negative orientation. We say two CM-points
have the same orientation, if they define the same elements in U℘ for ℘|N . If
we write

OE,℘ = OF,℘ +OF,℘e

with e2 ∈ F , then two embeddings

φ1, φ2 : OE,℘ → R℘

define the same element in U℘ if and only if

(2.1.1) (φ1(e)− φ2(e))2 ≡ 0 (mod N).

Indeed, write R℘ = OE,℘ + tOE,℘ with t ∈ R℘ such that det(t) generates N℘.
Then if e1 and e2 have the same orientation, it follows that e1−e2 ∈ tR℘. This
implies that

(e1 − e2)2 = −det(e1 − e2) = 0 (mod N℘).

If e1 and e2 do not have the same orientation, then e1 − e2 = 2e1 mod tR℘.
Thus

(e1 − e2)2 = 4e2
1 6= 0 (mod N℘).

The curve Y admits an action by the group

W = {b ∈ B̂× : b−1R̂×b = R̂×}/R̂×.

This group has 2s elements, where s is the number of prime factors of N . The
action of W on CM-points does not change the conductors, and the induced
action on

∏
℘|N U℘ is free and transitive.

Let Yc denote the subscheme of the positively oriented CM-points of the
conductor c. Then Yc is defined over E and every point in Yc(Ē) = Yc(C) is
defined over the ring class field Hc of Oc. Indeed, if (

√
−1, g) is a CM-point

of Y with positive orientation and conductor c, then Yc is identified with the
set of points represented by (

√
−1, Ê×g). The correspondence which sends x

to the class of (
√
−1, xg), therefore, defines a bijection

E×\Ê×/Ô×c ' Yc.

The Galois action of Gal(Hc/E) on Yc is given by the inverse of the map,

Gal(Hc/E) ' E×\Ê×/Ô×c ,

via class field theory.
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A CM-point z by E is called a Heegner point if its conductor is the trivial
ideal OF . Obviously, the point (

√
−1, 1) is a Heegner point. In this paper

we only consider CM-points with conductors prime to NDE and with positive
orientation, where DE is the relative discriminant ideal in OF for the extension
E/F .

Notice that the property of a point to be a CM-point of conductor c is
invariant under the action by F̂×. Thus, all the above discussion is valid for
X or any Shimura curves between X and Y .

2.1.2. Modular interpretation. We fix F ′ as in Section 1.5. In the following
we want to give a modular interpretation of Heegner points over E′ = F ′ · E.
We let Y ′ denote the Shimura curve MK′ with

K ′ = R̂× · Ô×F ′ .
Then Y has a finite morphism to Y ′.

Let F denote the functor FK′ and let F0 denote FK′0 where

K ′0 = Ô×B · Ô×F ′ .
Then every point x in Y (C) represents an object [A,C], where A stands for an
object [A, ρA, θ̄A, κ̄A] of F0(C) and C is a cyclic OE-submodule structure of A
of level NE . We need some notation to state our result:

• For [A,C] in F(S),

– let EndF0(A) denote the OF ′-subalgebra of EndOB′ (A) generated
by elements φ : A → A such that φφ∗ ∈ F×, where φ → φ∗ is a
Rosati involution induced by a polarization in θ̄A.

– let EndF (A,C) denote the subalgebra of EndF0(A) of elements φ
such that φ(C) ⊂ C.

• Let t′ : E′ → E′ be a map defined by

t′(a+ b
√
λ) = trE/Q(a) + a− ā+

(
trE/Q(b)− b− b̄

)√
λ

for any a, b ∈ E.

Proposition 2.1.3. Let x be a point on Y (C), and let [A, , C] be an
object represented by x. Then the point x is a CM-point by E if and only if
EndF0(A)⊗Q ' E′. Moreover, if x is a CM-point by E, then:

1. There is a unique isomorphism

α : E′ ' EndF0(A)⊗Q
over F ′ such that for any a ∈ E′,

tr(α(a) : LieA) = 2s(a).
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2. With α as above,

End(x) = {a ∈ E : α(a) ∈ EndF (A,C)}.

Proof. Let x be represented by (z, γ). With notation as in the proof of
Proposition 1.1.5, the endomorphism ring EndF0(A) can be identified with the
subring of B generated by elements b ∈ B× · F× such that

1. Vγb ⊂ Vγ , or equivalently, b ∈ γÔB′γ−1;

2. bjz = jzb, or equivalently, τ(b) ∈ aρ(E)a−1⊗τ R, where a ∈ GL2(R) such
that a(

√
−1) = z.

It follows that EndF0(Ax)⊗Q is an F ′-subalgebra of B′ generated by elements
b ∈ B× satisfying the second condition.

2.1.4. Equivalence. If EndF0(A) ⊗ Q ' E′, then there is an embedding
β : E → B over F such that in B′,

EndF0(A)⊗Q = β(E)⊗ F ′.

As all embeddings of E into B are conjugate, it follows that β = bρb−1 where
b ∈ B× is uniquely determined by β modulo ρ(E)×. Now condition 2 implies
that in B ⊗τ R,

bρ(E)b−1 ⊗τ R = aρ(E)a−1 ⊗τ R.

It follows that b = ak with some k ∈ ρ(E) ⊗τ R. As a(
√
−1) = z, k(

√
−1) =√

−1, one must have z = β(
√
−1). Thus x can be represented by

β−1(z, γ) = (
√
−1, β−1γ).

So x is a CM-point.
Conversely, if x is a CM-point and is represented by (

√
−1, g), then in the

above description of EndF0(A), we may take a = 1 in condition 2. Now,

EndF0(A)⊗Q = ρ(E)⊗ F ′.

This is isomorphic to E′ by the following map:

α : E′ = E ⊗ F ′ → EndF0(A)⊗Q,

α(x⊗ y) = ρ(x)⊗ y.

2.1.5. First property. It remains to show that α satisfies both properties
in the proposition. If a ∈ E then a acts on VR via right multiplication by ρ(a).
Write ρ(a) = (a1, · · · , ag) with respect to the decomposition

B ⊗ R = M2(R)⊕ (H)g−1.
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Then by the definition of complex structure in Section 1.1 on

VR = M2(R)⊗ C⊕ (H⊗ C)g−1,

one has

tr(a+ b
√
λ) = 4a+ 2

∑
i≥2

(
trH/BR(ai) + trH/BR(bi)

√
λ
)

= 2t′(a).

The only other isomorphism between EndF0(A)⊗Q and E′ is ᾱ defined by

ᾱ(x⊗ y) = α(x̄⊗ y)

which does not satisfies property 1 as t′(ā) 6= t′(a) for a ∈ E − F .

2.1.6. Second property. Finally we want to prove the second property in
the proposition. By the proof of Proposition 1.1.5 and 1.5.4, C is isomorphic
to N−1

E′ γ
−1 modulo Vγ = ÔB′γ−1. It follows that

{a ∈ E, α(a) ∈ EndF (A,C)}

=

{
a ∈ E,

ρ(a) ∈ γÔB′γ−!,

N−1
E′ γ

−1ρ(a) ⊂ N−1
E′ γ

−1 (mod ÔB′γ−1)

}

=
{
a ∈ E, γ−1ρ(a)γ ∈ ÔE′ +NE′ÔB′

}
.

Similarly, as in 1.5.9, it is easy to see that

B̂ ∩
(
ÔE′ +NE′ÔB′

)
= R̂.

Thus we have

{a ∈ E, ρ(a) ∈ EndF (A,C)} =
{
a ∈ E, ρ(a) ∈ γR̂γ−1

}
= End(x).

Proposition 2.1.7. Let x and y be two CM-points with conductors
prime to N , and representing the objects [A,C] and [A′, C ′]. Then x and y

have the same orientation if and only if there is an (ι(OB′)⊗ α(OE))N -linear
symplectic similitude from T (A)N to T (A′)N which takes C to C ′. Here for an
OF -module M , MN = M ⊗⊕`|NZ`.

Proof. We may assume that x is represented by (
√
−1, 1) and prove only

the local statement for each ℘ dividing N . Let y be represented by (
√
−1, γ).

Then we have isomorphisms of ι(OB′)⊗ α(OE,℘)-modules

T℘(A) ' OB′,℘ and T℘(A′) ' OB′,℘γ−1
℘

where ι(OB′) acts by left multiplication and α(OE) acts by right multiplication
of ρ(OE), and isomorphisms of α(OE′)-submodules

C℘ ' N−1
E′,℘ (mod OB′,℘) and C ′℘ ' N−1

E′ γ
−1 (mod OB′,℘γ−1).
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As any B′℘-linear endomorphism of B′℘ is given by right multiplication by
an element of B′℘, the “if” part of the proposition is, therefore, equivalent to
the existence of a ∈ B′℘ such that the following conditions are verified:

1. γ−1
℘ a ∈ O×B′,℘;

2. a commutes with ρ(E);

3. a ∈ B×℘ · F
′×
℘ ;

4. NE′γ
−1
℘ a ⊂ NE′ (mod OB′,℘).

By the first identity of Lemma 1.5.5, conditions 1 and 3 here are equivalent
to the fact that a has the form γ−1

℘ a = bc where b ∈ O×B,℘ and c ∈ O×F ′,℘.
Replacing a by ac−1, we may assume that c = 1 and then a ∈ B℘.

Now condition 2 is equivalent to a ∈ ρ(E), and condition 4 is equivalent
to γ−1

℘ a ∈ R℘ by a similar argument to 1.5.8. It follows that the “if” part of
the proposition is equivalent to γ℘ ∈ ρ(E)× · R×℘ , or equivalently to the fact
that the map

γ−1
℘ ργ℘ : E℘ → B℘

has positive orientation.

2.2. Formal groups. Let q be a finite place of E and let Eur
q be the

completion of the maximal unramified extension of Eq with ring of integers
Our
q , and residue field k. Let y be a CM-point of Y with conductor c prime

to NDE and q. Then y is defined over Eur
q . Let ȳ denote the Zariski closure

of y in Y ⊗ Our
q , where Y is the integral model of Y over OF constructed in

Section 1.2. We want to study the reduction yk of ȳ in Yk := Y ⊗ k.
Let p denote the characteristic of k and let ℘ denote the prime of OF

under q. As usual, we will choose an auxiliary negative integer λ as in Sec-
tion 1.1 and work on F ′ = F (

√
λ). We assume that

(
λ
p

)
= 1 and choose a

square root µp of λ inQp. Then there is the usual decomposition M = M1⊕M2

for F ′p modules M . Let i denote the embedding

i : E′ = E(
√
λ)→ Eur

q

which takes
√
λ to µp.

Let [Ā, C̄] be the abelian variety represented by ȳ. Then the action of
End(y) ⊗ OF ′ on A = Ā ⊗ Eur

q extends to an action on Ā. Let G denote the
divisible OE′-module Ā[℘∞]2.

Proposition 2.2.1. The action of OE on the Our
q -module Lie(G) induced

by the action α on Ā is given by the canonical embedding OE → Our
q .
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Proof. We want to prove the proposition by computing the trace of the
action of α(OE′). Recall that the action α : E′ → End(A) ⊗ Q induces an
action of E′p = E′ ⊗ Qp on Lie(A), therefore an action of E′℘ = E′ ⊗ F℘ on
Lie(A[℘∞]). This last module has a projection

Lie(A[℘∞])→ Lie(G),
√
λ→ −µp.

We denote all of these actions by α. By Proposition 2.1.3, the action α of E′

on Lie(A) has the trace map i◦2t′ : E′ → Eur
q . It is easy to see that the action

α of E′℘ on Lie(A[℘]∞) will have the trace 2t′℘, where t′℘ : E′℘ → E′℘ has the
same formula as t′ but with trE/Q replaced by trE℘/Q. The trace 2t′′ of E on
Lie(G) is given by composing 2t′℘ with the embedding

E → E′℘, x→ x

2
− x

2

√
λ

µp

and the projection

E′℘ → Eur
q , a+ b

√
λ→ a+ bµp.

So for x ∈ E,

t′′(x) = trE/Q
(
x

2

)
+
x

2
− x̄

2
−
(

trE℘/Qp

(
x

2µp

)
− x

2µp
− x̄

2µp

)
µp

= x.

Now, the action α of E on Lie(G) has the trace 2x. Thus Lie(G) is a two
dimensional space of Eur

q and the action α of E is given by the usual scalar
multiplication of E ⊂ Eur

q .

2.2.2. The structure of G. Let C be the component of C in G. In the
following we want to identify the structure of [G, C] as an OB,℘−OE,℘-module.
First of all let us construct a special object [G0, C0].

Let Σ denote the following O℘-module:

Σ =

{
Σ2 if ℘ is not split in E,

Σ1 ⊕ F℘/O℘ if ℘ is split in E.

Here for any positive integer h, let Σh denote a formal O℘-module of height h
over Our

q which is special in the sense that the induced action on the tangent
space is given by scalar multiplication, which exists uniquely up to isomor-
phism. Let

OE,℘ × Σ→ Σ, (a, x)→ ax

be a faithful O℘-linear action such that the induced action of OE,℘ on Lie(Σ)
is given by the reduction OE,℘ → Oq → k.

Let us define a special OB,℘ −OE,℘-module [G0, C0] such that

1. G0 = Σ⊕ Σ;
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2. The action α0 of OE,℘ is given by the multiplication:

α0(x)(u, v) = (xu, xv);

3. C0 = Σ[NE ]⊕ 0 as OE,℘-modules;

4. The action of OB,℘ is given as follows:

(a) If ℘ is ramified in E we fix an isomorphism OB,℘ ' M2(O℘). Define
the action ι0 : OB,℘ → EndO℘(G0) by matrix multiplications.

(b) If ℘ is not ramified in E, then OB,℘ is generated by OE,℘ and
an element $ such that $x = x̄$ and such that π := $2 is a
uniformizer of O℘ if ℘ is ramified in B, and 1 if ℘ is split in B.
Then we define the action of OB,℘ on Σ2 by the following formula:

ι0(x)(u, v) = (xu, x̄v), ι0($)(u, v) = (πv, u).

Proposition 2.2.3. The object [G, C] is isomorphic to [G0, C]. In other
words, there is an isomorphism φ : G → G0 such that

1. φ is OE,℘-linear with respect to the actions α, α0,

2. φ is OB,℘-linear with respect to the actions ι, ι0,

3. φ(C) = C0.

Proof.

2.2.4. Case 1: ℘ is ramified in E. In this case C = C0 = 0. Define

G1 = ι

((
1 0
0 0

))
G, G2 = ι

((
0 0
0 1

))
G.

Then G is isomorphic to G1⊕G2 and ι

((
0 1
1 0

))
switches two factors. Since

the Gi’s are stable under the action of Oq, they are isomorphic to Σ2.

2.2.5. Case 2: ℘ is not ramified in E. Let G1 (resp. G2) be the max-
imal α(OE,℘)-submodule over which ι(x) = α(x) (resp. ι(x) = α(x̄)) for
any x ∈ OE,℘; then the Gi’s are OE,℘-modules (via α) of height 1 and G =
G1 + G2. The action of ι($) gives two OE,℘-linear morphisms u : G1 → G2 and
v : G2 → G1 such that uv = vu = π. The object [G, ι, α] is completely deter-
mined by [G1,G2, u, v]. As up to isomorphism there is only one special formal
OE,℘-module of height 1, so Gi is isomorphic to Σ and one of u and v is an
isomorphism. In other words, up to isomorphism, [G1,G2, u, v] is isomorphic to
[Σ,Σ, 1, π] or [Σ,Σ, π, 1].
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By Proposition 2.1.7, the generic fiber of the (OB,℘,OE,℘)-module (G, C)
is isomorphic to that corresponding to (

√
−1, 1); that is,

(G, C)Eur
q
' (B℘/OB,℘, N−1

E OE,℘/OE,℘)

with the action ι by multiplication from the left and the action of α by multi-
plication from the right. It follows that [G1,G2, u, v] is isomorphic to [Σ,Σ, 1, π]
and C is isomorphic to Σ[NE ]⊕ 0.

2.3. Endomorphisms. Now we assume that y is a Heegner point. We want
to study EndF (Ak, Ck), where Ak is the reduction of A over Spec(k). Let F
be a finite subfield of k over which [Ak, Ck] and α are defined. In other words,
[Ak, Ck] is the base change of some object [AF, CF] with an action of OE . Let
σ be the Frobenius over F which acts on AF. By the Honda-Tate theorem and
the Tate theorem ([37] and [42]), End(AF) is a semisimple algebra with center
Q(σ), and for any prime `,

End(AF)` ' End(AF[`∞]) ' Endσ(Ak[`∞])

where Endσ(·) means the commutator of σ in End(·). It follows that
EndF (AF, CF) is also a semisimple algebra with center containing OF ′(σ), and
such that for any place `′ of F ′,

EndF (AF, CF)`′ ' EndF
(
AF[`

′∞], CF[`
′∞]
)

' EndσF
(
Ak[`

′∞], Ck[`
′∞]
)
.

Here two EndF ’s on the right are defined in the same way as in 2.1.1.
Fix OB′-linear isomorphisms from the level structure of [AF, CF]:

(2.3.1)


κ2
℘ : [G0, C0]→ [G, C],
κ2,℘
p : [V 2,℘

Z,p ,
(
N−1
E′ /OE′

)2,℘

p
]→ [T (A)2,℘

p , C2,℘
p ],

κp : [V̂ p
Z ,
(
N−1
E′ /OE′

)p
]→ [T̂ (A)p, Cp].

Then we obtain isomorphisms:
(2.3.2)

EndF (AF, CF)`′ =


Endσ̃OB (G0, C0) if `′ | ℘,

Endσ̃OB

(
V 2,℘
Z,p ,

(
N−1
E′ /OE′

)2,℘

p

)
`′

if ` | p and ` 6 | ℘

Endσ̃F
(
V̂ p
Z ,
(
N−1
E′ /OE′

)p)
`′

otherwise,

where σ̃ denotes the endomorphism induced from σ through the isomorphism
κ’s. It follows that EndOB′ (AF, CF) is the commutator of σ in a quaternion
algebra over OF ′ .

Proposition 2.3.1. If ℘ is split over E, then

EndF (Ak, Ck) = OE′ .
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Proof. From the definition of G0, one sees that

EndOB (G0) ' EndOF (Σ) ' O℘ ⊕O℘.

It follows that for `′|℘, EndF (Ak, Ck)′` can only be an algebra over O℘ of degree
at most 2. Thus EndF (Ak, Ck) is an algebra over OF of degree at most 2.

Obviously, the right side is isomorphic to EndF (Ā, C̄); therefore, it is
included in the left-hand side. As OE′ is a maximal order, we must have an
equality.

Proposition 2.3.2. Assume that ℘ is not split in E. Let B(℘) be the
quaternion algebra obtained by changing invariants at τ and ℘. Then there is
an order R(℘) of B(℘) of type (N(℘), E) such that

EndF (Ak, Ck) ' R(℘)⊗OF ′ ,

where N(℘) = N℘1−2ordq(NE).

Proof. We need only prove this identity locally at each place `′ of F ′ using
(2.3.2). In this case, one can show that for F sufficiently large, σ ∈ F ′. (See
[4, §§11.4.4, 11.4.5] for a proof.)

It is easy to check that if `′ does not divide ℘ then EndF (A,C)`′ is iso-
morphic to R⊗OF ′,`′ . It remains to show that EndOB (G0, C0) is isomorphic to
R(℘)℘. Notice that C0 has only the geometric point 0, thus does not play any
role in the computation.

Let D denote EndO℘(Σ) which is the maximal order of a quaternion divi-
sion algebra over F℘. The action of OE,℘ defines an embedding of OE,℘ into D.
By a direct computation, we have the following description of EndOB,℘(G0, C0):

EndO℘(G0) = EndO℘(Σ⊕ Σ) = M2(D) :

1. If ℘ is ramified in E, then

EndOB,℘(G0) = D

(
1 0
0 1

)
.

2. If ℘ is ramified in B, then

EndOB,℘(G0) ' OE,℘ +OE,℘℘
(

0 $−1

$ 0

)
,

where $ is an element in D such that $2 = ℘ and such that $x = x̄$

for x ∈ E℘.

3. If ℘ is unramified in both B and E, then

EndOB,℘(G0, C0) ' OE,℘ +OE,℘$
(

0 1
1 0

)
.
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2.3.3. Some remarks and definitions. Let yk be point in Y(k). We call yk
a distinguished point in Y (k) if it is the reduction of Heegner points in Y (Eur

q ).
We can define a similar concept for any curve between Y and X.

Assume that yk is a CM-point representing (Ak, Ck). If ℘ is split in E

then
EndF (Ak, Ck) ' OE′ .

We write End(yk) or Enda(Ak, Ck) for the unique subring of EndF (Ak, Ck)
corresponding to OE (the superscript a stands for the “admissible endomor-
phisms”).

If ℘ is not split in E then

EndF (Ak, Ck) ' R(℘)⊗OF ′

with R(℘) an order of B(℘) of type (N℘, E). One may fix the isomorphism
so that the involution EndF0(Ak)Q induced by the polarization corresponds to
the product of the involutions on B(℘) and F ′ respectively. In this way the
image of R(℘) does not depend on the choice of the isomorphism. Denote this
image by End(yk) or Enda(Ak, Ck). Notice that two orders in B(℘) of type
(N(℘), E) are isomorphic if and only if they are conjugate under B(℘)×.

For a fixed point z of type (N℘,E) with End(z) = R(℘), the reduction
thus defines a map from the set of CM-points reducing to z, with conductor c
prime to N℘, to the set ∏

v|N℘
R(℘)×v \Hom(OE,v, R(℘)v)

of orientations. This set has 2s(℘) elements, where s(℘) is the number of prime
factors of N℘ which do not divide DE . Two CM-points x and y reducing to
z have the same orientation with respect to R if and only if they have the
same orientation with respect to R(℘). We call the orientation defined by the
reduction of the point (

√
−1, 1) the positive orientation.

Proposition 2.3.4. Assume that ℘ is not split in E. Then the map
x → End(x) gives a bijection between the set of distinguished points in X (k)
and the set of conjugacy classes of orders of B(℘) of type (N℘,E).

Proof. The set of distinguished points on X (k) is the set of F̂×-orbits of
distinguished points on Y(k) or any curves between X and Y .

Notice that the set of Heegner points in Y (C) is represented by (
√
−1, Ê).

Thus the corresponding objects are

[Aγ , Cγ ] =
[
V̂Zγ

−1\(VR, j),
(
N−1
E′ /OE

)
γ−1

]
,

where γ ∈ Ê×. Let yγ be the point in Y ′(C) representing the object [Aγ , Cγ ].
Then yγ depends only on the class of γ in E×\Ê×/Ô×E . Thus we may only
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consider yγ with γ integral and having components 1 at places over N℘. Then
we have isogenies φγ from [A1, C1] to [Aγ , Cγ ] given by right multiplication of
γ−1 on VZ. Let yγ,k be the reduction of yγ and let φγ,k denote the reduction
of φγ . Then we can choose isomorphisms in (2.3.1) such that for places not
dividing ℘ they are induced by multiplication of γ−1, and that at place ℘, φγ,k
induces the identity on [G0, C0].

