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Abstract. In this paper we continue to investigate the algebro-geometric structure
of Drinfeld-Anderson motives introduced in [28] and [29]. In the first part we
construct shtukas related to Drinfeld-Anderson motives. The main result of the
second part is uniformization Theorem 3.4.2.
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1. Introduction

Drinfeld-Anderson motives are “toy models” of hypothetical twisted (noncommutative) mo-
tives in positive characteristic. They are a direct generalization of Drinfeld modules [12]
and Anderson t-motives [4]. In [29] we showed how these motives are related to the mul-
ticomponent KP hierarchy. There are however many open questions and this paper is de-
voted to two of them. First of all, one would like to have an algebro-geometric definition
of Drinfeld-Anderson A-motives valid over an arbitrary [F,-scheme. We were able to give
such a definition earlier ([28, 1.6], [29, 6.2]). In the first part of this paper we go further
and define Drinfeld-Anderson shtukas. Then the purity of A-motives is the property of a
quasi-periodic propagation of associated shtukas. In the second chapter we consider another
important question concerning the uniformization of A-motives. As Anderson showed [4, §2]
not all motives of this kind are uniformizable. However it is possible to uniformize formally
(or rigid-analytically) trivial motives. The main result of the second part of this paper is the
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uniformization of such motives via Sato Grassmannians (Theorem 3.4.2). This uniformiza-
tion may be considered as an analogue of the Krichever map ([1], [11, Sect. 6]) and also as
a period morphism [30]. Of course, it is also possible to uniformize A-motives via p-adic
symmetric domains. In fact, our result implies that p-adic symmetric domains associated
to formally trivial Drinfeld-Anderson motives may be embedded into multicomponent Sato
Grassmannians. It should give a generalization of Genestier’s results ([15], [16]). We hope to
describe these embeddings in a sequel.

When this paper was mostly finished, the author discovered that similar ideas concerning the
uniformization of A-motives were developped by Alvarez [3]. It seems also that the original
idea to exploit ind-algebraic structures of Drinfeld symmetric domains Q¢ is due to Genestier
[16]. He described the Q7 as generalized Deligne-Lusztig varieties embedded in ind-algebraic
flag varieties (loc. cit.).

2. Shtukas related to Drinfeld-Anderson sheaves

2.1. Torsion-free (bi)shtukas

Let X be a geometrically irreducible (possibly singular) complete curve over F, and S an
arbitrary F,-scheme. We denote by Frg the Frobenius morphism of S and by € = (Idy x
Frg)*E the Frobenius pull-back of a sheaf £ on X xj 5.

Definition 2.1.1. A left (resp. right) torsion-free Drinfeld-Anderson shtuka of rank r and
T-rank n with a zero o : S — X and a pole 3 : S — X over S is a diagram

Flo g £ g
is \¢ resp. Nt
€ € (2.1.1)

of torsion-free sheaves over X xS of rankr such that cokernels of s, andig (resp. oft, and jg)
are direct images of locally free Og-modules of rank n under the morphisms 'y : S — X x S
and I'g : S = X x S induced by the graphs of a and 3.

Remarks 2.1.2. 1) The necessity of torsion-free sheaves (and not only vector bundles) for
the algebro-geometric classification of Krichever (Drinfeld) modules was underlined by Mum-
ford [26].

2) The 7-rank appears in the definitions of ¢-motives [4] and Drinfeld-Anderson motives [29].
Drinfeld shtukas have 7-rank 1 [14] but D-elliptic sheaves [24] and D-shtukas [21] have T-rank
d (where d? is the rank of a division Ox-algebra D).

We say that a torsion-free shtuka is separated if its zero and pole are disjoint. It is easy to
see that a separated right (resp. left) shtuka may be completed to a bishtuka, that is, to a
“bicartesian square”:

£ ¢ Fis €
£ /‘ a resp. i N\ \x O
GeLs ¢ €2 Fe (2.1.2)
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([14], [21, I.1], [23]). This is a natural functorial construction and the stacks of left and right
shtukas are naturally equivalent outside of the diagonal Ax = X x X (loc. cit.). We say
that a left (resp. right) shtuka with the same zero and pole

£ gL e resp. € Fell € (2.1.3)

is conjugate to a right (resp. left) shtuka (2.1.1) and we fix such a conjugation. One can
also consider a dual shtuka of a left (resp. right) shtuka (2.1.1) by taking dual sheaves and
morphisms. The zeros and poles of a shtuka and its dual are interchanged.

