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Abstract. All rings are assumed to be commutative with identity. A generalized
GCD ring (G-GCD ring) is a ring (zero-divisors admitted) in which the intersec-
tion of every two finitely generated (f.g.) faithful multiplication ideals is a f.g.
faithful multiplication ideal. Various properties of G-GCD rings are considered.
We generalize some of Jager’s and Liineburg’s results to f.g. faithful multiplication
ideals.
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0. Introduction

Let R be a commutative ring with identity. An ideal I in R is a multiplication ideal if
every ideal contained in I is a multiple of I. In this paper we generalize G-GCD domains,
introduced by Anderson and Anderson [5] as follows: Let S(R) be the multiplicative semi-
group of f.g. faithful multiplication ideals in R. A ring R is a G-GCD ring if S(R) is closed
under intersection. Important examples of G-GCD rings are principal ideal rings, Bezout
rings, Von Neumann regular rings, arithmetical rings, Priifer domains and of course G-GCD
domains.

Our interest in G-GCD rings results from our attempt to extend Jager’s results [9] to f.g.
faithful multiplication ideals and to generalize Liineburg’s results concerning Priifer domains
[11].
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In §2 we study the existence of ged(A, B) and lem(A, B) and their relationships where
A,B € S(R). We prove that the existence of lem(A, B) implies that of ged(A, B) and
AB = gcd(A, B)lem(A, B) [Theorem 2.1]. The converse is not true in general. Ohm type
properties are studied and we show that if lem(A, B) exists, then lem(A4, B)* =lecm(A*, B)
and ged(A, B)* = ged(A*, B¥) for each positive integer k [Theorem 2.6]. However, the exis-
tence of gcd(A, B) does not imply these properties.

In §3, equivalent conditions for G-GCD rings are given [Theorem 3.1]. Following Helmer
8], we define ®4 5 as the associative lattice of ideals of R which divide A and are relatively
prime to B. The lattice ®4 p contains a smallest element if R is a ring with unique prime
power factorization. We show that M € ®4 p is a smallest element of ®4 g if and only if
@4, 1s trivial [Theorem 3.7]. All rings considered in this paper are commutative with
identity. Consult [6], [7], [10] and [13] for the basic concepts used.

1. Preliminaries

Let R be a commutative ring with identity. An ideal I in R is called a multiplication ideal if
every ideal contained in I is a multiple of I, see [7]. Let I and J be ideals in R. Following [13,
p.113], the conductor of J into I, [I : J], is the set of all elements x € R such that zJ C I.
In [10], [{ : J] is called the residual of I by J. The annihilator of I is denoted by ann(/) and
equals to [0 : I]. I is faithful if ann(I) = 0. Suppose that I is a multiplication ideal in R and
J C I. There exists an ideal K in R such that J = KI. Note that K C [J : I] and therefore

J=KICI[J:I|ICJ

so that J = [J : I]I.
The proofs of the following lemmas can be found in [12], [14] and [2].

Lemma 1.1. Let R be a ring. Then a multiplication ideal I in R is finitely generated if and
only if ann(I) = ann(J) for some finitely generated ideal J contained in I.

Lemma 1.2. Let R be a ring and J an ideal contained in a finitely generated faithful mul-
tiplication ideal I. Then

(i) J is a multiplication ideal if and only if [J : I| is a multiplication ideal.
(i) J is finitely generated if and only if [J : I| is finitely generated.

The following lemma shows that finitely generated faithful multiplication ideals are cancel-
lation ideals.

Lemma 1.3. Let R be a ring and I € S(R). Then [IJ : I] = J for every ideal J in R.
Consequently, for all ideals J and K in R, if [J = IK, then J=K.

We remark that for a finitely generated ideal I, the following conditions are equaivalent:
(1) I is a faithful multiplication ideal.
(2) I is a locally principal ideal.

(3) I is a cancellation ideal.
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According to [13, p. 109] if R is a ring and I, J two ideals in R, we say that I divides J,
denoted by I|J, if there exists an ideal C' in R such that J = IC. Hence J C I. It is clear
now that if I is a multiplication ideal in R then I|J if and only if J C I.