Using the Honda-Tate theorem, we show easily that

φ−1
γ,k ◦ End(yk) ◦ φγ,k = γR̂(℘)γ−1 ∩B(℘)

where R(℘) (resp. B(℘)) denotes End(y1,k) (resp. End(y1,k) ⊗ Q), and we
identify both sides as subrings in

B̂×,℘ ' B̂(℘)×,℘.

As every order of B(℘) of type (N℘,E) is conjugate to one of γR(℘)γ−1, the
map in the proposition is surjective.

Let yγ1 and yγ2 be two Heegner points. By (2.3.1), it is easy to see that
the injective map

IsomF ([Aγ1,k, Cγ1,k], [Aγ2,k, Cγ2,k])→ EndF0(A1,k)⊗Q,
α→ φ−1

γ2,k
αφγ1,k

has the image consisting of elements b such that
[G0, C0] · b = [G0, C0],

[V 2,℘
Z,p ,

(
N−1
E′ /OE′

)2,℘

p
] · γ−1

1 b = [V 2,℘
Z,p ,

(
N−1
E′ /OE′

)2,℘

p
] · γ−1

2 ,

[V̂ p
Z ,
(
N−1
E′ /OE′

)p
] · γ−1

1 b = [V̂ p
Z ,
(
N−1
E′ /OE′

)p
] · γ−1

2 .

This is equivalent to
γ−1

1 bγ2 ∈ R̂(℘)
×
O×F ′ .

Thus yγ1,k and yγ2,k are in the same orbit under F̂× if and only if

γ2 ∈ B(℘)× · γ1 · R̂(℘)
×
· F̂×.

This in turn is equivalent to the fact that End(y1,k) and End(yγ2,k) are conju-
gate in B(℘).

2.4. Liftings of distinguished points.

2.4.1. A deformation problem. Let yk be a point of Y (k) which represents
an object [Ak, Ck] of F(k). Let Gk denote A[℘∞]2 and let Ck denote the com-
ponent of C in Gk. Let αk : E → EndF0(A) ⊗ Q be a homomorphism with
order

Oc := {x ∈ E : α(x) ∈ EndF ([Ak, Ck])}.
Assume:
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1. The order Oc has conductor prime to N℘, and the restriction of αk on
this order has the positive orientation.

2. The action of Oc on Lie(G) is given by the map

i : Oαk → Oαk/q → k.

3. The object [Gk, Ck] is isomorphic to the reduction of [G0
k , C0

k ] with respect
to both the actions of ι(OB) and αk(Oc).

Let us consider the deformation functor Fα over Our
q -algebra with residue

field k which sends an algebra W to the set of isomorphism classes of ob-
jects [A,C, α]. Here [A,C] is an object in F(W ), and α : Oc → EndF [A,C] is
a homomorphism such that the following conditions are satisfied:

• The reduction of [A,C, α] at k is isomorphic to [Ak, Ck, αk].

• The Rosati involution induced by θ̄A takes α(x) to α(x̄) for any x ∈ Oc.

• The action of α(Oc) on Lie(A)2
℘ is given by the composition:

Oc → Our
q → OS .

Proposition 2.4.2. The functor Fα is representable by Our
q .

Proof. The deformation space of [Ak, Ck, αk] is the same as that of
[Gk, Ck, αk]. This is isomorphic to [G0

k , C0
k , α

0
k] by Proposition 2.2.3. Notice

that C0
k = 0. Now the conclusion of Proposition 2.4.2 follows from the fact

that the formal Eq-module Σ has universal deformation space Eur
q .

Corollary 2.4.3. Let yk be a point of Y (k) which represents an object
[Ak, Ck] of F(k). Then yk is a distinguished point if and only if there is a
homomorphism

αk : OE → EndF ([A,C])

such that the above conditions 1–3 are satisfied.

2.4.4. Canonical liftings. The universal object over Our
q is called the

canonical lifting of [Ak, Ck, αk]. In this way, if ℘ is not split in E then for
a fixed distinguished point yk ∈ Y (k), the set of positively oriented CM-points
with conductor c prime to N℘, which reduce to yk modulo ℘, is bijective to
the set of positively oriented homomorphisms E → B(℘) with conductor c.

If ℘ is split over F , then α is an isomorphism, and the canonical lifting of
yk is a Heegner point y (of characteristic 0).
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Proposition 2.4.5. Assume ℘ is not split in E and ord℘(N) ≤ 1. Let
ym = [Am, Cm] be the deformation of yk = [Ak, Ck] to Our

q /q
m with respect

to αk. Then End(ym) has the same localization as End(yk) at places different
from ℘, and

End(ym)℘ = OE,℘ + qm−1End(yk)℘.

In other words, End(ym) is the unique sub-order of End(yk) of discriminant
℘bmN where

bm =

{
m if ℘ is ramified in E

2m− 1 if ℘ is unramified in E.

Moreover the action on the formal module Gm = Am[℘∞]2 is given by the
following composition of canonical homomorphisms:

OE,℘ + qm−1End(yk)℘ → OE,℘/qm → Our
q /q

m.

Proof. By a fundamental theorem of Serre and Tate [7], one can show that

End(ym) = End(yk) ∩ End([Gm, Cm])

where Cm is the component of Cm in Gm. It follows that End(ym) has the same
localization as End(yk) at places different from ℘, and

End(ym)℘ = End([Gm, Cm]) ' End([G0
m, C0

m])

where [G0
m, C0

m] is the restriction of [G0, C0] on Our
q /q

m. We want to use the
description in the proof of Proposition 2.3.2 and Gross’ result [15] to describe
End([G0

m, C0
m]).

As in the proof of Proposition 2.3.2, let D denote EndO℘(Σk) and let Dm

denote the suborder EndO℘(Σ2,m). Then by Gross’ result [15, Prop. 3.3],

Dm = Oq + qm−1D.

Now in

EndO℘(G0
k) = EndO℘(Σk ⊕ Σk) = M2(D),

EndO℘([G0
m, C0

m]) = EndO℘([G0
k , C0

k ]) ∩M2(Dm).

Using the description in the proof of Proposition 2.3.2, we have the fol-
lowing:

1. If ℘ is ramified in E, then C = 0 and

EndOB,℘(G0
m) = Dm

(
1 0
0 1

)
.
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2. If ℘ is ramified in B, then

EndOB,℘(G0
m, C0

m) ' OE,℘ +OE,℘qm
(

0 $−1

$ 0

)
,

where $ is an element in D such that $2 = ℘ and such that $x = x̄$

for x ∈ E℘.

3. If ℘ is unramified in both B and E, then

EndOB,℘(G0
m, C0

m) ' OE,℘ +OE,℘℘m−1$

(
0 1
1 o

)
.

2.4.6. Quasi-canonical liftings. We need also to consider the quasi-canon-
ical lifting. Let y be a Heegner point representing [A,C] in F(Eur

q ). Let D
be an admissible submodule of A of order m = ℘n (n 6= 0) prime to N and
let [AD, CD] be the quotient constructed in Proposition 1.4.4. Assume that
D is connected (this is automatically satisfied if ℘ is not split in E). Then
[AD, CD] is an object of F(W ) where W is a finite extension of Our

q . Then
[A,C] and [AD, CD] have the same reduction modulo q. Notice that [AD, CD]
is not a canonical lifting of the reduction of [Ak, Ck]. We call [AD, CD] a
quasi-canonical lifting of [Ak, Ck].

Proposition 2.4.7. The objects [A,C] and [AD, CD] are not isomorphic
modulo q2.

Proof. By the Honda-Tate theorem we need only check whether or not the
associated divisible groups are isomorphic. It suffices to consider the groups
A[℘∞]2 and AD[℘∞]2. Then the conclusion follows from our precise description
forA[℘∞]2 and corresponding results of Gross ([15, Prop. 5.3]) on formal groups
of dimension 1.

3. Modular forms and L-functions

In this section we will collect various facts about Hilbert modular forms
and associated L-functions. In Section 3.1, we will recall definitions of modular
forms and Atkin-Lehner’s theory on newforms. In Sections 3.2 and 3.3, we will
give a newform theory for X using Jacquet-Langlands correspondence and
some work of Waldspurger. In Section 3.4, we will first recall Hecke’s theory
of L-functions and then prove Theorem B in the introduction. In Section 3.5,
we will study some standard Eisenstein series and theta series attached to
quadratic characters.
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3.1. Modular forms.

3.1.1. Some definitions. Let k be a positive integer, N an ideal of OF ,
and ω =

∏
ωv a finite character of A×F /F

× with conductor dividing N such
that ωv(−1) = (−1)k for v|∞. We want to define the space of modular forms
of (parallel) weight k and level N . See [2], [10] for general background and
references.

Let K0(N) denote the following subgroup of GL2(F̂ ):

K0(N) =

{(
a b

c d

)
∈ GL2(F̂ ) : c ≡ 0 (mod N̂)

}
.

Let K∞ denote the compact subgroup
∏
v|∞GL2(Fv) of matrices of the form

r(θ) = (r(θv), v|∞) ∈ GL2(F ⊗ R)

where for θ = (θv, v|∞) ∈ Rg,

r(θv) =

(
cos 2πθv sin 2πθv
− sin 2πθv cos 2πθv

)
.

Let Z denote the center of GL2. Extend ω to a character on Z(AF )K0(N)K∞

by the formula

ω

((
z 0
0 z

)(
a b

c d

)
r(θ)

)
= ω(z) ·

∏
ordv(N)>0

ωv(av) ·
∏
v|∞

e2πikθv .

Now by a modular form over F of weight k, level N , character ω we mean
a function φ on GL2(AF ) satisfying the following conditions:

1. φ(γg) = φ(g) for γ in GL2(Q);

2. φ(gk) = φ(g)ω(k) for k in Z(AF )K0(N)K∞;

3. φ is slowly increasing: for every c > 0, and any compact subset Ω of
GL2(AF ), there are a constant C and N such that

φ

((
a 0
0 1

)
g

)
≤ C|a|N

for all g ∈ Ω, and a ∈ A× with |a| ≥ c.

Let ψ be a character on F\AF defined by

ψ(x) = exp[2πi(trF/Q(x∞)− trF/Q(xf )].

Then every character on F\AF has the form

x→ ψ(αx)

with some α ∈ F .
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Let dx be a Haar measure on AF which is a product of local Haar measures
dxv such that if v is archimedean, dxv is the usual Haar measure on R, and
that if v is nonarchimedean, the volume of Ov is 1. In this way, the volume of
AF /F is d−1/2

F where dF denotes N(DF ).
For a modular form φ as above, let Wφ(g) denote the corresponding Whit-

taker function on GL2(A):

(3.1.1) Wφ(g) = d
−1/2
F

∫
F\AF

φ

((
1 x

0 1

)
g

)
ψ(−x)dx

where Wφ(g) satisfies the same condition 2 above as φ, and in addition the
following property:

(3.1.2) Wφ

((
1 x

0 1

)
g

)
= ψ(x)Wφ(g).

Now φ has the following Fourier expansion

(3.1.3) φ(g) = Cφ(g) +
∑
α∈F×

Wφ

((
a 0
0 1

)
g

)
.

where

(3.1.4) Cφ(g) = d
−1/2
F

∫
F\AF

φ

((
1 x

0 1

)
g

)
dx.

We say a form φ is cuspidal, if for almost every g,

Cφ(g) = 0.

Thus cuspidal forms are determined by their Whittaker functions.
Notice that any double coset in

Z(AF )GL2(F )\GL2(AF )/K0(N)K∞

can be represented by an element of the form

(
y x

0 1

)
with y ∈ A×F , y∞ > 0,

and x ∈ AF . We say a form φ is holomorphic if

ω−1(y)|y|−k/2φ
((

y x

0 1

))
is holomorphic in

x∞ + iy∞ ∈ Hg.

Proposition 3.1.2. Let φ be a holomorphic form. Then

1. Wφ

((
y 0
0 1

))
6= 0 only if y∞ > 0.
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2. There is a function a on the set of fractional ideals which vanishes on
nonintegral ideals, such that

Cφ

((
y 0
0 1

))
= ω(y)|y|k/2a(0),

Wφ

((
y 0
0 1

))
= ω(y)|y|k/2a(yfDF )ψ(iy∞),

where for y ∈ A×F with y∞ > 0, x ∈ AF , and DF the inverse of the
different ideal of F :

DF
−1 = {x ∈ F : tr(xOF ) ⊂ Z}.

Proof. From (3.1.2), one sees that

φ

((
y x

0 1

))
= ω(y)|y|k/2

∑
α∈F

c(αy)ψ(αx)

where c(y) is defined by

Cφ

((
y x

0 1

))
= ω(y)|y|k/2c(0),

Wφ

((
y x

0 1

))
= ω(y)|y|k/2c(y)ψ(x).

As φ is holomorphic in x∞ + iy∞, it follows that c(y) 6= 0 only if y∞ > 0.
Moreover if y∞ > 0, then c(y) has the decomposition c(y) = c(yf )ψ(iy∞).

For any α ∈ Ô×F,+, β ∈ ÔF , since

Wφ

((
y x

0 1

)(
α β

0 1

))
= Wφ

((
y x

0 1

))
ω(α),

one has
c(αyf )ψ(βyf ) = c(yf ).

It follows that c(yf ) 6= 0 only if yfDF is integral, and that c(yf ) only depends
on the ideal yfDF . In other words, there is a function a(m) on the ideals m
of OF which vanishes on nonintegral ideals and such that

c(yf ) = a(yfDF ).

3.1.3. Hecke operators. Now a holomorphic form is uniquely determined
by a(m). We call a(m) the m-th coefficient of φ and denote it as aφ(m) when
φ is referred.
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Now let m be a nonzero ideal of OF . We want to define the Hecke operator
T(m) on the space of cusp forms. Let H(m) denote the following subset of
GL2(F̂ ):

H(m) =

{(
a b

c d

)
∈ M2(ÔF ) : (d,N) = 1, c ∈ N̂ , (ad− bc)ÔF = m̂

}
.

We define T(m) by the formula:

(T(m)φ)(g) = N(m)k/2−1
∫
H(m)

φ(gh)dh

where dh is a Haar measure on GL2(F̂ ) such that K0(N) has volume 1.

Proposition 3.1.4. The Fourier coefficients of T(m)φ are given by the
following formula:

aT(m)φ(`) =
∑
a|m+`

N(a)k−1aφ(m`/a2).

Proof. We need only prove the corresponding statement for Wφ. The set
H(m) is stable under right multiplication by K0(N) and has disjoint decom-
position:

H(m) =
∐
a,b,d

(
a b

0 d

)
K0(N)

where (a, d) are representatives in the class

ÔF ∩ (F̂ )×/Ô×F
such that ad generates m, and for fixed (a, d), b are representatives in ÔF /aÔF .
Now we have

T(m)Wφ

((
yf 0
0 1

))
= N(m)k/2−1

∑
a,b,d

Wφ

((
yfa/d yfb/d

0 1

))

= N(m)k/2−1
∑
a,b,d

Wφ

((
yfa/d 0

0 1

))
ψ(yfb/d)

= N(m)k/2−1
∑
a

Wφ

((
yfa/d 0

0 1

))∑
b,d

ψ(yfb/d).

For fixed a, d, if aφ(αyfa/dDF ) 6= 0 then αyfa/dDF is an integral ideal. In this
case b→ ψ(αyfb/d) is a character on ÔF /aÔF . So the last sum over b is |a|−1

if this character is trivial; otherwise it is 0. Notice that this character is trivial
if and only if αyfd−1DF is an integral ideal. In terms of Fourier coefficients,
we obtain

aT(m)φ(αyfDF ) = N(m)k/2−1
∑
a,d

d|αyfDF

|a/d|k/2|a|−1aφ(αyfa/dDF ).
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For any given nonzero ideal ` of OF , we always can find α, y such that αyfDF

= `. So the above formula gives

aT(m)φ(`) = N(m)k/2−1
∑
a,d
d|`

|a/d|k/2|a|−1aφ(`a/d).

Let a = dOF ; then `a/d = m`/a2, and |a|−1 = N(m/a) and |d|−1 = N(a). The
above formula, therefore, gives the proposition.

Setting ` = 1 in the formula, we obtain

aT(m)φ(1) = aφ(m).

Corollary 3.1.5. If φ is a nonzero eigenform for all T(m) then aφ(1) 6= 0
and

aφ(1)T(m)φ = aφ(m)φ.

3.1.6. Newforms and multiplicity one. The Hecke operators are generated
by T(℘) with prime ℘ and satisfy the formal identity

∑ T(m)
ms

=
∑
℘|N

(1− T(℘)℘−s)−1
∏
℘ 6|N

(1− T(℘)℘−s +m1−2s)−1.

It follows that if two eigenforms φ1 and φ2 have the same eigenvalues under
all T(℘), then φ1 and φ2 are proportional. This will not be true if we only
consider Hecke operators T(m) with m prime to some given ideal m′. Let N ′

be a factor of N , let d ∈ GL2(F̂ ) be such that

d−1K0(N)d ⊂ K0(N ′),

and let φ′ be a form for K0(N ′). Then the function φ′d(g) = φ′(gd) is a form
for K0(N). The subspace of Sk(K0(N)) generated by these φ′d with N ′ 6= N

is called the space of old forms.
We say a form φ for K0(N) is new, if it is perpendicular to the space of

old forms. The space Snew
k (K0(N)) of new forms is generated by newforms:

eigenforms for T(m) ((m,N) = 1) whose first coefficients are 1. Then we
have the strong multiplicity one theorem:

Theorem 3.1.7. Let φi, (i = 1, 2), be two newforms of weight k of levels
N1, N2 respectively, such that aφ1(℘) = aφ2(℘) for all but finitely many ℘. Then
N1 = N2 and φ1 = φ2.

Proof. See [2, Th. 1.4.4 and 3.3.6] and [5].
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In particular if φ is a newform of level N then wN (φ) = ±φ since wN (φ)
is also a newform and shares the same eigenvalues as φ, where

wN (φ)(g) = φ

(
g

(
0 1
t 0

))

with t a generator of N̂ .
One application of this is the rank of the Hecke algebra. Let T =

Tk(K0(N)) denote the subalgebra of EndC(Sk(K0(N)) generated by T(m) with
(m,N) = 1. Then T acts faithfully on

SN := ⊕N ′|NSnew
k (K0(N))

and there is a nondegenerate bilinear form

SN ⊗C T
(·,·)−→C

such that
(φ,T(m)) = aT(m)φ(1) = aφ(m).

Now, we have:

Corollary 3.1.8. For any linear map α : T → C, there is a unique
form φ such that

aφ(m) = α(T(m))

whenever (m,N) = 1.

3.2. Newforms on X. As in the modular curve case, one may define the
notion of modular form on the curve X defined in the introduction:

X = B+\H × B̂×/F̂×R̂× ∪ {cusps}.

Here we are only interested in forms of weight 2, which are functions f on
H × B̂× such that f(z)dz gives a differential form on X. For m prime to N ,
we define the action by the Hecke operator T(m) by the following formula:

T(m)α =
∑

γ∈Gm/G1

γ∗α,

where α ∈ Γ(X,Ω1), and Gm and G1 are defined as in Section 1.4. Let
T′ denote the subalgebra of End(Γ(X,Ω1

X)) generated by images of T(m)
((m,N) = 1). For every newform φ of level dividing N , let αφ be a char-
acter of T defined by φ as in Corollary 3.1.8.

The following theorem translates newforms forK0(N) into newforms forR×:

Theorem 3.2.1. 1. The algebra T′ is a quotient algebra of the Hecke
algebra T defined in 3.1.7.
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2. If f is a newform of weight 2 for K0(N) with trivial character, then the
eigen subspace of Γ(X,Ω1

X) of T with character αf has dimension 1.

Proof. Indeed, as in modular curve case, one can show that T′ is diago-
nalizable and every character α : T′ → C of T′ corresponds to an irreducible
automorphic representation of (B ⊗ A)×. By Jacquet-Langlands theory [24],
this representation corresponds to a cuspidal representation of GL2(AF ). Thus
there is a character β : T→ C such that α(T(m)) = β(T(m)). So T′ is a quo-
tient of T. This proves the first part.

For the second part, let π be the cuspidal representation of GL2(AF ) cor-
responding to f . Then for each place ℘ with ord℘(N) odd, the local component
π℘ of π is special or supercuspidal. (Otherwise π℘ is principal with trivial cen-
tral character.) So π℘ = π(µ, µ−1) and the conductor of π℘ is the square of
the conductor of µ. This implies that ord℘(N) is even. (See [10, p. 73] for a
discussion of conductors.) By Jacquet-Langlands’ theory [24], π corresponds
to a unique admissible representation π′ of B×(AF ). Let V ′ be the space of the
representation of π′. Then the proposition is equivalent to the following: The
space of invariant vectors under R̂× has dimension 1. This is a local problem.
In other words, we may check the above problem for each finite place ℘. Thus
the proof is reduced to the following theorem.

Theorem 3.2.2. Let F be a nonarchimedean local field, B a quaternion
algebra over F , E an unramified quadratic extension of F embedded in B.
Let OB be a maximal order of B containing OE . Let (ι, V ) be an admissible
representation of B× with trivial central characters. Assume that the conductor
of ι is 2n if B is split, and 2n+ 1 if B is not split. Then the subspace of V of
vectors invariant under the action by Γ = (OE + ℘nOB)× is one dimensional,
where ℘ is a uniformizer of F .

Proof. Case 1. E is split. The theorem in this case is a special case of
a result of Casselman [5]. Indeed, in this case we may assume that OB is
the matrix algebra M2(OF ) and OE is the algebra of diagonal matrices. Let

w =

(
0 1
℘ 0

)
. Then wnΓw−n = Γ0(℘2n). In the following we assume that

OE is not split and n > 0.

Case 2. B is split, and ι is a principal series with conductor ℘2n. Then
ι = π(µ, µ−1) with µ a quasicharacter of conductor ℘n, and µ2(x) 6= |x|±1.
Recall that π(µ, µ−1) acts by right translation on the space B(µ, µ−1) of locally
constant functions f on GL2(F ) such that

f

((
a x

0 b

)
g

)
= µ(a/b)|a/b|1/2f(g).
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The restriction on GL2(OF ) gives an isomorphism from B(µ, µ−1) to the space
of functions f on GL2(OF ) such that

f

((
a x

0 b

)
g

)
= µ(a/b)f(g).

The subspace of invariant vectors f for Γ are functions f on GL2(OF ) such
that

f

((
a x

0 b

)
g

(
a′ b′

c′ d′

))
= µ(a/b)f(g)

for all

(
a′ b′

c′ d′

)
in Γ.

Since the embedding of OE into M2(OF ) is unique up to conjugation, the
assertion of the theorem does not depend on the choice of the embedding. Now
write OE = OF +OF ε with ε2 ∈ O×F \(O×F )2. Define an action of M2(OF ) on
OE such that (

a b

c d

)
(x+ yε) = (dx+ cy) + (bx+ ay)ε.

