Beitr\"age zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 37 (1996), No. 1, 199-207. On Maximal Primitive Fixing Systems Vladimir Boltyanski and Horst Martini Abstract. Let $\rho_{\max } (M)$ denote the maximal number of points forming a primitive fixing system for a convex body $M \subset {\bf R}^n$. Sharpening results of B.~Bollob\'as with respect to the quantity $\rho_{\max } (M)$ for $n \ge 3$, we construct counterexamples to the conjecture $\rho_{\max } (M) \le 2 (2^n-1)$ of L.~Danzer. These counterexamples $M$ satisfy $\rho_{\max } (M) = \infty$, and they can belong to the following classes of convex bodies: cap bodies, zonoids, and zonotopes.\par} MSC 1991: 52A20