Let I and J be two ideals in R. An ideal GG in R is called a greatest common divisor of I
and J, or ged([, J), if and only if :

(i) G|I and G|/,

(ii) If G’ is an ideal with G’|I and G'|J, then G'|G.
Similarly, an ideal K in R is called a least common multiple of I and J, or lem(7, J), if and
only if:

(i) I|K and J|K,

(ii) If K’ is an ideal with /|K" and J|K’ then K|K'.
With these definitions ged and lem are unique if they exist, but in examples we show that
they do not necessarily exist.

The following two lemmas play a main role in our work. The first one shows any divisor
of a f.g. faithful multiplication ideal is a f.g. faithful multiplication ideal, while the second
one shows that the least common multiple of two f.g. faithful multiplication ideals, if it does
exist, is also a f.g. faithful multiplication ideal.

Lemma 1.4. Let R be a ring and I € S(R). If G is an ideal in R and G|I, then G € S(R).

Proof. As G|I, we have I C GG, and hence ann(G) C ann(I)= 0, i.e. ann(G) = 0. To show that
G is multiplication, suppose H C G. Since G|I, there exists an ideal K in R with I = KG.
It follows that HK C K G, and hence HK C I. But [ is multiplication. Thus there exists an
ideal F' in R such that HK = IF, and hence HKG = IFG. This implies that HI = FGI.
From Lemma 1.3, we get H = F'G. Finally, since I C G and ann(G) = 0 =ann(/), we infer
from Lemma 1.1, G is f.g.

Lemma 1.5. Let R be a ring and I,J € S(R). If K = lem(1, J) ezists, then K € S(R).

Proof. IJ is a multiplication ideal [4, Theorem 2, Corollary 1] and also ann(I.J) = 0. Since
IJ is a common multiple of I and J, we have K|IJ, and by Lemma 1.4, K € S(R).

We mention three further lemmas which will be used later. Their proofs are clear.

Lemma 1.6. Let R be a ring and A,B ideals in R such that gcd(A, B) exists. Let C,D €
S(R) such that ged(C, D) exists. If A C C and B C D, then

ged(A, B) C ged(C, D).
If, moreover, lem(A, B) and lem(C, D) ezist, then

lem(A, B) C lem(C, D).

The following lemmas generalize Gauss’s Lemma to f.g. faithful multiplication ideals in a
ring R.
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Lemma 1.7. Let R be a ring and A;(1 < i < n) a finite collection of ideals in S(R) such
that gcd( Ay, A, ..., Ay) and ged(Ay, Ay, ... Apq) exist. If G = ged(Aq, As, ..., A1), then
ged(Ay, Ag, ..., Ay) = ged(GL A,).

Lemma 1.8. Let R be a ring and A;(1 < i < n) a finite collection of ideals in S(R) such
that lem(Aq, As, ..., A,) andlem(Aq, As, ..., A,q) exist. If K =lem(Aq, As, ... An_1), then

lCHl(Al, AQ, Ce ,An) = lCl’Il(K, An)

2. gcd and lcm of multiplication ideals

In this section we generalize to ideals some results in a paper by Jager [9] concerning the
greatest common divisor and least common multiple of two elements in an integral domain.
Compare the following theorem with [9, Theorem 4].

Theorem 2.1. Let R be a ring and A,B € S(R). If lem(A, B) exists, then so too does
ged(A, B) and in particular
AB = ged(A, B)lem(A, B).

Proof. Let K = lem(A, B). Then K|AB, and hence there exists an ideal G in R with
AB = KG. Since K € S(R) (Lemma 1.5), we infer from Lemma 1.3

[AB: K] =[KG: K| =G.