Then action of OE on OE given by multiplication induces an embedding α

from OE into M2(OF ). Let g ∈ GL2(OF ) = AutOF (OE). Let s = ε · g−1(ε)−1

and g′ = g · α(s)−1. Then g′ will fix ε, so it has the form

g′ = β(a, x) :=

(
1 x

0 a

)
.

The decomposition
g = β(a, x)α(s)

of this form is obviously unique. The element g is in Γ if and only if

ord(a− 1) ≥ n.

Now it is easy to see that the space of functions invariant under Γ is the one
dimensional space generated by

(3.2.1) f0(β(a, x)α(s)) = µ(a)−1.

Case 3. B is split, and ι is a special representation. Now ι is the quotient
representation of B(µ| · |−1/2, µ| · |1/2) with µ2 = 1, modulo the one dimensional
representation µ◦det(g). The restriction of this one dimensional representation
on Γ has the form

(µ · det)(β(a, x)α(s)) = µ(NE/F s)).
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Since ι has a conductor of even order, so µ has a conductor of positive order.
As NE/FO×E = O×F , this one-dimensional representation µ · det is nontrivial
on Γ. It follows that the image of f0 defined in (3.2.1) on the space of ι gives
a nonzero generator of the space of invariant vectors for Γ.

Case 4. B is nonsplit or B is split but ι is supercuspidal. The proof was
shown to me by H. Jacquet and will be given in the next subsection.

3.3. The supercuspidal case. We prove the theorem in the supersingular
case in two steps. First we prove that V O

×
E is one dimensional and then we

show that this space is also invariant under Γ.

Proposition 3.3.1. The subspace V O
×
E of O×E -invariants in V has di-

mension 1.

Proof. Let π be a representation of GL2(OF ) such that π = ι if B is split,
and π is the Jacquet-Langlands correspondence of ι if B is nonsplit. Let m be
the conductor of π, so that m = 2n if B is split and m = 2n + 1 if B is not
split.

Since ι has trivial central character and OE/OF is unramified, O×E invari-
ants are simply E× invariants. According to Waldspurger, ([41, Th. 2]), V has
a nonzero vector invariant under E× if and only if

ε

(
1
2
, π ⊗ εE

)
= ε

(
1
2
, π

)
if B is split, and

ε

(
1
2
, π ⊗ εE

)
= −ε

(
1
2
, π

)
if B is nonsplit, where εE is the quadratic character of F× attached to the
extension E/F . Moreover by Proposition 1 in [41], the space of E×-invariants
has dimension 1 if these conditions are verified.

Now the proposition follows from the identity:

ε

(
1
2
, π ⊗ εE

)
= (−1)mε

(
1
2
, π

)
.

Let ψ be a nontrivial character of F and let W be a vector in the Whittaker
model W(π, ψ). As the L-function of π is 1, one has the functional equation:

ε(s, π, ψ)
∫
W

[(
a 0
0 1

)]
|a|s−1/2d×a =

∫
W̃

[(
a 0
0 1

)]
|a|1/2−sd×a

where

W̃ (g) = W

[(
0 1
1 0

)
tg−1

]
.
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Now assume that W is the essential vector. This means that

W

[(
a 0
0 1

)]
=

{
1 if |a| = 1;
0 otherwise.

Then it follows that

ε(s, π, ψ) =
∫
W̃

[(
a 0
0 1

)]
|a|1/2−sd×a.

Recall that
ε(s, π, ψ) = q(1/2−s)mε

(
1
2
, π

)
where q is the cardinality of the residue field of F . Thus

W̃

[(
a 0
0 1

)]
6= 0

implies |a| = qm. Consequently,

ε

(
1
2
, π

)
=
∫
|a|=qm

W̃

[(
a 0
0 1

)]
d×a.

Replacing π by π ⊗ εE and W (g) by W (g)εE(det g), we obtain the required
equality,

ε

(
1
2
, π ⊗ εE

)
= (−1)mε

(
1
2
, π

)
.

Let v ∈ V be a nonzero vector invariant under E×. Let $ be a square root
of ℘ in OB. Then v is invariant under Kr = 1 + $rOB for some sufficiently
large r.

Proposition 3.3.2. With the notation and assumption as in Proposition
3.3.1, the smallest r such that v is invariant under Kr is r = m if B is split,
and r = m− 1 if B is not split.

Proof. We will prove the case that B is not split. The case that B is split
is similar. Let f(g) = (π(g)v, v) be the coefficient function attached to v. Let
Φ be the characteristic function of Kr. Its Fourier transform is (apart from
a positive factor) the function ψ(−tr(g))Ψ, where Ψ is the the characteristic
function of the set $1+rOB. The Godement-Jacquet equation [13] reads, apart
from a nonzero constant factor,

ε(s, π, ψ) =
∫
f(g−1)Ψ(g)ψ(−tr(g))|det g|1/2−sd×g.

Since ε(s, π, ψ) = qm(1/2−s)ε(1/2, π), we see that the integral does not change
if we restrict the domain of the integral to the set O×B$−m. Thus Ψ must be
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nonzero on this set, which implies that r ≥ m− 1. Moreover the nonvanishing
of the above integral implies that for at least one g ∈ O×B$−m the following
integral is nonzero: ∫

Km−1

f(k−1g−1)ψ(−trgk)dk.

Since ψ(−trgk) does not depend on k,∫
Km−1

f(k−1g−1)dk 6= 0.

This implies that

v′ =
∫
Km−1

π(k)vdk 6= 0.

As Km is a normal subgroup of O×B and v is invariant under O×E , v′ is invariant
under the action of O×E . So v is a multiple of v′ by the previous proposition
and v is invariant under Km−1.

3.4. L-functions associated to newforms.

3.4.1. Definitions. Let φ be a newform for K0(N) of weight 2 with trivial
central character. Let aφ(m) be the Fourier coefficients of φ. Then the L-
function for φ is defined to be

L(s, φ) =
∑
m∈NF

aφ(m)
N(m)s

=
∏
℘|N

1
1− aφ(℘)N(℘)−s

∏
℘|/N

1
1− aφ(℘)N(℘)1−2s

which is absolutely convergent for s ∈ C with Re(s) sufficiently large. Recall
that

wN (φ)(g) := φ

(
g

(
0 1
t 0

))
= γφ

with γ = ±1, where t is an element of A×F such that

• at archimedean places, t has component −1;

• at finite place, t generates N̂ .

Proposition 3.4.2. The function L(s, φ) is holomorphic in s and satis-
fies a functional equation:

L∗(s, φ) : = d
s/2
N dsF

[
Γ(s)
(2π)s

]g
L(s, φ)

= γL∗(s, φ).
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Proof. Let d×x be a Haar measure on A×F which is a product of local Haar
measures dx×v on F×v such that d×xv = dx/x if v is archimedean, and such
that the volume of O×v equals 1 if v is nonarchimedean. Let Λ(s, φ) denote the
function

Λ(s, φ) =
∫
F×\A×F

φ

((
y 0
0 1

))
|y|s−1/2d×y

where F ∗+ (resp. AF,+ ) denotes the subgroup of F× (resp. A×F ) of elements
which are totally positive at archimedean places. Then Λ(s, φ) is absolutely
convergent for all s ∈ C and defines an entire function on C. Using the Fourier
expansion of φ and Proposition 3.1.2, we have

Λ(s, φ) =
∫
F̂×

aφ(yDF )|y|s+1/2d×y ·
∫
F×∞
|y|s+1/2ψ(iy∞)d×y

= d
s+1/2
F L(s+ 1/2, χ, φ) ·

(
Γ(s+ 1/2)
(2π)s+1/2

)g
.

Thus we need only prove the corresponding functional equation for Λ(s, φ).
By definition of wN (φ),

φ

((
y 0
0 1

))
= γφ

((
y 0
0 1

)
·
(

0 1
t 0

))

= γφ

(
−1
y
·
(

0 1
−1 0

)
·
(
y 0
0 1

)
·
(

0 1
t 0

))

= γφ

((
−t/y 0

0 1

))
.

Bringing this to our definition of Λ(s, χ, φ), we obtain

Λ(s, φ) = γ

∫
F×\A×F

φ

((
−t/y 0

0 1

))
|y|s−1/2d×y

= γ ·N(N)1/2−s · Λ(1− s, φ).

3.4.3. Remarks. Let ε be the character associated to the imaginary quadratic
extension E/F . Let L(s, ε, φ) be the twisted L-series:

L(s, ε, f) =
∑
m

ε(m)aφ(m)
N(m)s

.

Then this series is essentially the L-series associated to a new form in the space
of the representation π ⊗ ε if π is the representation associated to φ. Thus it
has a functional equation.

The base change of L(s, φ) is defined to be the product:

LE(s, φ) := L(s, φ)L(s, ε, φ).
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In Section 6, using the Rankin-Selberg convolution method, we will prove that
LE(s, φ) has a functional equation with sign ε(N)(−1)g.

3.4.4. Proof of Theorem B. Let JX denote the Jacobian variety of X. Let
T be the Z-subalgebra in EndZ(JX) generated by T(m) ((m,N) = 1). Then
T ⊗C = T′. For every newform φ of level dividing N , let αφ be a character of
T defined by φ as in Corollary 3.1.8, let Oφ be the subalgebra of C generated
by Fourier coefficients aφ(m) ((m,N) = 1), and let Jφ be the maximal abelian
subvariety of J killed by ker(αφ). We say two forms φ1 and φ2 are conjugate
if ker(αφ1) = ker(αφ2), or equivalently, there is an automorphism σ of C such
that aσφ1

(m) = a2
φ2

for all m prime to N .

Lemma 3.4.5. 1. JX is isogenous to ⊕[φ]Jφ where [φ] runs through the
conjugacy classes of newforms φ in SN .

2. If Jφ is nonzero, then Oφ is totally real with finite rank over Z.

3. If φ is a newform of level N , then Lie(Jφ) is a free module of rank 1 over
Oφ ⊗ C.

Proof. Parts (1) and (3) are reformulations of parts (1) and (2) of Theorem
3.2.1. As T acts faithfully on H1(J,Z), the characteristic polynomial of T(m)
is monic and integral. It follows that the a(m) are algebraic integers, and that
the subalgebra Oφ generated by aφ(m) over Z has finite rank. Also as T′ is
self-adjoint, the characteristic polynomial of T(m) has only real roots. So Oφ
is an order in a totally real number field.

Now fix a newform f of weight 2 for K0(N) with trivial character. Let A
denote Jf . Fix a place ℘ not dividing N . Then A has good reduction at ℘.
Let ` 6= ℘ be a prime. Then A⊗ k(℘) has the same `-adic Tate module as A,
that is H1(A,Ql). The local zeta function of A at ℘ is

Z℘(t) = det(1− tFrob(℘)|H1(A,Q`)).

As Frob(℘)∗ has the same characteristic polynomial as Frob(℘),

Z℘(t)2 = det [(1− tFrob(℘))(1− tFrob(℘)∗)]

= det(1− t(Frob(℘) + Frob(℘)∗) + t2Frob(℘)Frob(℘)∗).

As Frob(℘) has degree N(℘), we see that Frob(℘)Frob(℘)∗ = N(℘). Now the
congruence relation

a(℘) = Frob(℘) + Frob(℘)∗

implies
Z℘(t)2 = det(1− a(℘)t+ N(℘)t2).
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As dimH1(A,Q) = 2[Of : Z],

Z℘(t) = NOf/Z(1− a(℘)t+ N(℘)t2).

Thus Theorem B follows, as the L-function of A is defined as

L(N)(s,A) =
∏
℘|/N

Z℘(N(℘)−s)−1.

3.5. Eisenstein series and theta series.

3.5.1. Some definitions. Let k be a positive integer. Let χ be a quadratic
character on A×F /F

× with a square-free conductor Dχ such that χv(−1) =
(−1)k, and that Dχ is prime to DF . We extend χ to K0(Dχ) as in §3.1. For s
a complex number, we define a function Hs on GL2(AF ) by

Hs(g) =

{ ∣∣a
d

∣∣s χ(aur(θ)) if u ∈ K0(Dχ)
0 otherwise,

where every element g ∈ GL2(AF ) has the form

g =

(
a b

0 d

)
ur(θ)

with ur(θ) ∈ K0(1)K∞, the standard maximal subgroup of GL2(AF ). Let
B denote the Borel subgroup (the group of upper triangular matrices), then
Hs(g) is left invariant under B(F ).

For Re(s) > 1, the Eisenstein series

Es(g) = L(2s, χ)
∑

γ∈B(F )\GL2(F )

Hs(γg)

is absolutely convergent and defines a (nonholomorphic and noncuspidal) form
for K0(Dχ) of (parallel) weight k, and character χ.

Proposition 3.5.2. 1. The constant term of Es at

(
y 0
0 1

)
is given by

the following formula:

CEs

((
y 0
0 1

))
=

{
L(2s, χ)χ(y)|y|s if χ 6= 1
ζF (2s)|y|s + d

−1/2
F ζF (2s− 1)Vs(0)g|y|1−s if χ = 1.

2. The Whittaker function at

(
y 0
0 1

)
of Es is 0 if yDF is not integral ;

otherwise it is given by the following formula:

WEs

((
y 0
0 1

))
=

1√
dFdχ

σs(y)|y|1−s ·
∏
v|Dχ
|yvπv|2s−1ε(yv)κ(v)
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with

σs(y) =
∏
v|/Dχ
v|/∞

1− χ(yvδvπv)|yvδvπv|2s−1

1− χ(πv)|πv|2s−1
·
∏
v|∞

Vs(yv),

where

• πv is a uniformizer of Fv such that ε(πv) = 1 if πv | Dχ.

• κ(v) is a square root of (−1)k defined by

κ(v) = |πv|1/2
∑

a∈(Ov/πv)×
χ(a/πv)ψv(−a/πv).

• δ ∈ F̂× is a generator of DF .

• Vs(y) =
∫ ∞
−∞

e2πiyvx

(x2 + 1)s−k/2(x+ i)k
dx.

Proof. For α = 0 or 1, let

cs(α, y) = d
−1/2
F

∫
AF /F

Es

((
y x

0 1

))
ψ(−αx)dx.

Then

WEs

((
y 0
0 1

))
= cs(1, y), CEs

((
y 0
0 1

))
= cs(0, y).

The group GL2(F ) has the Bruhat decomposition

GL2(F ) = B(F )
∐ ∐

u∈F
B(F )w

(
1 u

0 1

)

where

w =

(
0 −1
1 0

)
.

Therefore

cs(α, y) = L(2s, χ)d−1/2
F

∫
AF /F

Hs

((
y x

0 1

))
ψ(−αx)dx

+ L(2s, χ)d−1/2
F

∫
AF

Hs

(
w

(
y x

0 1

))
ψ(−αx)dx.

By definition the first term is equal to

L(2s, χ)d−1/2
F

∫
AF /F

χ(y)|y|sψ(−αx)dx
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which is
L(2s, χ)χ(y)|y|s

if α = 0; otherwise it is zero.
To evaluate the second integral, we notice that

w

(
y x

0 1

)
=

(
1 0
0 y

)(
0 −1
1 xy−1

)
.

Replacing x by xy, we see that the second integral becomes∫
AF

Hs

(
w

(
y x

0 1

))
ψ(−αx)dx = |y|1−s

∏
v

Vs(αvyv)

where for y ∈ Fv,

Vs(y) =
∫
Fv
Hs

((
0 −1
1 x

))
ψ(−xy)dx.

The case where v is archimedean. If v is archimedean, we have the de-
composition(

0 −1
1 x

)
=

(
1√
x2+1

−x√
x2+1

0
√
x2 + 1

)(
x√
x2+1

−1√
x2+1

1√
x2+1

x√
x2+1

)
.

It follows that

Vs(y) =
∫
R

1
(x2 + 1)s

(
x− i√
x2 + 1

)k
e−2πiyxdx(3.5.1)

=
∫ ∞
−∞

e−2πiyx

(x2 + 1)s−k/2(x+ i)k
dx.

The case where v is nonarchimedean. If v is nonarchimedean, then(
0 −1
1 x

)
∈ Kv

if x ∈ Ov; otherwise we have the decomposition(
0 −1
1 x

)
=

(
x−1 −1
0 x

)(
1 0
x−1 1

)
.

Thus,

Hv

((
0 −1
1 x

))
=


χv(x)|x|−2s if x /∈ Ov;
1 if x ∈ Ov, v |/Dχ

0 if x ∈ Ov, v | Dχ.
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It follows that

Vs(y) =
∑
n≥1

∫
O×v

χ(xπ−nv )|xπ−nv |−2sψ(−xyπ−n)d(π−nx)

+

{ ∫
Ov ψ(−yx)dx if v6 | Dχ,

0 if v | Dχ

=
∑
n≥1

χ(πv)n|πv|2ns−n
∫
O×v

χ(x)ψ(−xyπ−n)dx

+

{
1 if v6 | Dχ, y ∈ DF

−1

0 otherwise.

The case where v | Dχ. If v divides Dχ, then
∫
O×v χ(x)ψ(−xyπ−n)dx is

nonzero only if y 6= 0 and ordv(y) = n−1. In this case it equals χ(yπnv )κ(v)|πv|1/2.
So if v divides Dχ, we obtain the following formula for Vs(y):

(3.5.2) Vs(y) =

{
|y|2s−1χ(y)κ(v)|πv|2s−1/2 if y 6= 0 and ordv(y) ≥ 0
0 otherwise.

Consequently, if χ is nontrivial, Vs(0) = 0 and the 0-th Fourier coefficient of
Es(g) is

Cs(y) = L(2s, χ)χ(y)|y|s.

The case where v|/Dχ. In this case

∫
O×v

ψ(−xyπ−n)dx =


1− |πv| if ordv(yDF ) ≥ n;
−|πv| if ordv(yDF ) = n− 1;
0 otherwise.

It follows that Vs(y) is nonzero only if ordv(yDF ) ≥ 0 and in this case

Vs(y) =
∑

1≤n≤ordv(yDF )

χ(πv)n|πv|2ns−n(1− |πv|)(3.5.3)

+ 1− (χ(πv)|πv|2s−1)ordv(yDF )+1|πv|

= (1− χv(πv)|πv|2s)
ordv(yvDF v)∑

n=0

χv(πv)n|πv|2ns−n.

Corollary 3.5.3. If (F, k, χ) 6= (Q, 2, 1) then there is a unique holo-
morphic form Eχ,k of weight k and central character χ for K0(Dχ) such that
the mth Fourier coefficient of Eχ,k is given by

σχ,k−1(m) =
∑
n|m

χ(n)N(n)k−1.
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Proof. The function Vs(y) can be analytically extended to a function for
all Re(s) > 0 and has exponential decay with respect to y. When s = k/2,

Vk/2(y) =

{
(−2πi)kyk−1e−2πy if y > 0
0 if y < 0.

Now, Es(g) can be analytically continued to a form for Re(s) > 0 and Ek/2(g)
is a holomorphic form whose mth Fourier coefficients are given by{

L(k, χ) if m = 0;
Aχ,kσχ,k−1(m) if m 6= 0

where

Aχ,k =
(−2πi)kg

(dFdχ)k−1/2
χ(DF )

∏
v|Dχ

κ(v).

3.5.4. Remarks. 1. When k = 1 and χ is the character attached to an
imaginary quadratic extension E/F , the form Eχ,k is called the theta series
associated to the extension E/F and is denoted as θE/F or simply θ; thus

E1/2 = Aε,1θ.

Notice that in this case σχ,k−1(m) is the number of integral ideals in E with
norm m′, where m′ is the maximal factor of m prime to DE . We denote this
number simply by r(m).

2. When (F, k, χ) = (Q, 2, 1), E1(g) is holomorphic except for the constant
term.

4. Global intersections

In this section we will study the Néron-Tate height pairing 〈z,T(m)z〉 of
the Heegner points and the CM-points. More precisely, we will first show that
〈z,T(m)z〉 is the coefficient of a modular form Ψ, and then express the heights
as the arithmetic intersections using the arithmetic Hodge index theorem [8].
Finally we decompose this number as a sum of local intersections. Compared
with the case F = Q, there are two major difficulties: one is the absence of
cusps which were used to map the modular curves to their Jacobians; another
is the absence of the Dedekind η-function which was used to compute the self-
intersection. Therefore we can only obtain an expression of 〈z,T(m)z〉 as a
sum of the local intersections of CM-points which meet properly at special
fibers, modulo some multiple of the coefficients in the Dirichlet series ζE(s)
and ζF (s)ζF (s− 1). At the end of this section, we will use the multiplicity-one
theorem to show that the modular form Ψ actually is uniquely determined by
our expression. This section contains most of the new ideas of this paper.
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4.1. Height pairing.

4.1.1. Height pairings as Fourier coefficients. In the introduction, we
defined a Shimura curve X and a Heegner point z in the Jacobian J(E) ⊗ Q
of X. In Section 1.4 we defined the Hecke operator T(m) as a correspondence
for m prime to N . As in the modular curve case we want to show that

〈z,Tmz〉, m ∈ NF , (m,N) = 1

are Fourier coefficients of a holomorphic cusp form for K0(N), where 〈·, ·〉 is
the Néron-Tate height pairing on J(F̄ )⊗Q. Actually this is a general fact:

Lemma 4.1.2. Let SN denote the sum of Snew
2 (K0(N ′)) for all N ′|N . For

any x ∈ Jac(X)(F̄ ), there is a unique element fx in SN such that 〈x,T(m)x〉
is the mth coefficient in the Fourier expansion of f at ∞ for all m ∈ NF prime
to N .

Proof. Now T′ also acts on J(F̄ ) ⊗ C. So T → 〈x,Tx〉 gives a linear
function on T′ and, therefore, on T. Now the conclusion follows from Corollary
3.1.8 and Lemma 3.4.5.

4.1.3. Height pairings as intersection pairings. Let Ψ denote the form
fz defined in the lemma. The purpose of this section is to show that Ψ is
determined by the local arithmetic intersections of some CM-divisors.

We have constructed an integral model X for X over OF . However this
model is not fine enough for the computation of intersection numbers. Instead
of X we will consider X̃ which is the Shimura curve corresponding to a smaller
group K̃ such that the corresponding curve has a regular model. For example,
we may take K̃ := (1 +NEÔB,℘)× ∩ U where U is an open compact subgroup
of G(Af ) which is maximal at places dividing NDE . When U is sufficiently
small, X̃ has a regular model over X̃ over OF . As U is maximal at places
dividing DE , X̃ × SpecOE is also regular. Let π : X̃E → XE be the projection
induced by the inclusion K̃ → K, and let z̃ be the pullback of z on X̃E . Then
z̃ has degree 0 on each irreducible component of X̃E . The projection formula
for heights gives

〈z,T(m)z〉 = 〈z̃,T(m)z̃〉/deg π.

Here the pairing on the right-hand side is the Néron-Tate pairing on the Jaco-
bian of X̃ ⊗ E, which by definition is the product of Jacobians of irreducible
components.

We may write 〈z̃,T(m)z̃〉 as an intersection of arithmetic divisors on X̃ ⊗
OE ([9], [11], [12]). More precisely, let ẑ be the arithmetic divisor on X̃ ⊗ OE
which has curvature 0 on the Riemann surface X̃(C) and has zero degree on
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each irreducible component C of the special fibers of X̃ ⊗OE ; then the Hodge
index theorem gives

〈z̃,T(m)z̃〉 = −(ẑ,T(m)ẑ).

Here the right-hand side is the arithmetic intersection.

4.1.4. A formula for ẑ. We write a formula for ẑ and let η be the divisor

η = u−1
∑
x

[x]

where u = [O×E : O×F ] and x runs through the set of positively oriented Heegner
points on X. Let η̃ be the pull-back of η on X̃ ⊗ E. Let η̄ denote the Zariski
closure of η̃ on X̃ ⊗ OE . For each infinite place τ of F , Xτ (C) is a Riemann
surface compactified from a quotient of H. Let dµ be a volume form on X̃E(C)
such that on each irreducible component Xi of X̃E(C), dµ has volume 1, and
the pull-back of dµ on H is proportional to the Poincaré metric dxdy/y2 for
x+yi ∈ H. Let g denote Green’s function on X(C) with respect to the Poincaré
volume form dµ:

∂∂̄

πi
g = δηi − deg(ηi)dµ, where ηi = η̃|Xi .

Let η̂ denote the arithmetic divisor (η̄, g).
Let ξ be the class in Pic(X)⊗Q which has component ξi on each geomet-

rically connected component Xi defined as in the introduction. Then z is the
class of η−hξ where h is a number such that z has degree 0 on each irreducible
component of X. Let ξ̃ be the pull-back of ξ on X̃E . Then ξ̃ is the class of the
bundle Ω1

X̃
[cusps] divided by its degree. We will find an extension of ξ̃ to an

arithmetic class ξ̂ whose curvature is a multiple of dµ on each component Xi.
We need only do this locally at each place v of OF .

Choose F ′ as before. Let X̃ ′ be the Shimura curve defined over F ′ asso-
ciated to the open compact subgroup K ′ = K̃ · J of B̂

′×, where J is an open
compact subgroup of Ô×F ′ which is maximal at places dividing N . Choose U
and J sufficiently small so that F̃ := FK′ is representable. Let A be the uni-
versal abelian variety over X̃ ′ and let LF ′ denote det(LieA)∨. Then by the
Kodaira-Spencer map, LF ′ equals the canonical bundle Ω1[cusps] on X̃ ′.

If v is an infinite place τ of F , then X̃τ can be embedded into X̃ ′τ . The
bundle Lv has a Peterson-Weil metric ‖·‖: for a point x ∈ Xτ (C) representing
an abelian variety A, and for an element α ∈ Lv = Γ(A,Ω4g

A ),

‖α‖2 = (−i)g2
∫
A(C)

α ∧ ᾱ.

So we obtain a metric on ξ; this is nothing else but the standard hyperbolic
metric up to a constant multiple.
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If v is a finite place ℘, we assume that F ′ is split at ℘ and that J is
maximal at places dividing ℘. We assume that FK′,℘ is representable by a
regular scheme X̃ ′ over O℘. Then we can define a bundle Lv on X̃ ′ the same
way. Let Our

℘ be the completion of the maximal unramified extension of O℘;
then X̃Our

℘
can be embedded into X̃ ′Our

℘
. Now the restriction of Lv on X̃Our

℘

defines an extension of Ω1[cusps]. If ℘ does not divide N , then this integral
structure is the same as that induced by Ω1 on X̃ at v.

Let L be the extension of Ω1[cusps] on X̃ such that L℘ = L⊗Our
℘ for every

℘. Let ξ̂ be the arithmetic divisor class of the hermitian line bundle (L, ‖ · ‖)
dividing by its degree. Then η̂ − hξ̂ has curvature zero.

For simplicity of notation and computation, we will assume that E/F is
not unramified. In this case η will have the same degree on each geometrically
connected component of X, and so will η̃. Now we can write

ẑ := η̂ − hξ̂ + Z

where h is a number such that ẑ has degree 0 on each geometrically connected
component of the generic fiber, and Z is a vertical divisor of X̃ ⊗ OE such
that ẑ has the degree 0 on any irreducible component of the special fibers of
X̃ ⊗ OE . In the following subsections we will compute T(m)η, T(m)ξ̂, and
T(m)Z respectively.

4.2. Computing T(m)η.

Proposition 4.2.1. For c prime to N , let

ηc = u−1
c

∑
x

x,

where uc is the cardinality of O×c /O×F , and where the sum runs through the
set of positively oriented CM-points of conductor c. Then for m prime to N ,

T(m)η1 =
∑
c∈NF
c|m

r(m/c)ηc

where r(m) denotes the number of integral ideals in OE with norm m.

Proof. The map (
√
−1, g)→ g identifies the set of CM-points with the set

E×\B̂×/R̂×.

For anyOF -moduleM , writeM [ forM⊗O[, whereO[ is the product
∏
℘|/N O℘.

Also write E] for the group of elements in E× which is a unit at ℘ for any
place ℘ dividing N . Then the set of positively oriented CM-points is identified
with

E×\
∏
℘|N

E×℘R
×
℘ ·B[,×/R̂× = E]\B[,×/R[,×.
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As B is unramified off N , there is an isomorphism O[B ' EndOF (O[E)
of the left O[E-algebras. Now the correspondence g → gO[E gives a bijection
between the set of positively oriented CM-points and the set of classes of O[-
lattices in E[:

E]\{O[ − lattices in E[}

where E] acts on the lattices by left multiplication. It is not difficult to show
that if a CM-point has order Oc then the corresponding lattice class has the
form gO[c with g an element in E[. This shows that the set of CM-points of
conductor c is bijective to

E]\E[,×/O[,×c .

More precisely, let Sc denote a subset of E[ representing the above set; then
ηc has the expression

ηc = u−1
c

∑
γ∈Sc

[
√
−1, γ]

where Sc is considered as a subset of B̂× by setting components 1 at places
dividing N .

The action of T(m) on CM-points can be described as follows. If x is
represented by a lattice L in E[ then T(m)x is the sum of classes of all sub-
lattices M of norm m (this means that the product of elementary factors of
OF -module L/M is m).

Let [gO[c] be a lattice class with g ∈ E[,×. Then the multiplicity of [gO[c]
in T(m)η1 is equal to u−1

1 times the number of pairs

(γ, k) ∈ S1 × E]/O×c
such that kgObc is a sublattice of γObE of norm m, or equivalently

γ−1gk ∈ ÔbE , N(γ−1gk) = m/c.

Now the surjective map

S1 × E]/O×c → (E[)×/O[,×E , (g, k)→ γ−1gk (mod O[,×E )

is [O×E : O×c ] to 1. Thus the multiplicity is equal to

u−1
1 [O×E : O×c ]#{γ ∈ Ô[E/O[,×E : N(γ) = m/c} = u−1

c r(m/c).

Let η0
c denote the sum of ηa for all a|c and a 6= OF , and define

(4.2.1) T0(m)η =
∑
c|m

ε(c)η0
m/c.

Then T0(m)η is disjoint to η. As r(m) =
∑
n|m ε(n), we obtain:
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Corollary 4.2.2. If m is prime to NDE , then

T(m)η = T0(m)η + r(m)η.

4.3. Computing T(m)ξ̂.

4.3.1. Some definitions. Let π : U → V be a finite flat morphism of
integral schemes. Let Pic(U), Pic(V ) be categories of line bundles on U and V
respectively. Then we can define the pull-back functor π∗ : Pic(V )→ Pic(U)
as usual, and the norm functor Nπ : Pic(U) → Pic(V ) as follows. If L is a
line bundle on U then Nπ(L) is a line bundle on V which is locally generated
by Nπ(`) with ` a section of L such that

Nπ(f`) = Norm(f)Nπ(`)

where Norm is the norm map f∗OU → OV for the algebra extension OV →
f∗OU . It follows from the definition that if L = OU (D) for a divisor D on U ,
then Nπ(L) is canonically isomorphic to OV (π∗D).

If W is an integral subscheme of U × V such that the projection from W

to U is finite and flat then we can define a functor W : Pic(V ) → Pic(U)
as W (L) = NπUπ

∗
V (L) where πU , πV are projections from W to U and V

respectively. We may extend this definition linearly to any correspondence W
of U × V such that W has all irreducible components finite and flat over U .

It is easy to see that at the generic fiber

T(m)ξ = σ1(m)ξ.

The following proposition gives the corresponding formula for T(m)ξ̂.

Proposition 4.3.2. There is a morphism

ψm : T(m)L → Lσ1(m)

such that the following conditions are verified :

1. Let c ∈ NF be such that

ψm (T(m)L) = cLσ1(m).

Then for each finite place ℘,

ord℘(c) = 2σ1(m℘−ord℘(m))
n∑
i=0

iN(℘n−i).

2. Let ψ be the following function on X̃(C)

‖ψ‖m(x) :=
‖ψmβ‖
‖β‖ ,

where β is a nonzero element in T(m)(L)(x). Then

‖ψ‖m(x) = N(m)2σ1(m).
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Proof. We need only prove the corresponding statement on X̃ ′. For this
we extend T(m) to X̃ ′ by the formula (1.4.1). By Proposition 1.4.2, we have
the following modular interpretation for T(m): For any object [A,C] of F̃(S),

T(m)[A,C] =
∑
D

[AD, CD]

where D runs through the set of admissible submodules of A of order m,
A = A/D, CD = C + D/D. Let Xm be the subscheme of X ′ × X ′ which
represents the isogenies A1 → A2 with admissible kernel of order m; then
T(m) is induced by Xm.

Let π : A1 → A2 be the universal isogeny over Xm, and let p1, p2

be the projection of Xm to X ′. Then p∗iL = det Lie(Ai)∨. The morphism
π∗ : Lie(A2)→ Lie(A1) therefore induces a morphism of line bundles on X ′:

Np1(p∗2L)→ Np1(p∗1L).

Notice that by definition T(m)L = Np1p
∗
2(L), and Np1p

∗
1L = Lσ1(m). Therefore,

we obtain a morphism of line bundles:

ψm : T(m)L → Lσ1(m).

To prove (1), we need only check the proposition locally at each finite
place ℘ prime to N . Write m = m′℘n with (m′, ℘) = 1. Then ψm is factored
as a composition of ψm′ and ψ℘n :

T(m)(L) = T(℘n)T(m′)LT(℘n)ψm′−−−−−→T(℘n)Lσ1(m′)
ψ
⊗σ1(m′)
℘n−−−−−→Lσ1(m).

As T(m′) is étale at ℘, it follows that if ψ℘n has order t at ℘, then ψm has
order σ1(m′)t.

Let x : SpecW → X℘ be a strictly henselian point represented by an
abelian variety A with ordinary reduction. Then

T(℘n)(Lx) = ⊗D det Lie(A/D)∨

where D runs through the set of admissible submodules of A of order m. Fix an

isomorphism OB,℘ ' M2(O℘). Let G denote the O℘-module

(
1 0
0 0

)
A[℘∞]2

of dimension 1; then det Lie(A) = Lie(G)⊗2. It follows that

T(℘n)L =
∏
H

(LieG/H)⊗−2

where H runs through the set of submodules of G of order ℘n, and that the
morphism ψ : T(℘n)L → Lσ1(℘n) is induced by morphisms π∗ : Lie(G/H)∨ →
Lie(G)∨. Let

0→ H ′ → H → H ′′ → 0
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be the formal-étale decomposition. Then

Lie(G)∨
/
π∗Lie(G/H)∨ ' 0∗(ΩH) ' 0∗(ΩH′)

where 0 is the 0-section of G.
Now G has a decomposition G = Σ1 ⊕ F℘/O℘ where Σ1 is a formal

O℘-module of height 1. It follows that H has the form H = Σ1[℘i] ⊗ Gn−i,λ
where 0 ≤ i ≤ n, λ ∈ ℘i−nO℘/O℘, and Gn−i,λ is the subgroup with the generic
fiber {(λx, x) : x ∈ ℘i−nO℘/O℘}. Thus

0∗(ΩH) ' 0∗(ΩΣ1[℘i]) ' Lie(Σ1)∨/℘iLie(Σ1)∨ ' O℘/℘i.
It follows that the quotient of ψ has the order

n∑
i=0

2iN(℘n−i).

It remains to prove (1). Recall that T(m)L(x) is equal to

⊗D det Lie(A/D)∨

where D runs through the set of admissible submodules of order m. As ψ is
induced by the maps

π∗D : Ω1
A/D → Ω1

A,

the norm of ψ is the product of the norms of

detπ∗D : det Γ(Ω1
A/D)→ det Γ(Ω1

A)

which is (deg πD)1/2 = N(m)2. Then for any infinite place τ ,

‖ψ‖τ (x) = N(m)2σ1(m).

Corollary 4.3.3. Let φ be a function on the set of elements of NF
prime to N with values in the group of arithmetic divisors on OF defined by
the formula

T(m)ξ̂ = σ1(m)(ξ̂ + φ(m)).

Then φ is quasi -additive: for any m′ and m′′ such that (m′,m′′) = 1 then

φ(m′m′′) = φ(m′) + φ(m′′).

Proof. We decompose φ(m) =
∑
φ(m)v[v] where v runs through all places

of F . Then by the proposition,

φ(m)v =

{
cσ(℘ord℘(m))−1∑n

i=0 iN(℘n−i) if v = ℘ is finite,
c log N(m) if v is infinite

where c is some fixed constant. Thus φ is additive for coprime m’s.
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4.4. Computing T(m)Z.

4.4.1. Decompositions. For each finite place ℘ of F , let V℘ denote the
group of Q-divisors of X̃ supported in the fiber over ℘ modulo the subgroup
of Q-divisors of connected components. Then we have the decomposition

Z =
∑
℘

Z℘

where Z℘ are elements in V℘. We want to study T(m)Z℘ for m prime to NDE .
If we choose different models X̃ , then the decomposition is preserved by the
pull-back maps. So we assume that X̃ has the same level structure as X at
the place ℘.

Proposition 4.4.2. Assume that ℘ is split in B. Then

T(m)Z℘ = σ1(m)Z℘.

Proof. By definition T(m)Z is a unique solution to the equations

(T(m)η̂ − hT(m)ξ̂ + T(m)Z,P ) = 0

for any irreducible vertical divisor P on X̃ ⊗ OE . As X̃ ⊗ E is smooth at the
places not dividing N , we need only check that the differences

Z1 = T(m)η̂ − σ1(m)η̂ and Z2 = T(m)ξ̂ − σ1(m)ξ̂

both have degree 0 on each irreducible component of X̃ over ℘ dividing N . For
Z2 this follows from Proposition 4.3.2. It remains to study Z1.

Case 1. ℘ does not divide N . In this case, each geometrically connected
component of X̃℘ has only one irreducible component. Thus Z℘ = 0.

Case 2. ℘ split in E. Let K̃0 denote the level structure obtained by
replacing the level structure Kp by the maximal one O×B,℘. Let X̃0 denote

the corresponding Shimura curve. Then the natural map X̃ → X̃0 induces a
bijection on the set of connected components. Over X̃0 we have the divisible
O℘-module G1 of height 2 and X̃ classifies the “cyclic” submodules C of G1

of order ℘ord℘(N). For a fixed irreducible component D of the special fiber of
X̃0 over ℘, by Proposition 1.3.2, the set of irreducible components of X̃ over
D is indexed by the types of the subgroups over the ordinary points over D.
By Proposition 2.2.3, all divisors ηc will have ordinary reduction at ℘ and the
corresponding subgroups are of the same type: either all étale or all formal.
It follows that all CM-divisors ηc with positive orientation will reduce to the
same irreducible component of X̃℘ over D. This implies that Z1 has degree 0
on each irreducible component of X̃℘.
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Case 3. ℘ is split in B and inert in E. We claim that each connected
component of X̃ over ℘ has only one irreducible component. With the notation
as Section 1.3.1 and Proposition 1.3.2, the set of irreducible components of X̃℘
over D is indexed by P1(F℘)/K℘ where K℘ = F×℘ R

×
℘ . As R contains OE,℘,

and F×℘ O×E,℘ = E×℘ , it suffices to show that P1(F℘) has only one orbit under
the action of E×℘ for any embedding E℘ → M2(F℘). Up to a conjugation, we
may identify P1(F℘) as the set of surjective F℘-homomorphisms, from E℘ to
F℘ and the action of E×℘ is given by multiplication on E℘. It follows that
P1(F℘) has one element tr : E℘ → F℘. As the pairing

E℘ × E℘ → F℘, (x, y)→ tr(xy)

is nondegenerate, any other surjective F℘-homomorphism φ : E℘ → F℘ will
have the form

φ(x) = tr(ax)

where a is a nonzero element of E℘. In other words, φ = a(tr), or the action
of E℘ on P1(F℘) is transitive. Consequently, each connected component of X̃℘
has only one irreducible component. As in case 1, we have Z℘ = 0.

It remains to consider the case where ℘ is not split in B. The conclusion of
the previous proposition will definitely not be true. But we have the following:

Proposition 4.4.3. Assume that ℘ is not split in B. Then for any
element D ∈ V℘, there is a holomorphic V℘-valued cusp form f of weight 2 and
level K0(N℘) such that for all but finitely many m, the m-coefficient of f is
given by T(m)D, where N℘ denotes N℘−ord℘(N).

Proof. Actually by Proposition 1.3.4, the set of irreducible components of
X̃ is identified with

S
K̃0

= B(℘)×\B̂(℘)
×
/F̂×GL2(O℘)K̃℘.

The group V℘ is therefore identified with a subgroup of the space Ṽ of complex
functions on S

K̃0
. By Jacquet-Langlands theory [24], the action of the Hecke

correspondences is factored through the action of the Hecke algebra of holo-
morphic cusp forms of weight 2 and level F̂×GL2(O℘)K̃℘, so the proposition
is true with the level structure K0(N) replaced by K0(N℘)NK̃N .

Using the pull-back of divisors, we notice that the minimal level of the
forms which have T(m)D as Fourier coefficients does exist and does not depend
on the choice of K̃. Thus this minimal level must be K0(N℘).

4.4.4. Some definitions. Let S denote the vector space of complex-valued
functions on NF modulo an equivalence relation so that two functions a and b
are equivalent if and only if there is some element M such that a(`) = b(`) for
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any ` prime to M . The strong multiplicity theorem 3.1.7 implies that the map

f −→ f̃ : n→ af (n)

is an embedding from SN into S. We say a function h in S is quasi-multiplicative
if there is an M ∈ NF such that

f(mn) = f(m)f(n)

for all m,n ∈ NF such that

(m,n) = (mn,M) = 1.

For a quasi-multiplicative function f , a function h is called an f -derivative if

h(mn) = f(m)h(n) + f(n)h(m)

for all (m,n) as above.
Let σ1 and r denote the elements in S defined by: m → σ1(m) and

m → r(m) respectively, and let DN be the subspace of S generated by σ1, r,
σ1-derivatives, and r-derivatives, and the Fourier coefficients corresponding to
the old cusp forms of weight 2. Then we have:

Proposition 4.4.5. Let Ψ̂ denote the image of Ψ in S. Then in S,

Ψ̂(m) = −
(
η̂,T0(m)η̂

)
/deg π (mod DN ).

Proof. By discussions in 4.1.3 and 4.1.4, for m prime to NDE ,

Ψ̂(m) = −
(
η̂ − hξ̂ + Z,T(m)(η̂ − hξ̂ + Z)

)
/deg π.

Now we have shown:

• T(m)Z℘ = σ1(m)Z℘ if ℘ is split in B, and m→ T(m)Z℘ is given by an
old cusp form of weight 2 if ℘ is not split in B;

• T(m)ξ̂ = σ1(m)(ξ + ψ(m)) with ψ quasi-additive;

• T(m)η̂ = r(m)η̂ + T0(m)η̂.

It follows that

Ψ̂(m) = −
(
η̂,T0(m)η̂

)
/deg π (mod DN ).

4.5. A uniqueness theorem. Now we are going to prove that the relation
in Proposition 4.4.5 determines a newform projection of Ψ uniquely:
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Proposition 4.5.1. Let f be an element in the space SN such that in S,

f̂ ≡ 0 (mod DN ).

Then f is an old cusp form of weight 2.

Proof. We start from the following:

Lemma 4.5.2. Let α1, · · · , α` be distinct nonzero quasi -multiplicative el-
ements in S. Then the equation

(c1α1 + h1) + · · ·+ (c`α` + h`) = 0

in S does not have a nonzero solution

x = (c1, h1, · · · , c`, h`),

where for each i, ci is a constant and hi is an αi-derivative.

Proof. Assume that the lemma is not true, then we will have one solution
x0 = (c1, h1, · · · , cl, hl). Let M be an element in NF such that

(c1α1(n) + h1(n)) + · · ·+ (c`α`(n) + h`(n)) = 0

for any n prime to M . Let m be any ideal prime to M ; then for any n prime
to mM , we have

(c1α1(mn) + h1(mn)) + (c2α2(mn) + h2(mn)) + · · · = 0.

So we have a new solution

x1 = (c1α1(m) + h1(m), α1(m)h1, · · · , c`α`(m) + h`(m), α`(m)h`).

If h1(m) 6= 0 then we obtain a solution

x′ = x1 − α1(m)x0 = (h1(m), 0, · · ·),

in which h1 = 0 and c1 6= 0. Doing this for each i, we obtain a solution in
which every hi = 0 but some ci will not be 0. We need only to show that
α1, · · · , α` are linearly independent. This is similar to the proof of the linear
independence of the characters of a group.

Now go back to the proof of our proposition. Decompose f into a sum of

newforms of levels dividing N and forms of type φ

(
g

(
1 0
0 d

))
, where d 6= 1

is a divisor of N in F̂× and φ is a newform of level d−1N . Then the above
lemma implies the proposition if we can show that σ1 and r are distinct and
not in the image of newforms. For any quasi-multiplicative a in S, we define
the Dirichlet series

L(s, a) =
∑
n

a(n)N(n)−s
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which is well-defined modulo finitely many factors. Then it is easy to see up
to finitely many factors,

L(s, r) = ζE(s), L(s, σ1) = ζF (s− 1)ζF (s).

So L(s, r) has a pole at s = 1 and L(s, σ1) has a pole at s = 2. If r is multiple
of σ1 in S, then L(s, r) should be equal to a multiple of L(s, σ1) up to finitely
many Euler factors. This is impossible as they have different poles. The same
argument shows that σ1 and r should not be equal to f̂ for any cusp form f ,
as L(s, f̂) = L(s, f) is holomorphic at s = 2 and s = 1.

4.5.3. Remarks. The number (η̂,T0(m)η̂)/deg π does not depend on the
choice of π : X̃ → X. Let us denote it by (η,T0(m)η). As two divisors η̂ and
T0(m)η̂ are disjoint at the generic fibers, it has decomposition

(η,T0(m)η) =
∑
v

(η,T0(m)η)v

where v runs through the set of all places of F , and

(η,T0(m)η)v =
∑
w|v

(η̂,T0(m)η̂)w/deg π

where w runs through all places of E over v.
Assume that m is prime to NDE , then by (4.2.1), the computation of Ψ

modulo oldforms is reduced to the computation of

(η, η0
c )v := (η̂, η̂0)/deg π.