We shall prove that G = ged(A, B). As A|K, there exists an ideal C' in R such that K = AC.
It follows that
AB = KG = ACG,

and by Lemma 1.3, B = CG. Hence G|B. Similarly, G|A. Assume that G’ is an ideal in R
such that G'|A, G'|B. Hence there exist ideals D; and D; in R such that A = D;G’ and
B = D,G'. Therefore AB = Dy D,G". We have from Lemma 1.4 that G’ € S(R) and hence
from Lemma 1.3 we get

[AB : G'] = [D1D,G" : G'] = D1 D,G'.
It follows that
[AB . Gl] = DlB = DQA,
and hence [AB : G'] is a common multiple of A and B. Therefore K|[AB : G'|, and hence
there exists an ideal M in R such that
[AB : G'] = K M.

But AB C G’ and G’ is a multiplication ideal. Thus [AB : G'|G’ = AB, and hence AB =
KMG'. Tt follows that KG = KMG’ and from Lemma 1.3 we have G = MG’ i.e. G'|G, and
the proof is complete.

The next result should be compared with [9, Theorem 2.
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Theorem 2.2. Let R be a ring and A, B,C € S(R). Then
(i) lem(A, B) ezists if and only if lem(C A, CB) ezists, in which case

lem(CA,CB) = Clem(A, B).
(ii) If gcd(C A, CB) eists, then so too does gcd(A, B), and
ged(CA,CB) = Cgcd(A, B).

Proof. (i) Suppose that lem(A, B) = K exists. Then A|K and B|K and hence CA|CK,
CB|CK. Let V be an ideal in R such that C A|V, CB|V. There exist ideals Dy and D, in R
such that

It follows from Lemma 1.3 that
[V . C] = ADl = BDQ,

and hence [V : (] is a common multiple of A and B. Thus K|[V : C] and hence
CK]|[V : C]C. Since CA|V, we have V C C and [V : C]C = V. This implies that CK|V and
CK =lem(CA,CB).

Conversely, suppose that lem(CA, CB) = L exists. Then CA|L, CB|L and hence there
exist ideals D; and Dy in R such that

L =CAD, =CBD:,.

By Lemma 1.3,
[L : O] == ADl == BDQ,

and hence [L : C] is a common multiple of A and B. Assume that L’ is an ideal in R such
that A|L', B|L'. Then CA|CL';, CB|CL’ and therefore L|C'L'. There exists an ideal I in R
such that CL' = I'L and from Lemma 1.3 we infer that L' = [IL : C]. We observe that

[IL:C|=1I[L:C].

In fact, let € [IL : C]. Then xC C IL, and hence zCAD; C ILAD;. But L = CAD; and
L € S(R). Thus, by Lemma 1.3, z € TAD, = I[L : C]. The other inclusion is obvious. It
follows that

[L:C] =1m(A, B).

Since C' is a multiplication ideal and L C C, L = [L : C|C and we have shown that
lem(CA, CB) = Clem(A, B).

(ii) Let G = ged(CA,CB). Then CA,CB C G and from Lemma 1.3, A, B C [G : C]. Since
C|CA and C|CB, we get C|G and hence G C C. But G € S(R) (Lemma 1.4). Therefore, from
Lemma 1.2, we infer that [G : C] € S(R) and hence [G : C] is a common divisor of A and B.
Suppose that D is an ideal in R such that D|A, D|B. Then CD|CA, CD|CB and therefore
CD|G. It follows that G C C'D and from Lemma 1.3, we have [G : C] C [CD : C] = D.
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Finally, since D is a multiplication ideal (Lemma 1.4), we get D|[G : C], and we conclude
that [G : C] = gcd(A, B). Moreover

ged(CA,CB) =G =[G : C]C = Cgcd(A, B),

and this finishes the proof of the theorem.

The converses of Theorems 2.1 and 2.2 (ii) are not true. let R = k[X? X3|, k a field.
Then ged(X?R, X?R) = R but lem(X?R, X3R) does not exist. Also it is easily seen that
ged(X°R, X®R) does not exist.

Compare the following generalization of Euclid’s Lemma with [9, Theorem 7].