In the following section we will first compute the local intersections then add
them together.

5. Local intersections

In this section we are going to compute (η,T(m)0η)v where v is a place
of E. We follow the method of Gross- Kohnen-Zagier [22]. However we are
working on CM-points with the discriminants not necessarily coprime. Again,
we need to assume that every factor of 2 is split in E.

5.1. Archimedean intersections. In this subsection we want to compute
the infinite local intersections (η, η0

c )v where c ∈ NF is prime to NDE and
π : X̃ → X is some covering of X constructed as in Section 4.1. First of all let
us assume that v is over τ , the embedding chosen in the introduction.

5.1.1. Intersections as Green’s functions. Let Ri’s be nonconjugate orders
of B of type (N,E). Then X(C) is a union of Riemann surfaces

Xi = R×i+\H = R×i \H±.
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We want to compute the intersections (ηi, η0
c,i)v separately, where ηi and η0

c,i

are restrictions of η and η0
c on Xi. Let gi(x, y) be Green’s function on the

compactification of Xi with respect to the Poincaré metric dµ:

∂x∂̄x
πi

gi(x, y) = δy − dµ(x).

We can linearly extend gi to a function on the set of disjoint pairs of divisors.

Lemma 5.1.2. (ηi, η0
c,i)v = gi(ηi, η0

c,i).

Proof. Let X̃i be the part of X̃ which projects into Xi. Then the Riemann
surface X̃i is a union of Riemann surfaces of the form: X̃i,j = Γ̄i,j\H, where
Γ̄i,j ⊂ PGL2(R)+ acts freely on H. Let ηi,j and η0

c,i,j be the restrictions of η̃i
and η̃0

c,i on X̃i,j ; then by construction of η̂i, as in 4.1.4,

(η̂i, η̂0
c,i)v =

∑
j

gi,j(ηi,j , η0
c,i,j)/deg π,

where gi,j(x, y) are Green’s functions on the compactifications of X̃i,j ’s with re-
spect to the Poincaré metric. Now the lemma follows easily from the projection
formula

gi(x, y) =
∑
j

gi,j(π−1(x), π−1(y))/deg π

for any distinct x and y in Xi(C).

5.1.3. Construction of Green’s functions. Now gi(x, y) can be constructed
as follows [16]: for s ∈ C with Re(s) > 1, define the function

Gs(z, w) = Qs−1

(
1 +

|z − w|2
2ImzImw

)

where Qs−1(u) is the Legendre function of the second kind:

Qs−1(u) =
∫ ∞

0
(u+

√
u2 − 1 cosh t)sdt.

Then the function on Xi,

gs,i(z, w) =
∑
γ∈Γi

Gs(z, γw)

is convergent and has a simple pole at s = 1 with residue 1/χi where Γi is the
image of R×i in PSL2(R) and χi is the Euler characteristic of Xi. Then we
have an identity

gi(z, w) = lim
s→1

(
gs,i(z, w)− 1

s(s− 1)χi

)
.
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Let x, y be two points on Xτ (C) represented by z, w on H. Let ux and uy
be the orders of stabilizers of x and y in Γi respectively. Let Px and Py be the
sets of points on H mapping to x and y, respectively. Then,

gi(x/ux, y/uy) = lim
s→1

 ∑
(z,w)∈Γi\Px×Py

gs(z, w)−
u−1
x u−1

y

s(s− 1)χi

 .
Applying this to components in ηi and η0

c,i, we see that Lemma 5.1.2 gives

(5.1.1) (ηi, η0
c,i)v = lim

s→1

 ∑
(z,w)∈Γi\Pi×P 0

c,i

gs(z, w)− deg η deg η0
c

s(s− 1)χi

 ,
where Pi and P 0

c,i are the sets of points in H mapping to components of ηi
and η0

c,i.

5.1.4. Descriptions of CM-points. We may identify H± with

HomR(C,M2(R))

such that if z = g(
√
−1) ∈ H± with g ∈ GL2(R), then the corresponding

element φz : C → M2(R) takes a + bi to g

(
a b

−b a

)
g−1. In this way, the

CM-points on Xi are those points induced by a homomorphism φ : K → B

with order given by φ−1(Ri).
For two points z and w in H± corresponding to two homomorphisms φz

and φw in Hom(C,M2(R)) it is easy to check that

1 +
|z − w|2

2ImzImw
= −1

2
tr(iziw),

where iz = φz(i) and iw = φw(i). It follows that z and w are in the same
connected component and z 6= w if and only if −1

2tr(iziw) > 1. Let Pi (resp.
P0
c,i) denote the inverse image of ηi and η0

c,i on H±, and let Pc,i denote the
union of Pi and P0

c,i. Then we have

(ηi, η0
c,i)v = lim

s→1


∑

(z,w)∈Pi×P0
c,i
/R×
i

− 1
2 tr(iziw)>1

Qs−1

(
−1

2
tr(iziw)

)
+

deg ηi deg η0
c,i

s(s− 1)χ

 .
For an element c ∈ NF , define

(5.1.2) uv,s(c, i) =
∑

(z,w)∈P×Pc,i/R×

− 1
2 tr(iziw)>1

Qs−1

(
−1

2
tr(iziw)

)
.
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Then formula (5.1.1) gives

(5.1.3) (ηi, η0
c,i)τ1 = lim

s→1

(
uv,s(c, i)− uv,s(1, i) +

deg ηi deg η0
c,i

s(s− 1)χ

)
.

5.1.5. Linking numbers. Each pair (z, w) ∈ Pi × Pc,i of Xi determines
two homomorphisms φz and φw from K to B such that φz(OK) ⊂ Ri and
φw(Oc) ⊂ Ri and such that φz and φw have the same orientation. Let a, b be
two totally positive elements of c and DE respectively such that both a and b

are prime to N and that
√
−b is in E. Let e1 = φz(

√
−b) and e2 = φw(c

√
−b)

in Ri. As φz and φw have positive orientation, we have

(ae1 − e2)2 ≡ 0 (mod 4N).

In other words there is an n ∈ Na−1b−1 such that

tr(e1e2) = −2ab+ 4nab.

It is easy to verify that n is independent of the choice of c and d. So n ∈
Nc−1DE

−1. We call n the linking number of z and w (or φz and φw) and
denote it by n(z, w) ( or n(φz, φw)).

As
−1

2
tr(iziw) = 1− 2τ1(n),

formula (5.1.2) becomes

(5.1.4) uv,s(c, i) =
∑

n∈Nc−1DE
−1

τ(n)<0

%v(c, n, i)Qs−1(1− 2τ1(n)),

where %v(c, n, i) is the number of conjugacy classes of pairs (z, w) ∈ Pi × Pc,i
such that n(z, w) = n.

5.1.6. Summing up. We need to sum up formula (5.1.3) for all i, but only
for %v(c, n, i)’s and residues. Let P (n)i denote the set of conjugacy classes of
pairs (φ1, φ2) ∈ Hom(E,B)2 such that

φ1(OE) ⊂ Ri, φ2(Oc) ⊂ Ri, n(φ1, φ2) = n.

Then any pair (φ1, φ2) defines two CM-points (z, w) ∈ H×H with conductor 1
and c respectively. These two points are in Pi×Pc,i if and only if the morphism
φz defined by z has positive orientation. The orientation group W acts freely
on ∪iP (n)i which, therefore, has cardinality %τ (c, n) := 2s

∑
i %v(c, n, i).

Now we want to treat the residue term in formula (5.1.3).

Lemma 5.1.7. The numbers deg ηi, deg ηc,i, χi do not depend on i, if
they are nonzero.
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Proof. The natural projection from Xτ (C) onto the set of its connected
components is given by the determinant map

X(C)→ π0(X(C) := F×+ \F̂×/F̂×,2Ô×F ,
(z, g) ∈ H ⊗ B̂× → det g.

Now ηc is u−1
c times the sum of CM-points represented by (

√
−1, g) with g in

E×\Ê×/F̂×Ô×c . The determinant map restricted on these CM-points is given
by the norm homomorphism

NE/F : E×\Ê×/F̂×Ô×c → F×+ \F̂×/F̂×,2Ô×F .
Thus the pre-image of every point in π0(X(C) has the same cardinality if it
is not empty. This implies that deg ηc,i, therefore, deg ηi and deg η0

c,i do not
depend on i if they are nonzero.

It remains to show that χi does not depend on i. Recall that χi is the
volume of Xi with respect to the measure dxdy/y2 on H times an absolute con-
stant. We need only show that the volume of Xi does not depend on i. For this
we use Hecke’s correspondence T(m). By the definition of T(m) in Section 1.4,
the induced action of T(m) on π0(X(C)) is given by [x] → σ1(m)[mx], where
[x] denote a point represented by x ∈ F̂×. On the other hand, T(m) changes
volume form dxdy/y2 to σ1(m)dxdy/y2. Thus all connected components of
Xτ (C) must have the same volume.

5.1.8. Intersection on other archimedean places. Now we want to com-
pute the archimedean intersection for places of E over τ2, · · · , τg. For this we
need to describe the conjugation Xτk(C) of X(C) over F . Let B(τk) denote a
quaternion algebra obtained from B by switching invariants at τ1 and τk. Fix
an order R(τk) of B(τk) of type (N,E); then

Xτk(C) ' B(τk)×\H± × B̂(τk)×/R̂(τk)×.

So the above formulas (5.1.2)–(5.1.4) and Lemma 5.1.7 for (η, η0
c ) work for each

τk.
More precisely for each infinite place τk, let %τk(c, n) be defined as above

for B(τk); then we have the following:

Proposition 5.1.9. For each infinite place v of E over an infinite place
τk of F , the local intersection (η, η0

c )v is given by the formula

lim
s→1

(
uτk,s(c)− uτk,s(OF ) +

deg η deg η0
c

s(s− 1)χ

)
,

where χ is a constant independent of c and τk, and

uτk,s(c) =
∑

n∈Nc−1DE
−1

τk(n)<0

2−s%τk(c, n)Qs−1 (1− 2τk(n)) .
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5.2. Nonarchimedean intersections. In this section we want to compute
the intersection of η and η0

c at a place v of E over a prime ℘ of F .

5.2.1. Some intersection settings. Let q denote the prime of OE cor-
responding to v, and let Our

q be the completion of the maximal unramified
extension of Oq with a uniformizer π. Let Eur

q denote its field of fractions.
Then X̄ := X̃ ⊗ Our

q can be embedded into X̄ ′ = X̃ ′ ⊗ Our
q . For any Our

q -
scheme S, the set HomOur

q
(S, X̄ ′) parametrizes isomorphism classes of objects

[A,C, κ0] where [A,C] is an object of F(S), and κ0 is a level structure defined
by the compact subgroup U × J .

Let x and y be two integral components of η and η0
c , respectively, over

Eur
q . Then x is the image of a morphism from Eur

q to X and y is the image
of a morphism from F (W ) to X where F (W ) is the fraction field of a finite
extension W of Eur

q . Let us denote

(x, y)q = (π∗(x)/ux, π∗(y)/uy)/deg π,

where π∗(x) and π∗(y) are the Zariski closures of π∗(x) and π∗(y).
Assume that U and J are maximal at places dividing c; then

π∗(x) = ux
∑

xi, π∗(y) = uy
∑

yj

where the xi are points of X̃ defined over Eur
q and the yj are points defined

over F (W ). Now, we have

(5.2.1) (x, y)q =
1

deg π

∑
(i,j)

(x̄i, ȳj).

5.2.2. Moduli interpretation. The schemes π∗(x) = ux
∑
xi, and π∗(y) =

uy
∑
yj represent objects [A,C, κi] and [A′, C ′, κ′j ], where [A,C] and [A′, C ′] are

objects represented by the Zariski closures x̄ and ȳ of x and y in X , respectively,
and κi and κj are level structures on them for the group U · J .

Now let us study the local intersection
(
η, η0

c

)
q in two cases: ℘ |/ c and ℘ |c.

Case 1. ℘ |/ c. Let x and y be integral components of η and η0
c over Eur

q .
Then all xi and yj are sections of X over Our

q . Let z1, z2, · · · , be the inverse
images of the reduction z of x̄ on X̄. Let [A0, C0, κ0

k] be the corresponding
objects.

If ℘ is split in E and x̄i and ȳj intersect at some zk, then both x̄i and
ȳj are canonical liftings of zk with the same multiplication by End(x), so that
xi = yj . This is impossible and now (x, y)q = 0.

If ℘ is not split in E and x̄i and ȳj intersect at some zk in the special fiber,
then there are two embeddings αx : End(x) → End(z) and αy : End(y) →
End(z). With respect to αx and αy, x and y are canonical liftings.
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Fix isomorphisms

(5.2.2)


End(x) ' OE ,
End(y) ' Oc,
End(z) ' R(℘),

where R(℘) is an order of type (N(℘), E) in the quaternion algebra B(℘). We
require that the first two isomorphisms satisfy the conditions of Proposition
2.1.3. Let

n = n(αx, αy) ∈ N(℘)c−1DE
−1

be the link number defined as in 5.1.5.

Lemma 5.2.3. Assume that ord℘(N) ≤ 1. Then the intersection of x and
y is given by (x, y)q = m(n) where

m(n) =

{
ord℘(n℘) if ℘ | DE

[ord℘(n℘/N)/2] if ℘|/DE.

Proof. In this case the component of C at ℘ is 0. Thus the formal de-
formation of the formal group gives a formal neighborhood of z′is in X̂. By
(5.2.1), it is not difficult to show that (x̄, ȳ) equals the maximal integer m such
that

1. End(xm) contains the images of αx and αy where xm is the restriction
of x on Our

q /q
mOur

q ;

2. αx = αy (mod qm−1π) in OB(℘) as x and y have the same orientation
at ℘, where

π =

{
q if ℘ | NDF

$ otherwise,

and where $ is a uniformizer of B(℘)

By Proposition 2.4.5, End(xm) is the unique suborder of R(℘) of type
(E,℘bmN) where

bm =

{
2m− 1 if ℘ |/DE

m if ℘ |DE .

On the other hand, the algebra Ox,y generated by the images of αx, αy has
discriminant Dn := c2DE

2n(1 − n). Thus m(n) is the largest number such
that ord℘(Dn) ≥ bm. Now, the first condition is equivalent to

(5.2.3) m ≤
{

ord℘(n(1− n)℘2) if ℘ | DE[
1
2ord℘(n(1− n)℘/N)

]
otherwise.

For the second condition we let t be an element in Oq such that

Oq = O℘ +O℘t, t2 ∈ O℘.
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Then the second condition is equivalent to

αx(t)− αy(t) = 0 (mod qm−1π).

Let µ be an element in OB(℘) such that the following conditions hold:

OB(℘) = Oq +Oqµ, µ2 ∈ O℘
µx = x̄µ for all x ∈ Oq.

Consider t as an element in R(℘) via αx then αy(t) will have the form

αy(t) = t(α+ βµ), α2 − ββ̄µ2 = 1,

where α ∈ O℘, β ∈ Oq. Now the second condition is equivalent to the following:

(5.2.4) α− 1 = 0 (mod qm−1πt−1), βµ = 0 (mod qm−1πt−1).

By the definition of n,

tr(αx(t)αy(t)) = 2t2 − 4t2n.

Thus
α− 1 = −2n, ββ̄µ2 = 4n(n− 1)

and (5.2.4) is equivalent to

n = 0 (mod qm−1πt−1), n(1− n) = 0 (mod (qm−1πt−1)2),

or equivalently,

m ≤ ordq(tq/π) + ordq(℘) min
{

ord℘(n),
1
2

ord℘(n(n− 1))
}

≤ ordq(tq/π) + ordq(℘)
1
2

ord℘(n).

Thus the second condition is equivalent to

(5.2.5) m ≤


ord℘(n℘) if ℘ | DF
1
2ord℘(n) if ℘ | N
1
2ord℘(n℘) otherwise.

The lemma follows from (5.2.3), (5.2.5), and the fact that ord℘(n) > 0 if ℘ is
unramified in E, as n ∈ N(℘)c−1D−1

E .

Conversely if α1 and α2 are two homomorphisms from OE and Oc to
End(z), respectively, which have positive orientation, then by Proposition
1.5.1, we can find objects [A,C] and [A′, C ′] which are canonical liftings of
[A0, C0] with respect to α1 and α2. This defines a component x for η and a
component y for η0

c . Now for each zk, the level structure κ0
k can be uniquely

extended to level structure on [A,C] and [A′, C ′] so that we obtain some sec-
tions xi and yj which intersect at zk. It is easy to see that the number of zk is
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deg π/cz where cz = #[R(℘)×/O×F ]. Now the total intersection of (η, η0
c )q at z

is given by ∑
n

%(z, c, n)m(n),

where %(z, c, n) is the number of R(℘)-conjugacy classes of pairs (φ1, φ2) as
above with link number n.

Write %℘(c, n) as the sum of %(R(℘), c, n) over all nonconjugate orders
R(℘) of B(℘) of type (N(℘), E), where %(R(℘), c, n) is the number of R(℘)-
conjugacy classes of pairs (α1, α2) of homomorphisms from OE and Oc to
R(℘) with the same orientation and link number n in N(℘)c−1DE

−1. As in
the archimedean case, ∑

z

%(z, c, n) = 2−s(℘)%℘(c, n)

where s(℘) is the number of prime factors of N(℘) not dividing DE . Then we
obtain

(5.2.6) (η, η0
c )v = u℘(c)− u℘(1),

where
u℘(c) = 2−s(℘)

∑
n∈Nc−1DE

−1

%℘(c, n)m(n),

with m(n) given by formula (5.2.6). Here 2−1 appears in the formula because
of the symmetry between n and 1− n.

Case 2. ℘|c. Write c = c′℘s with s = ord℘(c). Then η0
c can be written

as
η0
c =

∑
x′∈η

x′(s) +
∑
y′∈η0

c′

(y′ + y′(s))

where x′(s) and y′(s) are sums of quasi-canonical liftings of the reductions of
x′ and y′ of levels up to s. If x is a section of η then a component x̄i of π∗x
has an intersection with a component x′(s)j of π∗(x′(s)) if and only if x = x′,
and then (x̄i, x′(s)j) = s. Similarly, a component x̄i of π∗x has an intersection
with a component y(s)i of π∗y(s) if and only if x̄i has an intersection with ȳj ,
and then (x̄i, y(s)j)q = s. It follows that

(η, η0
c )q = sh1,

if ℘ is split in E, and that

(η, η0
c )q = sh2 + u℘(c)− u℘(1),

if ℘ is inert in E, where h1, h2 are constants independent of c, and where

u℘(c) = 2−s(℘)
∑

n′∈Nc−1DE
−1

%℘(c′, n′)(s+m(n′)).
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In summary we have proved the following:

Proposition 5.2.4. Assume that c is prime to NDE .

1. If ε(℘) = 1, then
(η, η0

c )v = ord℘(c)h1

where h1 is a constant independent of c.

2. If ε(℘) = 0, then
(η, η0

c )v = u℘(c)− u℘(1),

where u℘ is given by the formula

u℘ = 2−s(℘)
∑

n∈Nc−1DE
−1

%℘(c, n)m(n).

3. If ε(℘) = −1, then

(η, η0
c )v = ord℘(c)h2 + u℘(c)− u℘(OF )

where h2 is a constant independent of c, and where u℘ is given by the
formula

u℘(c) = 2−s(℘)
∑

n′∈Nc′−1DE
−1

%℘(c′, n′)(ord℘(c) +m(n′)),

where c′ = c℘−ord℘(c).

5.3. Clifford algebras.

5.3.1. Determining the ramification type. Let ∆ be a quaternion algebra
over F with embeddings φ1 and φ2 from E into ∆. Let d be a nonzero element
in F× such that

√
−d ∈ E, and denote

e1 = φ1(
√
−d), e2 = φ2(

√
−d).

Let m ∈ F× be defined by

e1e2 + e2e1 = 2dm.

Then m does not depend on the choice of d. We want to describe the places
at which ∆ is ramified in terms of m.

Proposition 5.3.2. Let v be a place of F . The algebra ∆ is ramified at
v if and only if εv(m2 − 1) = −1.

Proof. Let ∆0 denote the vector space of trace 0 elements in ∆. Then ∆0

is ramified at a place v of F if and only if ∆0⊗Fv has no nonzero element with
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square 0. Now ∆0 is a vector space over F generated by e1, e2 and e1e2 −md
and it is easy to check that for any x, y, z in Fv,

[xe1 + ye2 + z(e1e2 −md)]2 = −dx2 + 2mdxy − dy2 + (m2 − 1)d2z2.

This form is linearly equivalent to

−dx2 + (m2 − 1)y2 − z2.

Thus ∆ is ramified at v if and only if (m2 − 1) is not a norm from Ev, or
equivalently, εv(m2 − 1) = −1.

5.3.3. Counting orders. Let c be a nonzero ideal of OE prime to NDE .
Let S denote the OF -subalgebra in ∆ generated by φ1(OE) and φ2(Oc). Then
S is finite over OF if and only if m+ 1 ∈ 2c−1DE

−1. The discriminant of S is
DS = (m2 − 1)c2DE

2.
Let ` be an ideal of OF such that the following conditions are satisfied:

1. ordv(`) is even if v is split in ∆ and inert in E;

2. ordv(`) is odd if v is ramified in ∆ and inert in E;

3. ordv(`) is 0 if v is split in ∆ and ramified in E;

4. ordv(`) is 1 if v is ramified in both ∆ and E.

In the following we want to compute the number of orders in ∆ of type (`, E)
containing S. The above conditions imply the existence of the orders in ∆
of type (`, E). Indeed, conditions 1 and 2 imply that there is an ideal `E in
OE with norm `/D∆ where D∆ is the product of primes in F over which ∆ is
ramified. Let O∆ be any maximal order of ∆ containing φ1(OE). Then

φ1(OE) + φ1(`E)O∆

is an order in ∆ of type (`, E). Let %(S) denote the number of orders in ∆ of
discriminant ` containing S.

Proposition 5.3.4. Assume m + 1 ∈ 2c−1DE
−1. There is an order of

discriminant ` containing S only if DS is divisible by `. If `|DS , then

%(S) = r(DS/`) ·
∏

v|(DS,DE)

εv(m2−1)=1

2.

Proof. Since the correspondence O → Ô gives a bijection between the set
of orders of ∆ and the orders of ∆̂, it follows that %(S) equals the product of
the numbers %v(S) of orders on ∆v of type (`, E) containing Sv for all finite
places v of F . Fix a finite place v = ℘. We want to compute %v(S) case by case.



HEIGHT OF HEEGNER POINTS 109

Let W denote the ring φ1(OE,v) contained in S. Recall that the discriminant
of S is DS .

If ε(v) = −1, or v is ramified in ∆, then there is a unique order in ∆v

of discriminant ℘ordv(`) containing W . This order contains Sv if and only if
ordv(`) ≤ ordv(DS). In other words, %v(S) = 1 if ordv(DS) ≤ ordv(`) and
%v(S) = 0 if ordv(DS) < ordv(`).

If ε(℘) = 1 then W ' O2
℘ as a ring. It follows that S℘ is an Eichler order

conjugate to an order of the form{(
a b

℘ord℘(DS)c d

) ∣∣∣∣ a, b, c, d ∈ O℘
}
.

This order is contained in an order of the discriminant ℘ord℘(`) if and only if
ord℘(`) ≤ ord℘(DS). If this is the case, then each order of ∆ of the type (`, E)
containing this order has the form{(

a ℘−k`b
℘kc d

) ∣∣∣∣ a, b, c, d,∈ O℘
}

with 0 ≤ k ≤ ord℘(DS)− ord℘(`). Hence %℘(S) = 1 + ord℘(DS/`).
If ε(℘) = 0 and ℘ is not ramified on ∆, then S is generated by e1 and e2

such that
e1e2 + e2e1 = 2md

and W is generated by e1, where e2
i = d. The correspondence I → EndO℘(I)

gives a bijection between the set of maximal orders of ∆℘ containing W and
the set of ideals in W modulo an equivalence relation: I1 ∼ I2 if and only
if I1 = I2α for an α ∈ F×. We have two maximal orders EndO℘(W ) and
EndO℘(We1) corresponding to ideals W and We1. One of them must contain
S, say the first one. We want to prove that the second one also contains
S. It suffices to show that the second one contains e2, or in other words
e2(We1) ⊂We1. First of all, as e2W ⊂W and

e1e2 + e2e1 = 2md,

we have
e2(We1) ⊂ 2mdW +We1.

Secondly, as ℘|(DS , DE) with DS = (m2−1)d2OF , we must have ord℘(m) ≥ 0.
So e1|md at the place ℘. It follows that e2(We1) ⊂ We1. So we have proved
that %℘(S) = 2. This completes the proof of the proposition.

We will use Proposition 5.3.4 to compute the embeddings from S into
orders of type (`, E):
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Proposition 5.3.5. Let O1, . . . ,Oh be a representing set of all conjugacy
classes of orders in ∆ of type (`, E). Then

h∑
i=1

#{φ : S → Oi (mod O∗i )} = 2t(`)%(S),

where O×i acts on the set of embeddings from S into Oi by conjugations, and
t(`) is the number of finite places dividing `.

Proof. The proof is almost exactly like the modular curve case treated by
Gross, Kohnen, and Zagier [22]. We omit the details.

5.4. The final formula. For each place w of F , let (η, η0
c )w denote the

total intersection over the places over w:

(5.4.1) (η, η0
c )w =

∑
v|w

(η, η0
c )v log N(v)

where the v are places of E, and log N(v) is set to be 2 if v is a complex place.
In this section we want to compute the local intersection

(5.4.2) (η,T(m)0η)w =
∑
c|m

ε(c)(η, η0
m/c)w.

5.4.1. The archimedean case: Computation. By Proposition 5.1.9, for a
place τi, (η,T(m)0η)τi is equal to

(5.4.3) 2 lim
s→1

(
Uτi,s(m)− r(m)Uτi,s(OF ) +

(deg η)2 deg T0(m)
s(s− 1)χ

)

where Uτi,s(m) is

2−s
∑
c|m

ε(c)
∑

n∈Ncm−1DE
−1

τi(n)<0

%τi(m/c, n)Qs−1 (1− 2τi(n))

= 2−s
∑

n∈Nm−1DE
−1

τi(n)<0

∑
c|m

c|nmDEN−1

ε(c)%τi(m/c, n)Qs−1 (1− 2τi(n)) .

Lemma 5.4.2. Let n ∈ Nc−1DE
−1 be such that τi(n) < 0. Then the

following assertions hold :

1. %τi(c, n) 6= 0 if and only if the following are satisfied :

(a) 0 < τj(n) < 1 for j 6= i;

(b) ε℘(n(n− 1)) = 1 for any ℘|DE ;

(c) r(n(n− 1)c2N−1) 6= 0.
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2. Assume conditions (a) and (b). Then

%τi(c, n) = 2sr(n(n− 1)c2N−1)δ(n)

where δ(n) =
∏
℘|(DE ,n℘) 2.

Proof. Let ∆ and S be a Clifford algebra and an order defined as in 5.3.1
and 5.3.3 with m = 2n− 1. Then S has discriminant

DS = n(n− 1)c2DE
2.

By 5.1.6, Propositions 5.3.5 and 5.3.4, %τi(c, n) 6= 0 is equivalent to the
following:

• ∆ is isomorphic to B(τi), or equivalently by Proposition 5.3.2,

εv(n(n− 1)) = −1

if and only if v is ramified in B(τi).

• DS is divisible by ` = N , or equivalently n(n−1)c2DE
2N−1 is an integer.

Recall that B(τi) is ramified exactly at archimedean place τj (j 6= i) and
finite places ℘ such that ε℘(N) = −1. Thus these two conditions are equivalent
to the conditions (a), (b), and (c) because of the following:

• For an infinite place τj ,

ετj (n(n− 1)) < 0⇐⇒ τj(n(n− 1)) < 0;

• (DS , N) = 1 so that B(τi) is unramified at all places dividing DE ;

• r(n(n− 1)c2N−1) 6= 0 if and only if n(n− 1)c2DE
2N−1 is an integer and

ε℘(n(n− 1)c2DE
2N−1) = 1

for all finite place ℘|/DE .

This proves the first assertion in the lemma.
By assertion 1, the equality in assertion 2 follows if %τi(c, n) = 0. Oth-

erwise, by Propositions 5.3.5 and 5.3.4, %τi(c, n) = 2s%(S) and %(S) is given
by

r(DS/`) ·
∏

v|(DS,DE)

εv(m2−1)=1

2.

Now for any ℘ | DE , condition (a) implies ε℘(m2 − 1) = 1, and ℘ | DS is
equivalent to ord℘(n) ≥ 0. Thus we have assertion 2.
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Lemma 5.4.3. Let a and b be two nonzero ideals. Then∑
c|(a,b)

ε(c)r(
ab

c2
) = r(a)r(b).

Proof. It is easy to reduce to the case where a = ℘m and b = ℘n both are
powers of a prime ideal in OF . In this case the lemma is obvious.

Applying Lemmas 5.4.2 and 5.4.3 to formula (5.4.3), we, therefore, obtain
the following:

Proposition 5.4.4. Let τi be an infinite place of F . Then in S/DN ,
(η,T(m)0η)τi is given by the limit as s→ 1 of

2
∑

n∈Nm−1DE
−1,τi(n)<0,

0<τj(n)<1,∀j 6=i
ε℘(n(n−1))=1,∀℘|DE

δ(n)r(ncN−1)r((n− 1)m)Qs−1 (1− 2τi(n)) .

Here in S/DN , the limit makes sense, as the term

(deg η)2 deg T0(m)
s(s− 1)χ

is an element in DN as a function of m.

5.4.5. The nonarchimedean case. Now let us treat the nonarchimedean
case. Fix a prime ℘. To compute (η,T(m)0η)℘, there are three cases:

Case 1. ε(℘) = 1. By Proposition 5.2.3,

(5.4.4) (η,T(m)0η)℘ = 2h1j℘(m),

where h1 is a constant independent of m, and where

(5.4.5) j℘(m) =
∑
c|m

ε(c)ord℘(m/c) log N(℘) =
1
2
r(m)ord℘(m) log N(℘).

Case 2. ε(℘) = 0. As m is prime to DE , by 5.2.3, one has

(5.4.6) (η,T(m)0η)℘ = (U℘(m)−R(m)U℘(1)) log N(℘).

where

U℘(m) = 2−s(℘)
∑

n∈N(℘)m−1DE
−1

∑
c|m

c|nmDEN−1

ε(c)%℘(m/c, n)m(n)

where m(n) is as defined by formula (5.2.3). By the proof of Lemma 5.4.2 we
have:
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Lemma 5.4.6. Let n ∈ N(℘)c−1DE
−1. Then the following assertions

hold :

1. %℘(c, n) 6= 0 if and only if the following are satisfied

(a) For all infinite places τi, 0 ≤ τi(n) ≤ 1;

(b) ε℘(n(n− 1)) = −1, and εq(n(n− 1)) = 1 for all q|DE, q 6= ℘;

(c) r(n(n− 1)c2N−1) 6= 0;

2. If conditions (a) and (b) are satisfied then

%℘(c, n) = 2s(℘)δ(n)r(n(n− 1)c2N−1).

Applying Lemmas 5.4.6 and 5.4.3, we see that U℘(m) is equal to

(5.4.7)
∑

n∈Nm−1DE
−1,0<n<1

ε℘(n(n−1))=−1

εq(n(n−1))=1,∀℘ 6=q|DE

δ(n)r(nmN−1/℘)r((n− 1)m)m(n)

where the inequality 0 < n < 1 means 0 < τi(n) < 1 for all τi.

Case 3. ε(℘) = −1. Again by Proposition 5.2.3,

(5.4.8) (η,T(m)0η)℘ = h2j℘(m) + (U℘(m)−R(m)U℘(1)) log N(℘).

Here h2 is a constant independent of m, and

j℘(m) = 2
∑
c|m

ε(c)ord℘(m/c) log N(℘)(5.4.9)

= r(m)ord℘(m) log N(℘) + ord℘(m℘)r(m/℘) log N(℘),

and U℘(m) is equal to

21−s(℘)
∑
c|m

ε(c)
∑

n∈m′−1c′DE−1N℘

%℘(
m′

c′
, n)

[
ord℘(

m

c
) +m(n)

]
,

where m′ = m′℘−ord℘(m) and c′ = c℘−ord℘(c). Changing the order of sums and
writing c = c′℘t, we see that U℘(m) is equal to

21−s(℘)
∑

n∈Nm′−1DE
−1℘

∑
c|m′

c|nm′DEN−1

ε(c′)%℘(
m′

c
, n)

·
ord℘(m)∑
t=0

(−1)t [m(n) + ord℘(m)− t] .

The last two sums are independent. Let us evaluate them separately.
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As in the other two case, we have the following lemma:

Lemma 5.4.7. Let c be an integer prime to ℘ and let n ∈ Nc−1DE
−1℘.

Then the following two assertions hold :

1. %℘(c, n) 6= 0, if and only if the following conditions are satisfied :

(a) 0 < n < 1;

(b) ε`(n(n− 1)) = 1, for all `|DE ;

(c) r(n(n− 1)c2N−1℘−1) 6= 0.

2. Moreover if conditions (a) and (b) are satisfied then

%℘(c, n) = 2s(℘)δ(n)r(n(n− 1)c2N−1℘−1).

Applying Lemmas 5.4.7 and 5.4.3, we obtain

2−s(℘)
∑
c|m′

c|nm′DEN−1

ε(c)%℘(
m′

c
, n) = r(nm′N−1/℘)r((n− 1)m′).

The second sum (in Case 3) can be evaluated directly:

ord℘(m)∑
t=0

(−1)t [m(n) + ord℘(m)− t]

=


[
m(n) + 1

2ord℘(m)
]

if ord℘(m) is even,
1
2ord℘(m℘) if ord℘(m) is odd.

Thus U℘(m) is equal to∑
n∈m′−1DE

−1N(℘)

0<n<1

ε`(n(n−1))=1,∀`|DE

r(nm′/N−1℘)r((n− 1)m′)δ(n) ·(5.4.10)

·
{

2
[
m(n) + 1

2ord℘(m)
]

if ord℘(m) is even,
ord℘(m℘) if ord℘(m) is odd.

In summary we obtain the following:

Proposition 5.4.8. Assume that ε(℘) = 1 if either ord℘(N) > 1 or ℘ | 2.
Then the local intersection (η,T(m)0η)℘ is given by the following formulas:

1. If ε(℘) = 1 then (η,T(m)0η)℘ (mod DN ) is equal to

h1r(m)ord℘(m) log N(℘)

where h1 is a constant independent of m and ℘.
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2. If ε(℘) = 0 then (η,T(m)0η)℘ is equal to

(U℘(m)−R(m)U℘(1)) log N(℘)

where U℘(m) is equal to∑
n∈m−1DE

−1N(℘),0<n<1

ε℘(n(n−1))=−1

εq(n(n−1))=1,∀℘ 6=q|DE

δ(n)r(nm/N℘)r((n− 1)m)ord℘(n℘).

3. If ε(℘) = −1 then (η,T(m)0η)℘ is equal to

h2r(m)ord℘(m) log N(℘) + h2ord℘(m℘)r(m/℘) log N(℘)

+ (U℘(m)− U℘(1)) log N(℘)

where h2 is a constant independent of m,℘, and U℘(m) is equal to∑
n′∈m′−1DE

−1N(℘)

0<n′<1

ε`(n
′(n′−1))=1,∀`|DE

r(n′m′N−1/℘)r((n′ − 1)m′)δ(n′)

·
{

2
[

1
2ord℘(n′℘m)

]
if ord℘(m) is even,

ord℘(m℘) if ord℘(m) is odd.

Proof. All these statements follow from formulas (5.4.4)–(5.4.10) and Lemma
5.2.3, with the fact that in the case ε(℘) = −1, the term for an n′ in (5.4.10)
has nonzero contribution only if ord℘(n′N(℘)) is even. Thus

m(n′) =
[

1
2

ord℘(n′℘)
]

even when ord℘(N) is odd.

6. Derivatives of L-series

In this section, we will compute L′E(f, s) using the method of Gross and
Zagier shown in [21]. We will start with a formula which expresses LE(f, 1/2
+ s) as an inner product of f with a nonholomorphic form Φs(z). Then we
compute the Fourier expansion for Φs(z) and get a formula for some multiple Φ̃
of ∂

∂s

∣∣∣
s=1/2

Φ̃s(z). Finally the holomorphic projection of Φ̃ gives a holomorphic

form Φ with Fourier coefficients given explicitly.
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6.1. The Rankin-Selberg method. Let f be a new form for K0(N) and let
E be an imaginary quadratic extension of F as before. Then the base change
L-function of f to E is defined to be LE(s, f) = L(s, f)L(s, ε, f) where ε is the
character attached to E/F . See Section 3.4 for definitions. For any nonzero
ideal m let r(m) denote the number of integral ideals in OE with the norm m.
Using Proposition 3.1.4, one shows that

(6.1.1) LE(f, s) = LN (2s− 1, ε)
∑
m∈NF

a(m)r(m)N(m)−s

where LN (s, ε) denotes the series∑
m∈NF

(m,NDE)=1

ε(m)N(m)−s,

where DE is the conductor of ε. In other words, LE(f, s) is essentially the
Rankin-Selberg convolution of L(s, f) with ζE(s). We want to express this
convolution as an inner product of f with a modular form. We will construct
such a form using the Eisenstein series defined in Section 3.5.

6.1.1. LE(f, s) as an inner product of f with some other form. We need
to define a Haar measure on Z(AF )\G(AF ). Let dk = ⊗dkv be the Haar
measure on K0(1) with volume 1 on each component. Recall that dx = ⊗dxv
is defined in 3.1.1 to be a measure on AF such that dxv is the usual Euclidean
measure if v is infinite, and that Ov has volume 1 if v is finite. Also recall that
d×x = ⊗d×xv is defined in the proof of 3.4.2 to be a Haar measure on A×F such
that d×xv = |dxv/xv| if v is infinite, and that O×v has volume 1 if v is finite.
Now dg on G(AF ) is defined by the formula∫

Z(AF )\G(AF )
f(g)dg =

∫
A
×
F

∫
AF

∫
K
f

((
y x

0 1

)
k

)
dkdx

d×y
|y| .

For any two function f and g on Z(AF )G(F )\G(AF ) the integral fḡ (if it is
absolutely convergent) is denoted as (f, g).

Let Es be the Eisenstein series defined in 3.5.1 with χ = ε associated to
the extension E/F . Let Es,N be an Eisenstein series defined by the formula

(6.1.2) Es,N (g) = Es

(
g

(
1 0
0 πN

))
where πN is an idele with components 1 at places not dividing N and such
that πN generates N̂ . Then Es,N is a form of level K0(DEN).

Proposition 6.1.2. Let f be a new cusp form of weight 2, for K0(N) a
trivial central character. Then

(f,E1/2Es,N ) = A(s)LE(s+ 1/2, f)
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where

A(s) =
[

Γ(s+ 1/2)
22sπs−1/2

]g
d
s+1/2
F dsNd

−1/2
E µ(NDE)

where µ(NDE) is the volume of K0(NDE).

Proof. For each factor e of N , let Ees be the Eisenstein series defined in
the same way as Es in 3.5.1 with factor L(2s, ε) replaced by Le(2s, ε) and with
Hs replaced by the following He

s :

He
s (g) =

{ ∣∣a
d

∣∣s ε(akr(θ)) if k ∈ K0(DEe)
0 otherwise.

For Re(s) > 1, Ees(g) is absolutely convergent and defines a (nonholomorphic)
form for K0(DEe) of (parallel) weight 1 with character ε. If e = OF , Ees = Es.

Lemma 6.1.3. Let f be a cusp form of weight 2 for K0(NDE) with
trivial central character. Let θ be the theta series with Fourier coefficients
r(m) defined as in 3.4.5. Then

(f, θENs̄ ) = µ(NDE)ds+1
F

[
Γ(s+ 1/2)
(4π)s+1/2

]g
LE(s+ 1/2, f).

Proof. By definition of ENs , up to a factor L(2s, ε), (f, θENs̄ ) is given by∫
Z(AF )B(F )\G(AF )

fθHN
s̄ dg

=
∫
A
×
F,+/F+

∫
AF /F

∫
K

(fθHN
s̄ )

((
y x

0 1

)
k

)
dkdx

d×y
|y| ,

where A×F,+ denote ideles with positive components at the infinite places. By
definition of HN

s , the inner integral over K is

µ(NDE)(fθ̄)

((
y x

0 1

))
|y|sε(y).

Using Fourier expansions of f and θ in (3.1.3) and Proposition 3.1.2,∫
AF /F

(fθ̄)

((
y x

0 1

))
dx

= d
1/2
F |y|3/2ε(y)

∑
α>0

a(αyfDF )r(αyfDF )ψ(2αy∞i),

where a(m) are the Fourier coefficients of f as defined in Proposition 3.1.2.
Combining these, (f, θENs̄ ) up to a factor L(2s, ε), is equal to

µ(NDE)d1/2
F

∫
A
×
F,+

|y|s+1/2
∑
α>0

a(yfDF )r(yfDF )ψ(2y∞i)d×y.
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This integral is the product of the integrals over infinite ideles
∏
v|∞ Fv,+ and

over finite ideles F̂×. The integral over infinite ideles gives[
Γ(s+ 1/2)
(4π)s+1/2

]g
while the integral over the finite ideles gives

d
s+1/2
F

∑
m

a(m)r(m)
N(m)s+1/2

.

The lemma follows from (6.1.1).

The next lemma gives a comparison between Ees and Es,n.

Lemma 6.1.4. Es,N = dsN
∑
a|N

ε(a)
N(a)2s

EN/as .

Proof. Let Hs,N be the function on G(AF ) defined in the same way as
Es,N :

Hs,N (g) = Hs

(
g

(
1 0

0 πN

))
.

It suffices to prove the corresponding statement for Hs,N on K0(1):

Hs,N = dsN
∑
a|N

ε(a)
N(a)2s

LN/a(2s, ε)
L(2s, ε)

HN/a
s .

We do this by testing their values on elements k =

(
a b

c d

)
of Kv for finite

places v not dividing DE . Now we have the decomposition:

k

(
1 0

0 πN

)
=

(
1
d(ad− bc) bπN

0 dπN

)(
1 0
c

dπN
1

)
if N |c, and

k

(
1 0

0 πN

)
=

(
πN
c (ad− bc) a

0 c

)(
0 −1

1 dπN
c

)
if c|πNπv . It follows that

Hs,N (k) =

 |πN |
−s if N |c

εv
(πN
c

) ∣∣∣πNc2 ∣∣∣s if c|πNπv .

Let ℘v be the prime ideal of OF corresponding to v. By definition of He
s ,

He
s (k)−H℘e

s (k) =

{
1 if ordv(N) = ordv(e)

0 otherwise.
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It follows that

N(Nv)sHs,N (k)

= HN
s (k) +

∑
1≤i≤ordv(N)

ε(℘iv)N(℘iv)
2s(HN/℘i

s (k)−HN/℘i−1

s (k))

=
∑

0≤i≤ordv(N)

LN/℘
i
(2s, ε)

L(2s, ε)
ε(℘i)N(℘i)2sHN/℘i

s (k).

Now go back to the proof of Proposition 6.1.2. By Proposition 3.5.4,

E1/2 =
(2π)g√
dFdE

θ.

By the two lemmas above, the proof of the proposition is reduced to showing
that

(f,E1/2E
e
s) = 0

for any factor e 6= N of N .
Let trDE be the trace operator from the space of cusp forms of level

K0(NDE) to K0(N): for any form φ of level DEN ,

(6.1.3) (trDEφ)(g) =
∑

γ∈K0(N)/K0(NDE)

φ(gγ).

Then
(f,E1/2E

e
s) = [K0(N) : K0(NDE)]−1(f, trDE (E1/2E

e
s).

As representatives of K0(N)/K0(NDE) will also serve as representatives for
K0(e)/K0(eDE) for any e|N , trDE (E1/2E

e
s) is a form of level K0(e). Thus it

is orthogonal to f as f is a newform.

6.1.5 Definition of Φs. We define

(6.1.4) Φs(g) = trDE

 1
2#{v:v|DE}

∑
e|DE

N(e)s−1/2Φe
s

 .
Here, for e a divisor of DE ,

(6.1) Φe
s(g) = (E1/2Es,N )(gγe)

where γe is an element of GL2(AF ) which has components 1 at places not

dividing e and at a place v dividing e it has the component

(
0 −1
πv 0

)
where πv is normalized such that ε(πv) = 1, and where trDE is as defined in
(6.1.3). It is easy to check that Φs is a form of weight 1 for K0(N) with trivial
character.
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Corollary 6.1.6. Let f be a newform of weight 2 for K0(N) with trivial
central character. Then

(f,Φs̄) = B(s)LE(f, 1/2 + s)

where

B(s) =
[

Γ(s+ 1/2)
2(4π)s−1/2

]g
d
s+1/2
F dsNd

−1/2
E µ(N).

Proof. Fix any factor e of DE . Write fe for the form g → f(gγ−1
e ). Then

again fe is a form of level K0(N). By definition, (f,Φe
s̄) is equal to

[K0(N) : K0(NDE)](fe, E1/2Es̄,N ).

By Proposition 6.1.2, this is

A(s)[K0(N) : K0(NDE)]LE(s+ 1/2, fe).

As

fe
((

y x

0 1

))
= f

((
y/πe x

0 1

))
,

if f has the Fourier coefficients a(m) then fe will have the Fourier coefficients

a(fe,m) = N(e)a(m/e).

It follows that
LE(fe, s) = N(e)1−sLE(f, s).

The proposition follows.