Proposition 2.3. Let R be a ring and A, B,C € S(R) such that gcd(BA, BC) exists and
ged(A,C) = R. Then
ged(A, BC) = ged(A, B).
Proof. As ged(BA, BC) exists, we infer from Theorem 2.2 that
ged(BA, BC) = Bged(A,C) = B.
It follows from Lemma 1.7 that

ged(A,B) = ged(A, ged(BA, BC))
= ged(ged(A, BA), BC)
= gecd(A, BCO).

We now prove that with an additional condition, the converse of Theorem 2.1 is true. Com-
pare with [9, Theorem 5|. First we prove a lemma.

Lemma 2.4. Let R be a ring and A, B € S(R). If G = gcd(A, B) then
ged([A: G, [B:G]) =R.

Proof. As A, B C G and G is a multiplication ideal, we have A = [A : G]G, B = [B : G]G,
and hence by Theorem 2.2 (ii),

G =gcd([A: G|G,[B: G|G) =G ged([A: G, [B : G)).
From Lemma 1.3, we conclude
ged([A: G],[B:G]) =R.

Theorem 2.5. For any ring R, gcd(A, B) exists for all A, B € S(R) if and only if lem(A, B)
ezists for all A, B € S(R).
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Proof. Let A, B € S(R). By Theorem 2.2 (i) we may assume
ged(A, B) = R.

(In fact, if gcd(A, B) = D, then A = [A: D|D, B = [B : D|D and lem(A, B) exists if and
only if lem([A : D], [B : D)) exists, and gcd([A : D],[B : D]) = R by Lemma 2.4). We show
that lem(A, B) = AB. Clearly AB is a common multiple of A and B. If V' is any common
multiple of A and B, say V = AM = BN, then A|BN so by Proposition 2.3,

A =ged(A, BN) = ged(A, N),
and hence A|N, so that AB|V (recall that BN = V). The converse follows from Theorem

2.1.

Let R be a ring and A, B € S(R). Then it is easily verified that lem(A, B) exists in S(R) if
and only if AN B € S(R) and in this case lem(A, B) = AN B. If lem(A, B) exists, it follows
from Theorem 2.1 that ged(A, B) exists and is [AB : (AN B)]. If A,B and A+ B € S(R),
then AN B € S(R), hence

ged(A,B) = [AB: (AN B)] = [AB : A] + [AB: B] = B + A.

As lem(X2R, X3R) in R = k[X?, X?] does not exist, we conclude that X?R N X3R is
not a multiplication ideal. Also, it is shown in [15] that 2Z[v/5] N (=1 + v/5)Z[v/5] is not a
multiplication ideal in Z[v/5], so lem(2Z[v/5], (—1 + v/5)Z[+/5] does not exist.

It is also useful to remark that if R is a ring and A, B € S(R) have a lcm, then

lem(A,B) = AN B = [A: B|B,

and hence

[lem(A, B) : B] = [A: BJ.
But Theorem 2.1 says that gcd(A, B) exists and

AB = ged(A, B)lem(A, B).
It follows that

[A:gcd(A,B)] =[A: B] = [lem(A, B) : B],

and hence by Lemma 2.4, gcd([A : B], [B : A]) = R.

Compare the following theorem with [1, Propositions 2.1 and 3.1].

Theorem 2.6. Let R be a ring and A,B € S(R) such that lem(A, B) exists. Then the
following statements are true:

(i) lem(A, B)* = lem(A*, B¥) for each positive integer k.
(i) ged(A, B)F = ged(AF, B¥) for each positive integer k.
(iii) [A: B)* = [A* : B¥] for each positive integer k.
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Proof. We shall prove (i) by induction on k. The result is trivial for £ = 1. Assume that
k > 1 and that
lem(A, B)* = lem(A*, BY).

Notice that it follows from Theorem 2.2 (i) and Lemma 1.8 that if C, D € S(R) such that
lem(C, D) exists, then

lem(A, B)lem(C, D) = lem(AC, AD, BC, BD).

Hence
lem(A*, B¥) =1em(A, B)* = lem(A*, A* 1B, ..., BY).
It follows that
lem(A*, B¥) € A*'B, AB*!.