6.2. Fourier coefficients.

6.2.1. Strategy. In this section we want to compute the Fourier coefficients
cs(α, y) (α ∈ F ) for Φs defined by (6.1.4), where

(6.2.1) cs(α, y) = d
−1/2
F

∫
AF /F

Φs

((
y x

0 1

))
ψ(−αx)dx.

It suffices to compute cs(α, y) for α = 0 or 1, as for α ∈ F×,

cs(α, y) = cs(1, αy).

We proceed with the following steps:

1. Compute the Fourier coefficients ces(α, y) for Es(gγe). This will give the
Fourier coefficients for Φe

s(g) defined by (6.1.5).
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2. For a factor g of DE and an integral adele a which is 0 at places not di-
viding g, let γg,a denote the element in GL2(A) which has the component

1 at places v not dividing g, otherwise it is given by

(
av −1
1 0

)
. Then

{
γg,a

∣∣∣∣ g|DE , a (mod g)
}

forms a set of representatives forK0(N)/K0(DEN). Compute the Fourier
coefficients ce,gs (α, y) for

(6.2.2) Φe,g
s :=

∑
a (mod g)

Φe(gγg,a).

3. Compute the Fourier coefficients of Φs using the following expression:

(6.2.3) Φs = 2−#{v:v|DE}
∑

e,g|DE
N(e)s−1/2Φe,g

s .

Lemma 6.2.2. The Fourier coefficient ces(α, y) of Es(gγe) is zero if αyDF

is nonintegral. Otherwise, it is given by the following expressions:

ces(0, y) =


ε(y)L(2s, ε)|y|s if e = 1
(−1)g

d
1/2
F dsE

Vs(0)gL(2s− 1, ε)|y|1−s if e = DF

0 otherwise,

ces(1, y) =
(−1)g√
dFdE

N(e)1/2−sσs(y)|y|1−s
∏

v|DE/e
|yvπv|2s−1ε(−yv)κ(v),

where

σs(y) =
∏
v|/DE
v|/∞

1− ε(yvδvπv)|yvδvπv|2s−1

1− ε(πv)|πv|2s−1
·
∏
v|∞

Vs(yv),

and for y ∈ R,

Vs(y) =
∫ ∞
−∞

e−2πiyx

(x2 + 1)s−1/2(x+ i)
dx.

Proof. The case e = 1 was covered in Proposition 3.5.2. So we assume
e 6= 1 in the following. Again by Bruhat decomposition, ce(α, y) is equal to

L(2s, ε)d−1/2
F

∫
AF /F

Hs

((
y x

0 1

)
γe

)
ψ(−αx)dx

+ L(2s, ε)d−1/2
F

∫
AF

Hs

(
w

(
y x

0 1

)
γe

)
ψ(−αx)dx.
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Let v be a place dividing e, then

(
y x

0 1

)
γe has the component

(
yv xv
0 1

)(
0 −1
πv 0

)
=

(
yv xvπv
0 πv

)(
0 −1
1 0

)
.

It follows that

Hs

((
y x

0 1

)
γe

)
= 0

and that ce(α, y) is given by

L(2s, ε)d−1/2
F

∫
AF

Hs

(
w

(
y x

0 1

)
γe

)
ψ(−αx)dx

= L(2s, ε)d−1/2
F |y|1−s

∏
v|/e
Vs(αvyv) ·

∏
v|e
V ′s (αvyv),

where Vs is as defined in the proof of Proposition 3.5.2, and V ′s is given by the
formula

V ′s (y) =
∫
Fv
Hs

(
w

(
1 x

0 1

)(
0 −1
πv 0

))
ψ(−xy)dx.

Now

w

(
1 x

0 1

)(
0 −1
πv 0

)
=

(
−πv 0
xπv −1

)
has the decomposition (

−πv 0
0 1

)(
1 0
xπv −1

)
,

if ordv(x) ≥ 0, and (
−x−1 πv

0 −xπv

)(
0 1
−1 x−1π−1

v

)
,

if ordv(x) < 0. It follows that

Hs

((
−πv 0
xπv −1

))
=

{
|πv|sεv(−1) if ordv(x) ≥ 0,
0 otherwise,

and

V ′s (y) =

{
|πv|sεv(−1) if ordv(y) ≥ 0,
0 otherwise.

Now the lemma follows easily from this formula and the formulas for Vs
derived in the proof of Proposition 3.5.2.
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Lemma 6.2.3. The Fourier coefficient ce,gs (α, y) (α = 0, 1) of Φe,g
s is zero

if αyDF is nonintegral. Otherwise, it is given by

ce,gs (α, y) = N(g)ε(N)
∑
n∈F

ce∗g1/2(α− n, πgy)ce∗gs (n, πgy/πN )

where e ∗ g denotes eg/(e, g)2.

Proof. By definition,

Φe,g
s

((
y x

0 1

))
=

∑
a (mod g)

Φe
s

((
y x

0 1

)
γa

)
.

From the following decomposition at any place v dividing g,(
av −1
1 0

)
=

1
πv

(
πv av
0 1

)(
0 −1
πv 0

)
,

we see that (
y x

0 1

)
γa =

1
πg

(
πgy ay + x

0 1

)
γg.

It follows that

Φe,g
s

((
y x

0 1

))
=

∑
a (mod g)

Φe∗g
s

((
πgy ay + x

0 1

))
.

Thus the Fourier coefficients of Φe,g
s are given by

ae∗gs (α, πgy)
∑

a (mod g)

ψ(αya),

or in other words, ce,gs (α, y) is nonzero only if αy is integral at places dividing
g. In this case it is given by

ce,gs (α, y) = N(g)ae∗gs (α, πgy)

where aes(α, y) is the Fourier coefficient of Φe
s which can be expressed as

aes(α, y) = ε(N)
∑
n∈F

ce1/2(α− n, y)ces,N (n, y/πN ).

Proposition 6.2.4. The Fourier coefficient cs(α, y) (α = 0, 1) of Φs is
nonzero only if αyDF is integral. In this case it is given by

cs(α, y) =
ε(N)d1−s

F

dEdF

∑
n∈F

ans (α, y)

where ans (α, y) is as given by the following formulas if it is nonzero.
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1. If n 6= 0 and n 6= α, then ans (α, y) 6= 0 only if nyDEDFN
−1 is integral.

In this case ans (α, y) is equal to

|y|3/2−sδ(ny)
∏
v|DE

1 + |nvyvπv|2s−1εv((n− α)n)
2

·σ1/2((α− n)y)σs(ny/πN ),

where for an idele y, δ(y) = 2#{v|DE ,ordv(y)≥0}.

2. If n = 0, α = 1, then ans (α, y) is equal to

σ1/2(y)d1/2
F d

1/2
E d2s−1

N ε(N)igL(2s, ε)|y|1/2+s

+ σ1/2(y)Vs(0)gL(2s− 1, ε)|y|3/2−s.

3. If n = α = 0, then ans (α, y) is equal to

ε(N)dFdEd2s−1
N L(1, ε)L(2s, ε)|y|1/2+s

+ V1/2(0)Vs(0)L(0, ε)L(2s− 1, ε)|y|3/2−s.

4. If n = 1, α = 1, then ans (α, y) is equal to[
d

1/2
F d

1/2
E L(1, ε)ig|πDEyDE |2s−1εDE (y) + L(0, ε)V1/2(0)g

]
·σs(y/πN )|y|3/2−s,

where εDE (y) denotes ε(y)
∏
v|DE εv(y).

Proof. By formula (6.2.3), cs(α, y) is equal to

1
δ(1)

∑
e,g

N(e)s−1/2ce,gs (α, y) =
ε(N)d1−s

N

dEdF

∑
n∈F

ans (α, y)

where ans (α, y) is equal to

(6.2.4)
dFdEd

s−1
N

δ(1)

∑
e,g

N(g)N(e)s−1/2ce∗g1/2(α− n, πgy)ce∗gs (n, πgy/πN ).

Case 1. n 6= 0, α. If ans (α, y) 6= 0, one must have

ordv(nyπv) ≥ 0 for each v | DE .

Assume this is the case and let g0 be the factor of DE consisting of places v
such that |nvyvπv| = 1. Then

ce∗g1/2(α− n, πgy)ce∗gs (n, πgy/πN ) 6= 0
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only if g0|g and in this case by Lemma 6.2.2, it equals

|πN |s−1

dEdF
|πgy|3/2−sσ1/2((α− n)y)σs(ny/πN )N(g ∗ e)1/2−s

·
∏

v|DE/(g∗e)
|nvyvπg,vπv|2s−1εv((α− n)n).

It follows that ans (α, y) is equal to

|y|3/2−s
δ(1)

σ1/2((α− n)y)σs(ny/πN )(6.2.5)

·
∑

g0|g|DE
e|DE

N(ge)s−1/2

N(g ∗ e)s−1/2

∏
v|DE/(g∗e)

|nvyvπg,vπv|2s−1εv((α− n)n).

Notice that
N(ge)

N(e ∗ g)

∏
v|DE/(g∗e)

|πg,v|2 = 1.

Now the last sum is∑
g0|g|DE
e|DE

∏
v|DE/(g∗e)

|nvyvπv|2s−1εv((α− n)n).

When e is exchanged for (DE/e) ∗ g, this sum equals

δ(1/g0)
∏
v|DE

[
1 + |nvyvπv|2s−1εv((α− n)n)

]
.

Bringing this to (6.2.4), we obtain the formula for ans (α, y) in the proposition.

Case 2. n = 0, α = 1. In this case, a0
s(1, y) is equal to

dFdEd
s−1
N

δ(1)

∑
g

N(g)1/2+sc1
1/2(1, πgy)c1

s(0, πgy/πN )

+
dEdFd

s−1
N

δ(1)

∑
g

d
s−1/2
E N(g)3/2−scDE1/2(1, πgy)cDEs (0, πgy/πN ).

The formula in the proposition follows, as c1
1/2(1, πgy)c1

s(0, πgy/πN ) is equal to

igε(N)dsN
d

1/2
E d

1/2
F

σ1/2(y)L(2s, ε)|yπg|1/2+sεDE (y)

and cDE1/2(1, πgy)cDEs (0, πgy/πN ) is equal to

d1−s
N

dEdF
d

1/2−s
E Vs(0)gσ1/2(y)L(2s− 1, ε)|yπg|3/2−s

where εDE (y) denotes ε(y)
∏
v|DE εv(y) which equals 1 if σ1/2(y) 6= 0.
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Case 3. n = α = 0. In this case, a0
s(1, y) is equal to

dFdEd
s−1
N

δ(1)

∑
g

N(g)1/2+sc1
1/2(0, πgy)c1

s(0, πgy/πN )

+
dEdFd

s−1
N

δ(1)

∑
g

d
s−1/2
E N(g)3/2−scDE1/2(0, πgy)cDEs (0, πgy/πN ).

The formula in the proposition follows, as c1
1/2(0, πgy)c1

s(0, πgy/πN ) is equal to

ε(N)dsNL(1, ε)L(2s, ε)|πgy|1/2+s

while cDE1/2(0, πgy)cDEs (0, πgy/πN ) is equal to

d1−s
N

dFdE
d−sE V1/2(0)Vs(0)L(0, ε)L(2s− 1, ε)|y|3/2−s.

Case 4. n = α = 1. This case can be treated similarly. We have a1
s(1, y)

equal to

dFdEd
s−1
N

δ(1)

∑
g

N(g)1/2+sc1
1/2(0, πgy)c1

s(1, πgy/πN )

+
dFdEd

s−1
N

δ(1)

∑
g

d
s−1/2
E N(g)3/2−scDE1/2(0, πgg)cDEs (1, πgy/πN ),

where c1
1/2(0, πgy)c1

s(1, πgy/πN ) is equal to

d
1/2−s
N igL(1, ε)

d
1/2
F d

1/2
E

σs(y/πN )|y|1−s|πDEyDE |2s−1εDE (y)|πg|1/2+s,

and cDE1/2(0, πgy)cDEs (1, πgy/πN ) is equal to

L(0, ε)d1−s
N

dEdF
d

1/2−s
E V1/2(0)gσs(y/πN )|πgy|3/2−s.

6.3. Functional equations and derivatives.

Proposition 6.3.1. The Fourier coefficient ces(α, y) of E(gγe) has the
following functional equation:

c̃es(α, y) := (dFdEde)s−1/2
[
Γ(s+ 1/2)π1/2−s

]g
ces(α, y)

= igε(y)
∏

v|DE/e
εv(−1)c̃DE/e1−s (α, y).
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Proof. If α = 1, then by Lemma 6.2.2, up to a factor independent of s
and e, c̃es(1, y) is given by

∏
v|/DE
v|/∞

|yvδv|1/2−s
1− ε(yvδvπv)|yvδvπv|2s−1

1− ε(πv)|πv|2s−1

·
∏
v|∞

[
Γ(s+ 1/2)π1/2−s

]
|yv|1/2−sVs(yv)

·
∏
v|e
|yvπv|1/2−s

·
∏

v|DE/e
|yvπv|s−1/2ε(−yv)κ(v).

By Proposition 3.3 in [20, p. 278], with k = 1, Vs(t) (t 6= 0) has a functional
equation

V ∗s (t) := (π|t|)1/2−sΓ(s+ 1/2)Vs(t) = sgn(t)V ∗1−s(t).

(Notice that Vs as defined in Lemma 6.2.2 is Vs+1/2 in [20].) Thus the functional
equation in the lemma follows from the local equations and the equality∏

v|DE
κ(v) = igε(DF ).

Now we want to treat the case where α = 0. By Lemma 6.2.2, we need
only consider the case where e = 1 or e = DE . Recall that L(s, ε) has a
functional equation:

L∗(s, ε) := (dEdF )s/2
[
Γ(s/2 + 1/2)π1/2−s/2

]g
L(s, ε)

= L∗(1− s, ε).

(This can be proved by using functional equations for both ζE and ζF and the
identity ζE(s) = L(s, ε)ζF (s).) Thus c̃1

s(0, y) is equal to

(dFdE)s−1/2
[
Γ(s+ 1/2)π1/2−s

]g
L(2s, ε)ε(y)|y|s(6.3.1)

= (dFdE)−1/2L∗(2s, ε)ε(y)|y|s = (dFdE)−1/2L∗(1− 2s, ε)ε(y)|y|s.

On the other hand, by Proposition (3.3) in [20, p. 277],

Vs(0) = −πi22−2sΓ(2s− 1)/Γ(s− 1/2)Γ(s+ 1/2)

= −iπ1/2Γ(s)/Γ(s+ 1/2).
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Thus c̃DEs (0, y) is equal to

(dFd2
E)s−1/2

[
Γ(s+ 1/2)π1/2−s

]g (−1)g

d
1/2
F dsE

Vs(0)gL(2s− 1, ε)|y|1−s

= (dFdE)s−1
[
iπ1−sΓ(s)

]g
L(2s− 1, ε)|y|1−s

= ig(dFdE)−1/2L∗(2s− 1, ε).

Combining this with (6.3.1), we have shown

c̃DE1−s(0, y) = igε(y)c̃1
s(0, y).

Thus, the lemma is proved in this case.

Corollary 6.3.2. The function Φs satisfies the following functional
equation:

Φ∗s := (dFdE)s−1/2
[
Γ(s+ 1/2)π1/2−s

]g
Φs

= (−1)gε(N)Φ∗1−s.

Proof. We need only prove the following functional equation for Φe
s defined

in (6.1.4):

Φe,∗
s := (dFdEN(e))s−1/2

[
Γ(s+ 1/2)π1/2−s

]g
Φe
s

= (−1)gε(N)Φe,∗
1−s.

As both sides are modular forms for K0(NDE) with trivial character, it suffices
to check the functional equation for its Fourier coefficients. But this follows
from Lemma 6.3.1, as the Fourier coefficients of Φe

s are expressed in the form

aes(α, y) = ε(N)
∑
n∈F

ce1/2(α− n, y)ces,N (n, y/πN ).

Theorem 6.3.3. The function LE(s, f) satisfies the following functional
equation:

L∗(s, f) := (d2
FdEdN )s−1

[
Γ(s)(2π)1−s

]2g
LE(s, f)

= (−1)gε(N)L∗E(2− s, f).

Proof. This follows from Corollaries 6.3.2 and 6.1.6.
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Proposition 6.3.4. Assume that ε(N) = (−1)g−1. Then Φ1/2 = 0 and
the Fourier coefficient c′(α, y) (α = 0, 1) of

Φ′ :=
∂

∂s
Φs

∣∣∣
s=1/2

is nonzero only if αyDF is integral. In this case it is given by

c′(α, y) =
ε(N)d1/2

N

dEdF

∑
n∈F

bn(α, y)

where bn(α, y) is give by the following formulas if it is nonzero:

1. If n 6= 0 and n 6= α, then bn(α, y) 6= 0 only if nyDEDFN
−1 is integral

and (α− n)y is totally positive. In this case bn(α, y) is equal to

(−4π2)g|y|ψ(iαy∞)δ(ny)r((α− n)yDF )
∑
v

bnv (α, y)

where v runs through all places of F , δ(y) = 2#{v|DE ,ordv(y)≥0}, and bnv is
given by the following formulas:

(a) If v is an infinite place, then bnv (α, y) is nonzero only if

• ny is negative at place v and positive at other infinite places,
• ε℘((n− α)n) = 1 for every place ℘ of DE .

In this case, bnv (α, y) is equal to

r(nyDF /N)q(4π|nyv|)

where

q(t) =
∫ ∞

1
e−xt

dx

x
, (t > 0).

(b) If v is a finite place ramified in E, then bnv (α, y) is nonzero only if

• ny is totally positive,
• εv((n − α)n) = −1 but ε℘((n − α)n) = 1 for every place ℘ of
DE .

In this case, bnv (α, y) is equal to

−r(nyDF /N) log |nvyvπv/πN,v|.

(c) If v is a finite place inert in E, then bnv (α, y) 6= 0 only if

• ny is totally positive,
• ε℘((n− α)n) = 1 for every place ℘ of DE ,
• ordv(nyDF /N) is odd.
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In this case, bnv (α, y) is equal to

−r(nyDF /(N℘v)) log |nvyvDF,v℘v|

where ℘v is the prime corresponding to v.

(d) If v is a finite place split in E, then bnv (α, y) = 0.

2. If n = 0, α = 1, then bn(α, y) is nonzero only if y is totally positive. In
this case, it is equal to

r(yDF )ψ(iy∞)|y|(c1 + c2 log |y|)

where c1 and c2 are constants.

3. If n = α = 0, then bn(α, y) is equal to

|y|(c3 + c4 log |y|)

where c3 and c4 are constants.

4. If n = 1, α = 1, then bn(α, y) is equal to

|y|ψ(iy∞)
[
c5r(yDF /N) log |πDEyDE |+ c6r

′(yDF /N)
]

where c5, c6 are constants, and for a nonzero integral ideal m,

r′(m) =
∑
n|m

ε(n) log N(n).

Proof. The vanishing of Φs at 1/2 follows from Theorem 6.3.3. To com-
pute the Fourier coefficients of Φ′ we use formulas in Proposition 6.2.4 with

bn(α, y) =
∂

∂s
ans (α, y)

∣∣∣
s=1/2

.

Notice that ans vanishes at s = 1/2. This can be checked from its expression,
or from formula (6.2.4) and Proposition 6.3.1.

The case where n 6= 0, n 6= α. In this case, ans is a product of

y3/2−sδ(ny)σ1/2((α− n)y) ·
∏
v

σns,v(α, y/πN )

where v runs through the set of all places of F , and

σns,v(α, y) =


1+ε((n−α)n)|nvyvπv |2s−1

2 if v|DE

Vs(nvyv) if v | ∞
1−ε(nvyvδvπv)|nvyvδvπv |2s−1

1−ε(πv)|πv |2s−1 otherwise.
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If bn(α, y) 6= 0, then σ1/2((α − n)y) 6= 0 and one and only one factor of σs,v
vanishes at s = 1

2 . If this is the case, then

σ1/2((α− n)y) = r((α− n)yDF )
∏
v|∞

V1/2((αv − nv)yv).

By Proposition 3.3 in [20, p. 278], we know that V1/2(t) for t ∈ R, is given by

V1/2(t) =

{
0 if t < 0
−2πie−2πt if t > 0.

Thus, if bn(α, y) 6= 0, then (α−n)y must be totally positive and r((α−n)y) 6= 0.
In this case bn has the expression in the proposition with bnv (α, y) equal to

ψ(−iny∞)
∂

∂s
σnv,s(α, y)

∣∣∣
s=1/2

·
∏
w 6=v

σnw,1/2(α, y).

The proposition in this case can be checked case by case. Notice that when v

is archimedean, we have used the identity

∂

∂s
Vs(t)

∣∣∣
s=1/2

= −2πiq(t)e−2πit (t < 0)

in Proposition 3.3 in [20].

The cases where n = 0 or n = α. These cases can be verified from the
expressions in Proposition 6.2.4.

The same proof will also give the following:

Proposition 6.3.5. Assume that ε(N) = (−1)g. Then the Fourier
coefficient c1/2(α, y) (α = 0, 1) of Φ1/2 is nonzero only if αyDF is integral. In
this case it is given by

c1/2(α, y) =
ε(N)d1/2

F

dEdF

∑
n∈F

an1/2(α, y)

where an1/2(α, y) is given by the following formulas if it is nonzero:

1. If n 6= 0 and n 6= α, then an1/2(α, y) 6= 0 only if the following holds:

(a) nyDEDFN
−1 is integral,

(b) both (α− n)y and ny are totally positive,

(c) εv(n(n− 1)) = 1 for all v | DE .

In this case an1/2(α, y) is equal to

(−4π2)g|y|δ(ny)r((α− n)yDF )r(nyDF /N)ψ(iαy∞)

where for an idele y, δ(y) = 2#{v|DE ,ordv(y)≥0}.
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2. If n = 0, α = 1, then an1/2(α, y) is equal to

c1r(yDF )|y|ψ(iy∞)

where c1 is a constant independent of y.

3. If n = α = 0, then an1/2(α, y) is equal to

c2|y|

where c2 is a constant independent of y.

4. If n = 1, α = 1, then an1/2(α, y) is equal to

c3r(yDF /N)|y|ψ(iy∞)

where c3 is a constant independent of y.

6.4. Holomorphic projections.

6.4.1. Asymptotic formula for Φ′ near cusps. Assume that ε(N) =
(−1)g−1. The form Φ′ defined in Proposition 6.3.4 is not holomorphic. We
want to find a holomorphic projection Φ which is a holomorphic cusp form for
K0(N) and has the property that for any newform f , f has the same scalar
product with both Φ̃ and Φ.

As in the case F = Q treated by Gross and Zagier [20, Chap. IV, §6], Φ′

satisfies the growth condition

(6.4.1) Φ′
((

y x

0 1

)
g

)
= ag|y| log |y|+ bg|y|+Og(|y|1−ε)

for each g ∈ GL(AF ). By Proposition 6.3.4, the asymptotic formula (6.4.1) is
true for g = 1, and

Φ′
((

y x

0 1

)
g

)
= c3|y| log |y|+ c4|y|+O(|y|1−ε)

where c3 and c4 are constants independent of g as defined in Proposition 6.3.4.
For any e|N , let ge denote an element in GL2(AF ) which has components

1 at places not dividing N and has components

(
1 0

π
ordv(e)
v 1

)
at each place v

dividing N . Using the same method, we may compute the Fourier coefficients
of Φ′(gge) and will obtain the formula similar to (6.4.1). As GL2(AF ) is a union
of the form B(A)geK0(N), formula (6.4.1) is true for every g ∈ GL2(AF ).