Now, by Theorem 2.2 and Lemma 1.8,

lem(A, B)*' = lem(A, B)*lem(A, B)
= lem(A*, BM)lem(A, B)
= lem(lem(A*T!, B*Y) A*B. AB")).

It is enough to show that
lem(A*T B C A*B, AB.

From Theorem 2.1, Lemma 1.6, Theorem 2.2 (i) and Lemma 1.8, we have

A*B = A*'AB

A" lem(A, B) ged(A, B)

A" em(A ged(A, B), Bged(A, B))

A Mem(A? B ged(4, B))

lem(A* A1 B ged(A, B))

lem(A* lem(A*, B¥) ged(A4, B))
lem(A* lem(A* ged(A, B), B* ged(A, B))
lem (AR lem(ART, BM)

lem(AR*1, BE+L),

(10 | (O | R [ I

Similarl
Y ABk » lcm(AkH, Bk+1>,

and this finishes the proof of (i). For (ii), we have
AB =lem(A, B) ged(A, B),
and hence

AFB* = lem(A, B)* ged(A, B)*
lem(A*, B¥) ged(A, B)F.
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Since lem(A*, B*) = 1em(A, B)* € S(R), it follows from Lemma 1.3 that
[A*B* : lem(AF, B¥)] = ged(A, B).
Finally, from Theorem 2.1, we have
[A*B* : lem(A*, BY)] = ged(AF, B).
Part (ii) of the theorem is thus concluded. For (iii), we have
[A: B)*B* =1cm(A, B)* = lem(A*, B¥) = [A* : B¥|B*.

But B*¥ € S(R), hence by Lemma 1.3 we get the result, and the proof is complete.

It is useful to mention that even if A, B € S(R) such that ged(A, B) exists, the conclu-
sion of Theorem 2.6 (ii) is not always true. For example, again let R = k[X? X3]. Then
ged(X?R, X3R) = R, and hence gcd(X?R, X3R)? = R. But

gcd(X*R, X°R) = X*R # R.

3. Generalized GCD rings

Anderson [3] and [5] introduced and investigated a class of domains called generalized greatest
common divisor (G-GCD) domains for which the set of invertible ideals is closed under
intersection. These include Priifer domains, m-domains and of course principal ideal domains.
We generalize this as follows: A ring R (zero-divisors admitted) is called a generalized GCD
ring (G-GCD ring) if the intersection of every two f.g. faithful multiplication ideals in R is
also a f.g. faithful multiplication ideal. Important examples of G-GCD rings include principal
ideal rings, Bezout rings, von Neumann regular rings, arithmetical rings, Priifer domains and
of course G-GCD domains. Z[v/5] and k[X?, X?] are example of rings which are not G-GCD
rings.
The following theorem is now straightforward.

Theorem 3.1. Let R be a ring and S(R) the multiplicative semigroup of f.g. faithful multi-
plication ideals. Then the following statements are equivalent:

(i) R is a G-GCD ring.

(ii) For all A,B € S(R), lem(A, B) exists in S(R).
(iii) For all A, B € S(R), gcd(A, B) exists in S(R).
(iv) For all A,B € S(R), [A: B] € S(R).

Theorem 3.1 has two corollaries which we wish to mention. The first generalizes two prop-
erties that characterize Priifer domains. The second is a version of the Chinese Remainder
Theorem.

Corollary 3.2. Let R be a G-GCD ring. For all A, B,C € S(R),
(i) [ged(A, B) : C] = ged([A: C1,[B: ().
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(i) [C :lem(A, B)] = ged([C : A],[C : B)).
Proof. (i) Let G = ged(A, B). By Theorem 3.1, ged([A : C],[B : C]) exists and [G : C] €
S(R). Also it is obvious that

ged([A: C),[B:C)) CG:C].
Using Lemmas 1.6 and 2.4 and Theorem 2.2, we get

[G:C] = [G:Clged([A:G],[B:G))
= ged([A: GG :C|,[B:G|G:C))
C ged([A:C),[B:C)).