We have to subtract some Eisenstein series to make ag = bg = 0 for every
g ∈ GL2(AF ). Let E2,s(g) be the Eisenstein series constructed in 3.5.1 with
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k = 2, χ = 1, and N = 1. Then E2,s(g) is perpendicular to all holomorphic
cusp forms. Proposition 3.5.2 implies the following asymptotic formula:

(6.4.2) E2,s

((
y x

0 1

))
= ζF (2s)|y|s + c(s)|y|1−s +O(1)

as y → ∞, where c(s) and O(1) are holomorphic in s near s = 1. Define by
continuation

E(g) = E2,s(g)|s=1 and F (g) =
∂

∂s

∣∣∣∣
s=1

E2,s(g).

For each e | N , let he be an element of GL2(AF ) which has components

1 at places not dividing N and has components

(
1 0
0 π

ordv(e)
v

)
at places v

dividing N .

Lemma 6.4.2. There are some pairs of numbers (αe, βe) (e | N) such
that the form

Φ̃(g) := Φ′(g)−
∑
e

[αeF (ghe) + βeE (ghe)]

has the same holomorphic projection as Φ′, and Φ̃ satisfies the bound

Φ̃

((
y x

0 1

)
g

)
= O(|y|1−ε)

as y →∞, for every g ∈ GL2(AF ).

Proof. We need only find (αe, βe)’s so that the equation in the lemma holds

for g = gf ’s, as GL2(AF ) is a union of B(AF )γeK0(N). Now

(
y x

0 1

)
gfhe

has the decomposition at a place v of N :

(
yv xvπ

mv
v

0 πmvv

)
·
(

1 0
πnv−mvv 1

)
if nv ≥ mv(

yvπ
mv−nv
v yv + xvπ

nv
v

0 πnvv

)
·
(

0 −1
1 πmv−nvv

)
if mv > nv

where mv = ordv(e), nv = ordv(f). Thus (6.4.2) implies

E2,s

((
y x

0 1

)
gfhe

)
= CN (e, f)sζF (2s)|y|s + c(s)CN (e, f)1−s|y|1−s +O(1)

where CN (e, f) = N(e, f)2/N(e). It follows that,

E

((
y x

0 1

)
gfhe

)
= ζF (2)CN (e, f)|y|+O(1),

F

((
y x

0 1

)
gfhe

)
= ζF (2)CN (e, f)|y| log |y|+O(log |y|).
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Now the asymptotic formula in the lemma is equivalent to∑
e|N

αeCN (e, f) = ζF (2)−1agf ,

∑
e|N

βeCN (e, f) = ζF (2)−1bgf ,

for all f | N , where agf and bgf are constants in (6.4.1). Thus it suffices to
show that the matrix CN = (CN (e, f))e,f |N is invertible. It is easy to see that
CN is multiplicative for coprime N ’s in the sense of tensor products. Thus it
suffices to prove that CN is invertible for N = ℘n to be a power of a prime.
In this case, C℘n has determinant ±(N(℘)2− 1)n. This completes the proof of
the lemma.

Lemma 6.4.3. Let φ̃ be a form which has growth O(y1−ε) near each cusp.

Let c̃(y) denote the Whittaker function at

(
y 0

0 1

)
of φ̃:

c̃(y) = d
−1/2
F

∫
AF /F

φ̃

((
y x

0 1

))
ψ(−x)dx.

Then the Fourier coefficient of the holomorphic projection φ of φ∗ is given by

a(m) = (4π)g lim
s→1

∫
R
g
+

|t|−1c̃(ty∞)ψ(iy∞)|y∞|s−2dy∞

where t is a generator of mD−1
F in F̂×.

Proof. For m a nonzero ideal of OF , let Pm,s(g) be the mth Poincaré series
defined by

Pm,s(g) =
∑

γ∈Z(F )U(F )\GL2(F )

Hm(γg)

where U denotes the algebraic group of matrices

(
1 x

0 1

)
and Hm,s denotes

a function on Z(AF )\G(AF ) such that for y ∈ A×F , x ∈ AF , r(θ)k ∈ K,

Hm,s

((
y x

0 1

)
r(θ)k

)
= |y|sψ(2θ + x+ iy∞)

if y∞ > 0, k ∈ K0(N), and yfDF = m; otherwise, it is zero. Then the
Petersson product (φ̃, Pm,s̄) is equal to
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∫
Z(AF )G(F )\G(AF )

φ̃Pm,s̄dg =
∫
Z(AF )U(F )\G(AF )

φ̃Hm,s̄dg

=
∫
A
×
F

∫
AF /F

∫
K

(φ̃Hm,s)

((
y x

0 1

)
k

)
dkdx

d×y
|y|

= µ(N)
∫
y∞∈Rg+

∫
tÔ×F

∫
AF /F

φ̃

((
y x

0 1

))
|y|s−1ψ(−x+ iy∞)dxd×y

= µ(N)d1/2
F

∫
R
g
+

∫
tÔ×F

c̃(y)ψ(iy∞)|y|s−1d×y.

Thus we have

(6.4.3) (φ̃, Pm,s̄) = |t|s−1µ(N)d1/2
F

∫
R
g
+

c̃(ty∞)ψ(iy∞)|y∞|s−2dy.

If we replace φ̃ by φ with the Whittaker function

c(y) = |y|a(yfDF )ψ(iy∞),

then

(6.4.4) (φ, Pm,s) = |t|sµ(N)d1/2
F

[
Γ(s)
(4π)s

]g
a(m).

As Pm = lims→0 Pm,s is a holomorphic form,

(6.4.5) (φ, Pm) = (φ̃, Pm).

The lemma follows from (6.4.3)–(6.4.5).

We want to apply this lemma to Φ̃.

Lemma 6.4.4. Let a(m) be the Fourier coefficient of the holomorphic
projection of Φ′. Then for m prime to NDE ,

a(m) (mod DN ) = (4π)g lim
s→1

∫
R
g
+

|t|−1c′(1, ty∞)ψ(iy∞)|y∞|s−2dy∞

where t is a generator of m̂D̂−1
F in F̂×.

Proof. Let a(y), b(y), and c̃(y) be Fourier coefficients of E(g), F (g), and
Φ̃(g); then

c̃(y) = c′(1, y)− α1a(y)− β1b(y)

where c′(1, y) is the Whittaker function of Φ′, and α1, β1 are constants as in
Lemma 6.4.2. By Lemma 6.4.3, a(m) is equal to

(6.4.6) (4π)g lim
s→0

∫
(R+)g

|t|−1c′(1, ty)ψ(iy∞)|y|s−2dy−α1cs(m)−β1bs(m)
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where

bs(m) = (4π)g
∫

(R+)g
|t|−1b(ty)ψ(iy∞)|y∞|s−2dy∞

and

cs(m) = (4π)g
∫

(R+)g
|t|−1c(ty∞)ψ(iy∞)|y∞|s−2dy∞.

Write σs(m) =
∑
a|m N(a)s and σ′(m) = ∂

∂s

∣∣∣
s=1

σs(m). One can show from
the Fourier expansion of E2,s that

bs(m) = k1σ1(m) + o(s− 1),

and

cs(m) = k2σ1(m) + k3σ
′(m) +

k4

s− 1
+ k5 + o(s− 1).

Here the ki’s are constants independent of m. Thus cs(m), bs(m) only con-
tribute elements in DN in (6.4.6). The lemma follows.

Applying the formula for Fourier coefficients of Φ̃, we obtain the following:

Proposition 6.4.5. Let a(m) be the Fourier coefficients for the holo-
morphic projection Φ of Φ′. Then for m prime to NDE ,

a(m) (mod DN ) = −(2π)2gd
1/2
N

dEdF

∑
v

av(m)

where N(v) = 1 if v is archimedean and av(m) is given by the following for-
mulas:

1. If v|∞, then av(m) is equal to the constant term in the Taylor expansion
in s− 1 of ∑

n∈Nm−1DE
−1,nv<0

0<nw<1∀v 6=w|∞
εw(n(n−1))=1∀w|DE

δ(n)r((1− n)m)r(nmDE/N)ps(|nv|)

where the sum is over the set of places of F ,

δ(n) = 2#{v|DE ,ordv(n)≥0},

and

p(s, t) =
∫ ∞

1
(1 + tx)−s

dx

x
, (t > 0).
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2. If v = ℘6 | ∞, ε(v) = 0, av(m) is equal to∑
n∈Nm−1DE

−1

εv((n−1)n)=1

εw((n−1)n)=1∀v 6=w|DE
0<n<1

δ(n)r((1− n)m)r(nm/N)ordv(nm℘) log N(v).

3. If v = ℘6 | ∞, ε(v) = −1, av(m) is equal to∑
n∈Nm−1DE

−1

εw((n−1)n)=1∀v|DE
0<n<1

δ(n)r((1− n)m)r(nm/N℘)ordv(nm℘/N) log N(v).

4. If v6 | ∞, ε(v) = 1,
av(m) = 0.

Proof. By Proposition 6.3.4 and 6.4.4, the Fourier coefficients a(m) (mod DN )
are given by

(6.4.7)
ε(N)d1/2

N

dEdF
(4π)g lim

s→1

∑
n∈F

bns (m)

where
bns (m) =

∫
R
g
+

|t|−1bn(1, ty∞)ψ(iy∞)|y∞|s−2dy∞.

From formulas of bn(1, ty∞) one can show that if n = 0 or 1, bns (m) is a linear
combination of a multiple of r(m) and its derivatives. Thus, modulo DN , we
may assume that n 6= 0, 1 in (6.4.7). Moreover bns (m) 6= 0 only if nDEmN

−1

is integral and 1− n is totally positive. In this case bns (m) is equal to

(6.4.8) (−4π2)gδ(n)r((1− n)m)
∑
v

bnv,s(m)

where v runs through all places of F , and

bnv,s(m) =
∫
R
g
+

bnv (1, ty∞)ψ(2iy∞)|y∞|s−1dy∞.

Now we compute bnv,s(m) case by case using Proposition 6.3.4.

Case 1. v | ∞. In this case, bnv,s(m) is nonzero only if

• n is negative at place v, but positive at other infinite places,

• ε℘((n− 1)n) = 1 for every place ℘ of DE .
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In this case, bnv,s(m) is equal to

r(nm/N)
∫
R
g
+

q(4π|nyv|)ψ(2iy∞)|y∞|s−1dy∞(6.4.9)

= r(nm/N)
[

Γ(s)
(4π)s

]g
p(s, |nv|).

Case 2. v |/ ∞, ε(v) = 0. In this case, bnv,s(m) is nonzero only if

• n is totally positive,

• εv((n− 1)n) = −1 but ε℘((n− 1)n) = 1 for every place ℘ of DE .

In this case, bnv,s(m) is equal to

(6.4.10) r(nm/N)ord℘(nm℘) log N(℘)
[

Γ(s)
(4π)s

]g
.

Case 3. v |/ ∞, ε(v) = −1. In this case, bnv,s(m) 6= 0 only if

• n is totally positive,

• ε℘((n− 1)n) = 1 for every place ℘ of DE .

• ordv(nm/N) is odd.

In this case, bnv,s(m) is equal to

(6.4.11) r(nm/(N℘v))ord℘(nm℘/N) log N(℘)
[

Γ(s)
(4π)s

]g
.

Case 4. v is a finite place split in E. In this case,

(6.4.12) bnv,s(m) = 0.

The proposition follows from (6.4.7)–(6.4.12) with

av(m) = −(4π)g lim
s→1

∑
n∈F
n6=0,1

bnv,s(m).

The same proof will also give the following:

Proposition 6.4.6. Assume that ε(N) = (−1)g. Let b(m) denote the
Fourier coefficient of the holomorphic projection of Φ1/2. Then for m prime
to NDE ,

b(m) (mod DN ) =
(2π)2gd

1/2
F

dEdF

∑
n∈ND−1

E m−1

0<n<1

εv(n(n−1))=1,∀v|DE

δ(n)r((1− n)m)r(nm/N).



HEIGHT OF HEEGNER POINTS 139

7. Proof of the main theorems

In this section we will finish the proofs of the theorems stated in the
introduction. We need only prove Theorem C and A.

7.1. Proof of Theorem C. Recall that Φ is the holomorphic form of weight
2 for K0(N) with trivial character as constructed in 6.4.1, which is the holo-
morphic projection of ∂

∂sΦs

∣∣∣
s=1/2

where Φs is a form constructed as in 6.1.5.

By Corollary 6.1.6, we thus have

(7.1.1) (f,Φ) = B(1/2)L′E(f, 1)

where
B(1/2) = 2−gdFd

1/2
N d

−1/2
E µ(N).

Recall also that we have constructed a form Ψ in 4.1.3 whose Fourier
coefficients are height pairings of CM-points 〈z,T(m)z〉, where z is the class of
η in the Jacobian of X and the pairing here is the Neron-Tate height pairing.

The proof of Theorem C will be easily reduced to the following:

Proposition 7.1.1. With the notation of 4.4.4,

Φ̃ =
(2π)2gd

1/2
N

dEdF
Ψ̃ (mod DN ).

Proof. We need to show that both sides have the same value for allm ∈ NF
prime to NDE , modulo DN . By Proposition 4.4.5 and 4.5.3, modulo DN , Ψ̃(m)
is equal to the sum of −(η,T0(m)η)v. On the other hand, we have studied the
Fourier coefficients a(m) (mod DN ) in Proposition 6.4.5 by decomposing it
into a sum of local terms av(m). Now we only need to show that∑

v

(η,T0(m)η)v =
∑
v

av(m) (mod DN ).

We will prove this by splitting the sum according to types of v. More precisely
we want to show

(7.1.2)
∑
v∈S

(η,T0(m)η)v =
∑
v∈S

av(m) (mod DN ),

where S is one of the following:

1. S∞: the set of infinite places;

2. S0: the set of finite places ramified in E;

3. S1: the set of finite places split in E;

4. S−1: the set of finite places inert in E.
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The case of archimedean places. Since S∞ is finite, we need only show the
individual identity

(η,T0(m)η)v = av(m) (mod DN ).

In view of Proposition 5.4.4 and 6.5.4, we need only show that the quantity

E(s) =
∑

n∈Nm−1DE
−1,nv<0

0<nw<1∀v 6=w|∞
εw(n(n−1))=1∀w|DE

δ(n)r((1− n)m)r(nmDE/N)εs(|nv|)

has limit 0 as s→ 1, where

εs(t) = ps(t)− 2Qs−1(1 + 2t) (t > 0).

One can show that

ε1(t) = 0, εs(t) = O(t−1−s)

as t → ∞. Thus E(s) is absolutely convergent for Re(s) > 0, and has limit 0
as s→ 1.

The case of ramified places. Again S0 is finite, we need only show the
individual identity

(η,T0(m)η)v = av(m) (mod DN ).

This follows directly from Proposition 5.4.8 and (6.4.5).

The case of split places. In this case S1 is not finite. But by Proposition
5.4.8, the sum ∑

v∈S1

(η,T0(m)η)v = r(m)
∑
v∈S

ordv(m) log N(v)

has only finitely many nonzero terms and defines an element in DN . On the
other hand

∑
v∈S1

av(m) = 0.

The case of inert places. Again by Proposition 5.4.8, the left-hand side of
(7.1.2) is equal to

(7.1.3)
∑

℘∈S−1

(U℘(m)− U℘(1)R(m)) log N(℘) (mod DN ).

We need to compare (U℘(m)− U℘(1)R(m)) log N(℘) with a℘(m). For ` ∈ NF
prime to ℘ define

k℘(`) =
∑

n∈`−1DE
−1N

0<n<1

εq(n(n−1))=1,∀q|DE

r(n`N−1/℘)r((n− 1)`)δ(n),
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k′(`) =
∑

n∈`−1D−1
E N

0<n<1

εq(n(n−1))=1,∀q|DE

r(n`N−1)r((n− 1)`/℘)δ(n).

Lemma 7.1.2. Let m′ = m℘−ord℘(m).

1. If ord℘(m) is even, then

U℘(m) log N(℘)− a℘(m) = 0.

2. If ord℘(m) is odd, then

U℘(m) = ord℘(m℘)k℘(m′),

a℘(m) = ord℘(m℘) log N(℘)k′℘(m′).

Proof. If ord℘(m) is even, then the only nonzero terms in a℘(m) are for
those n which lie in m

′−1DE
−1N , where m′ = m℘−ord℘(m). This is clear if

℘ |/ m. Otherwise, ℘|/N and then r(nm/N℘) 6= 0 will imply that ord℘(n) is
odd. But then r((n− 1)m) 6= 0 will imply that ord℘(n) is nonnegative. Thus
U℘(m) log N(℘) = a℘(m).

If ord℘(m) is odd, then the only nonzero terms in a℘(m) are for those n
which have zero order at ℘. Indeed, r(nm/N℘) 6= 0 implies ord℘(n) is even,
but r((1−n)m) 6= 0 implies ord℘(n) = 0. Actually, ord℘(1−n) is positive and
even. Thus

a℘(m) =
∑

n∈m′−1DE
−1N

0<n′<1

εq(n(n−1))=1,∀q|DE

r(nm′N−1)r((n− 1)m′/℘)δ(n)ord℘(m℘).

Lemma 7.1.3. Let ` ∈ NF be prime to ℘. Then

k(`)− k(1) = k′(`)− k′(1).

Proof. From the proof of Proposition 5.4.8, it is not difficult to see that
k℘(`)− k℘(1) is the local intersection of η and T0(`)η over ℘ without counting
multiplicities. See formula (5.4.10) with m = ` and m(n′) = 1. But this does
not give a description for k′℘(`)− k′℘(`). So we need to give a description in a
different setting.

Let R(℘) be an order of B(℘) of type (E,N(℘)) and consider the projec-
tion map

π : C = E×\B̂(℘)×/R̂(℘)× → S = B×\B̂(℘)×/R̂(℘)×.
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The set C can be considered as the set of CM-points, and the set S as
supersingular points, the reduction of CM-points. We may define conductors
for elements in C, and orientations for elements in C with conductor prime to
N℘ for each place dividing N℘. The group

W = {b ∈ B̂(℘)× : b−1R̂(℘)b}/R̂(℘)×

acting on C does not change reductions and conductors but is free and tran-
sitive on orientations. For each place v dividing N℘, we call the orientation
defined by 1 the positive orientation.

By a Q-divisor in C we just mean an element in the free abelian group
Q[C]. For ` prime to N(℘) we can also define the Hecke operator T(`) on
Z[C]. Let η(℘) (resp. η(℘)′) be the set of elements in the first set with trivial
conductor and positive orientations at all places of N℘ (resp. positive orien-
tations at places dividing N but negative orientation at place ℘). Then η(℘)
and η(℘)′ have the exact same reduction because of the action of W. Now,
k(`)− k(1) (resp. k′(`)− k′(1)) is the intersection number of η(℘) (resp. η(℘)′)
and T(`)0(η(℘)) under the specialization map. Thus they are same since η(℘)
and η(℘)′ have the same reductions.

We return to the proof of (7.1.2) for S−1. By (7.1.3), the difference of two
sides of (7.1.2) for S−1 is equal to∑
ε(℘)=−1

(U℘(m) log N(℘)− a℘(m)) −
∑

ε(℘)=−1

(U℘(1) log N(℘)− a℘(1))r(m)

−
∑

ε(℘)=−1

a℘(1)r(m).

The first two terms vanish by the above two lemmas. The last sum is absolutely
convergent, and thus defines an element in DN .

Corollary 7.1.4. For any newform f for K0(N),

L′E(f, 1) =
(8π2)g

d2
F

√
dE

[K0(1) : K0(N)](f,Ψ).

Proof. By Propositions 4.5.1 and 7.1.1,

Φ =
(2π)2gd

1/2
N

dEdF
Ψ + an old form.

Now the conclusion follows from formula (7.1.1).

7.1.5. Proof of Theorem C. The ideal is exactly as in [20, p. 308]. By
Lemma 3.4.5, we may decompose z in Jac(X) ⊗ C into eigenvectors zφ with
the same eigenvalues as φ under Hecke operators T(m) with m prime to N :

z =
∑
φ∈SN

zφ, T(m)zφ = aφ(m)zφ.
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As Hecke operators on Jac(C)⊗ C are self-adjoint with respect to the Neron-
Tate height pairing, one has the decomposition

Ψ =
∑
φ∈SN

〈zφ, zφ〉φ.

Now Theorem C follows from this equality and Corollary 7.1.4.

7.2. Proof of Theorem A. By Theorems B and C, it suffices to prove the
following generalization of a theorem of Kolyvagin:

Proposition 7.2.1. Assume that the Heegner point yf in A is not a
torsion point. Then

• A(F ) has rank given by

rankA(F ) = [Of : Z]ords=1L(s, f),

• X(A) is finite.

In view of Kolyvagin’s method for other cases ([17], [28], [29], [30]), we
need only to construct certain Euler system of CM-points. We consider square-
free elements n ∈ NF which are square-free and prime to NDE and such that
every prime factor ` is inert in K. For every such n, we choose a CM-point xn
of the conductor n such that

xn is included in T(`)xm

if n = m` with ` a prime. Then xn is defined over En, the ring class field of
the conductor n over E.

Lemma 7.2.2. If n = m` as above, then

u−1
n

∑
σ∈Gal(En/Em)

xσn = u−1
m T(`)xm,

where un is the cardinality of the group O×c /O×F .

Proof. By an argument similar to the proof of Proposition 4.2.1, one can
show that P := um

un
T(`)xm is a divisor with integral coefficients. It follows that

P = Q because of the following facts:

• P includes the divisor Q =
∑
σ∈Gal(En/Em) x

σ
n;

• degP = degQ;

• Q is irreducible over Em.

As in the case F = Q, this lemma implies that the collection of xn forms
an Euler system [28].
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Index

·1, ·2, 13, 20 Hc, 29

·2,1, ·2,2, 23 Heegner point, 30

·ρ, ·ρ, 13 holomorphic form, 44

α, 30 holomorphic projection, 106
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q , 33
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GK , 16 ℘, ℘E , 13, 25

℘F ′ , ℘E′ , 26
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e
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Φ′,Φ, 103, 106 Z, 63

z, z̃, ẑ, 61, 62

quasi-canonical liftings, 42

quasi-multiplicative, 70

Qs−1(u), 73

ρ, 24

%v(c, n), 75, 80

%(S), 82

R, 24

R(℘), 37

r(m), 60

σ1(m), 18

Σh, 34

SN , 48

S, 69

special module, 15

supersingular reduction, 17

τ , 6, 7, 28

t(`), t′(`), 8, 30

trDE , 93

T, 48

T′, 48

T , 55

T(m), 46, 48

T0(m), 65
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