For (ii), let K =lcm(A, B). Again by Theorem 3.1, ged([C : A], [C : B]) exists and [C : K| €
S(R). Clearly,
ged([C = A],[C : B]) C [C: K].

On the other hand, we have
R =gcd([A: G|, [B:G])=ged([K : A],[K : B])
and hence by Lemma 1.6 and Theorem 2.2 we infer that

[C:K] = [C:K]gcd([K : A],[K : B])
= gcd([C: K|[K : A],[C : K]|[K : B))
C ged([C : A],[C: B)).

Corollary 3.3. Let R be a G-GCD ring. For all A, B,C € S(R),
(i) lem(ged(A4, B),C) = ged(lem(A, C),lem(B, C)).
(ii) ged(lem(A, B),C) =lem(ged(A, C), ged(B, C)).

Proof. (i) By Theorem 3.1 and Corollary 3.2, we have

lem(ged(A, B),C) = ged(A,B)NC = [ cd(4, B) : C|C
= Cged([A:CL,[B: )
= ged([A: C)C,[B: C]C’)
= ged(ANC,BNC)
= ged(lem(A, C),lem(B, C)),

and hence (i) is clear. Now, using (i) twice and by Lemma 1.7 we get

lem(ged(A, C),ged(B,C)) = ged(lem(A, ged(B, C)),lem(C, ged(B, C))
= ged(lem(A, ged(B, C)), C)
= ged(ged(lem(A, B),lem(A, C)), C)
(lem(A, B), ged(lem(4, €), €))
(lem(4, B), C).

= ged(lem

= gcd(lem
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G-GCD rings are a generalization of G-GCD domains and Priifer domains. We extend
methods used by Liineburg [11] to this more general case. In particular, let R be a G-GCD
ring and A, B € S(R). Define

®yp={I : Iisanideal of R, I|A, gcd(l,B)= R}.

Liineburg showed that if R is a Dedekind domain then ®4 p always has a smallest element,
and that if R is a Priifer domain, an element M € ®4 p is smallest if and only if for all
f.g. ideals S of R, if AM~' C S and S + B = R then S = R. Ali [2] has extended some of
Liineburg’s results and methods to arithmetical rings.

We note that by Lemma 1.4, &4 5 C S(R) and ®4 p is non-empty since R € $4 p.

The following observation will be useful later. It follows easily from Proposition 2.3 and
Corollary 3.2.

Lemma 3.4. Suppose R is a G-GCD ring and that A,B,J € S(R). If ged(A,J) =
ged(B,J) = R, then
ged(lem(A, B),J) = R = ged(AB, J).

Theorem 3.5. Let R be a G-GCD ring and A, B € S(R). Then ®4 5 forms a lattice of
ideals. Moreover, if ®4 p contains a minimal element, then it is unique.

Proof. Let X,Y € ®4 5. Then X,Y € S(R) and ged(X,Y) = G and lem(X,Y) = L exist.
Cleary G|A and by Lemma 1.7 gcd(G, B) = R, and hence G € ®4 5. As X|A and Y|A, we
infer that L|A and hence, from Corollary 3.2 ged(L, B) = R. This shows that L € ®4 5 and
the first assertion follows. Suppose now that M is a minimal element in ®4 5. Let X € ®4 p.
Then lem(M, X) € ®4 5. But lem(M, X) C M. It follows that lem(M, X) = M and hence
M C X. Therefore, M is the smallest element in ® 4 p.

Notice that if the G-GCD ring R has ACC on elements of S(R), then the conditions of
Theorem 3.5 are satisfied, and ®4 5 has a unique minimal element for all A, B € S(R).

Corollary 3.6. Let R be a G-GCD ring and X,Y € ®op. Then [X : Y] € $4p.
Proof. By Theorem 3.1, [X : Y] is in S(R). As [X : Y]| X, the corollary is now clear.

Theorem 3.7. Let R be a G-GCD ring and A, B € S(R). Then M € ®4 5 is smallest if
and only if the only ideal dividing [A : M| and relatively prime to B is R.

Proof. Suppose first that M is the smallest element in ®4 5. Let S be an ideal in R such
that S|[A : M]. [A: M] € S(R) by Theorem 3.1 and hence S € S(R) by Lemma 1.4. Now
as A =[A: M|M, we have M S|A. Also, we have

ged(S, B) = R = ged(M, B),

so by Lemma 3.4, gcd(M S, B) = R, and this implies that MS € &4 p. It follows that
M C MS C M, and hence M = MS. By Lemma 1.3, S = R. Conversely, let M be an ideal
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in R satisfying the condition of the Theorem. Suppose X € ®4 p. Then X|A, M|A and hence
lem(X, M)|A. It follows that
[lem(X, M) : M]|[A : M],

and hence [X : M]|[A : M]. Furthermore
R =gcd(X, B) C ged([X : M|,B) C R,
so that [X : M| = R and hence M C X, and M is the smallest element in ¢4 .

Theorem 3.8. Let R be a G-GCD ring and A, B, J € S(R). Then the following are equiva-
lent:

(i) J|A and ged(J, B) = R.

(ii) J|[A: G| and ged(J,G) = R where G = ged(A, B).
In particular, @4 p = Pa.q,6-
Proof. Let (i) be satisfied. Then

R = ged(J, B) C ged(J,G) C R.
Let K =lcm(A, B). Then K C A C J, and hence
[A:G]=[K:B|=[K:B|ged(J,B) =gcd(J[K : B|,[K : B|B) C ged(J,K) = J.

But J € S(R). Thus J|[A : G] and hence (ii) is satisfied. Conversely, let (ii) be satisfied.
Then, obviously, A C [A : G] C J, and hence J|A. From Lemma 1.7 and since A C J, we
have
R =ged(J, G) = ged(J, ged(4, B)) = ged(ged(J, A), B) = ged(J, B)

This proves the theorem.
Let R be a G-GCD ring and A, B € S(R). Define two sequences of ideals in R recursively as
fOHOWSZ MO = A, NO = B, Ni+1 = ng(M27Nz> and Mi+1 = [Mz . Ni+1] fOI‘ all ¢ Z 0. AS a
consequence of Theorem 3.8, the following are satisfied.

(1) Mz g Mi+17 NZ g Ni+1 for all ¢ Z 0.

(ii) M;, N; € S(R) for all i > 0.

(111) (I>A,B = (I)Mi,Ni for all ¢ > 0.

Theorem 3.9. Let R be a G-GCD ring and A, B € S(R) with the sequences M;, N; as above.
The following statements are equivalent:

(1) U2, M; is the smallest element in ® 4 p.
(i) U M; € ®yp.
(ifi) UX,M; € S(R).
(iv) 3 n € N with U2, M; = M,.
(v) 3ne N with M,, = M,,.
(vi) 3n € N with N,y1 = R.
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Proof. (i)=(ii)=(iii)=-(iv)=(v) is clear. We show (v)=-(vi). Let G; = ged(M;, N;), K; =
lem(M;, N;). Then M,y = [M; : G;] = [K; : N;] for all i > 0. If M,, = M, 4, then

Mn == [Mn : Gn] = [Kn : Nn]a
and hence
M,N, = [K, : N,|N, = K,,.

But Theorem 2.1 says that M,N, = G, K,, and hence K,, = K,G,. By Lemma 1.3, G,, =
N1 = R. To complete the proof of the corollary, we have to show that (vi)=-(i). Suppose
that R = Npy1 = ged(M,, N,,) = G,,. Then M,y = [M, : G| = [M,, : R] = M,. Also
R = N,;1 € N, and hence N,,.;, = R for all £ > 1 and hence

R = Nn+k g Nn+k+1 - Gn+k for all k Z 1

It follows that
Mg = [Mn—i-k : Gn+k] = [Mn—i-k : R] = M1k

for all & > 1. Therefore U2, M; = M,,. Finally since M, |M,, and ged(M,,, N,) = Npy1 = R,
it follows that M, € ®p, n,, and hence from Theorem 3.8, M, is the smallest element in

Q4 p.
If R is a G-GCD ring which has ACC on elements of S(R), then Theorem 3.9 and the remark
before it, give us the possibility of finding M,, which satisfies M,, = M, 1, and hence the

smallest element of ® 4 p.

We conclude with the following application which should be compared with [11, Theorem 10].

Theorem 3.10. Let R be a G-GCD ring and A,B € S(R). Let K = lem(A, B). Let M4
and Mp be the smallest elements of ® 4 k.a) and Pp k.p) respectively. Then the following
statements are satisfied:

(i) lem(Ma, Mp) =lecm(A, B).
(ii) ged([A: Mal,[B: Mg|ged(Ma, Mp)) = R = ged([B : Mg|,[A: Ma]ged(My, Mg))
(iii) ged(Ma, [lem(Ma, Mp) : M4)) = R = ged(Mp, [lem(Ma, Mg) : Mg]).

Proof. Let G = ged(A, B). We have
R =gcd([K : A],[K : B]) = ged([A: G],[B: G]).
It follows that

ged([A: Mal,[B: Mg|,[A:G],[B:G]) = ged([A: Myl,[B: Mgl,ged([A: G], [B : G])
ged([A: Mal,[B: Mg],R) = R.

As ged([A: M4, [B : Mg, [A: G])|[A: G], we infer from Theorem 3.7 that

ged([A : M), [B : Mp),[A: G]) = R.
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Also, since ged([A : My, [B : Mg|)|[B : Mg], we have from Theorem 3.7 that
ged([A: Mal,[B: Mg]) = R.

Now, [B : G]|B and gcd([A : G, [B : G]) = R, then [B : G] € ®pa.q) = Pp k.5 But Mp is
the smallest element in ®p k.p. Thus Mp C [B : G] = [K : A, and hence

lem(Ma, Mp) C lem(My, K : A)).

Also, since My € ® 4 x.4], we infer that R = ged(Ma, [K : A]). It follows from Theorem 2.1
that
lem(Mag, [K : A]) = Mu[K : A],
and hence
lcm(MA,MB) Q MA[K . A]

Similarly, lem(Ma, M) € Mpg[K : B]. Since A C M4 and B C Mg, we have that
A=[A: Ms]My and B = [B : Mg|Mpg. It follows that

lem(Ma, M) = lem(Ma, Mp)R
= Ma, Mp) ged([A : Ma], [B : Mp])
A: A]lcm(MA,MB) [B : Mgllem(M,, Mp))
A: Ma]M4[K : A, [B: Mg|Mg[K : B])
K : AlA| K : B]B) =gcd(K,K) = K =lem(A, B).

N
e 09

cd

C

(
(
ged([
(I
(I

o
. =

On the other hand A C M4, B C Mp and by Lemma 1.6, lem(A, B) C lem(M4, Mp). This
finishes the proof of (i). To prove (ii), as M4 € P k.4, we have ged(Ma, [K : A]) = R, and
hence ged([A : My, M4, [K : A]) = R. This implies that ged(ged([A : Mal, Ma), [K : A]) =
R. But ged([A : M), Ma)|[A: M4] and [A: Mal|A. Thus by Theorem 3.7,

ng([A . MA],MA) = R.
It follows that
ged([A : My],ged(Ma, Mp)) = R.

As noted earlier we have
ged([A : M4, [B : Mp]) = R,

So by Lemma 3.4,
R.

ged([A - Mal,[B : M| ged(Ma, Mp))

Similarly,
ged([B : Mgl,[A : Ma|ged(Ma, Mg)) = R.

For (iii), we have M4 € ® 4 k.4, and hence gcd(Ma, [K : A]) = R. But ged(My, [A: My)) =
R. Tt follows from Lemma 3.4 that ged(Ma, [K : A][A: M4]) = R. It is clear that

[K AHA MA] [K MA] [1CII1<MA,MB)ZMA].
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Hence

R.

ng(MA, [ICIH(MA, MB) : MA]>

Similarly

ged(Mp, [lem(My, Mp) : Mp])

R,

and this concludes the proof of the Theorem.
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