2.2. Shifts and propagations

There is an one more procedure to pass from a left to a right shtuka and vice versa. Namely,
let 7Sht (resp. Sht;) denote the moduli stacks of left (resp. right) shtukas of rank r and
7-rank n. Consider maps Frj : 7 Sht — Sht; and Fr_ : Sht; — 7 Sht such that:

F2s € F £ g G
Fro: iy > T\‘Z and Fr_ : At — t/Tl'
TE TE_S, T8 € Tg_J) G

then, obviously, Fryo Fr = Frg and Fr_ o Fry = Frg. Combining it with the conjugation we
obtain a left (resp. right) shtuka

i s j t
TFelF 5% Foresp. G- G+ 6.

Such a procedure will be called a left (resp. right) 1-shift. A left-shifted (resp. right-shifted)
shtuka has the zero oo Frg (resp. «) and the pole 5 (resp. o Frg). Continuing such shifts
indefinitely we obtain a propagated left (resp. right) shtuka, that is a diagram

F o F S Fe £-562 g2 g
iy NG A N\ N\ resp. S S e
TFi— T F—"¢E E—"G — "G,

2.3. Relatively pure shtukas

Let Z be an invertible sheaf on X and denote Z = Z X Oy the corresponding sheaf on X x S.
Then o _ _ S ~ ~
CRL+— FRL— EQL resp. EQRL - GRI+— €QTL (2.3.1)

are also shtukas with the same zero and pole as (2.1.1) [14, constr. 5.

Definition 2.3.1. A left (resp. right) torsion-free shtuka (2.1.1) is called relatively pure of
weight w = deg Z/k with respect to T if the k-shifted shtuka

Fi % Fia Gi1 5 Gy
i \¢ resp. St
"Fr-1 Gr—1 (2.3.3)

is isomorphic to left (resp. right) shtuka (2.3.1).
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When Z = Oy (oc0) this is the usual condition of purity (with weight 1/d) for shtukas
associated to Drinfeld modules [14, §1].

2.4. Drinfeld- Anderson sheaves

Let oo be a smooth closed point on X and denote A = H%(X \ oo, Ox).

Definition 2.4.1. ([29, 6.2]) A Drinfeld-Anderson sheaf of pole 0o, of rank r and of T-rank
n over an A-scheme S, consists of the following commutative diagram:

J J J
= &, = & i &

t N t t N t (2.4.1)
S TEL, S TE S TEL,

such that any left i-truncation

j j
= & = &

t N t )
& S &,

£

7

is a propagated right torsion-free shtuka of pole oo and of zero a: S — Spec A. A Drinfeld-
Anderson sheaf (2.4.1) is pure of weight w = u/v if any right shtuka

E 5 i <= €,
is relatively pure of weight w with respect to Oy (uoo) X Og. In other words, it means that
gi—l—vdegoo ~ gl({U,OO} X S)

for any integer 1.

3. Uniformization of Drinfeld-Anderson motives

3.1. Associated bundles on twisted projective line

Let L be a perfect field over F, equipped with a F,-morphism «; : A — L and L[] the
twisted polynomial ring with the commutation rule 7a = a%r. Denote L(7) the quotient
skew-field of L[r|, L[r] the ring of skew power series and L((7)) the skew-field of Laurent
series 24, Sect. 3.

Let Pr(;) denote the projective line over L(7) (cf. [31, Ch. VII| for the general definition).
Vector bundles over P,y may be defined using the following well-known description (due to
Grothendieck) of vector bundles on a smooth curve X. Any closed point P on X gives a
“covering” of X by X — P and the infinitesimal disc Dp at P. Then any vector bundle is given
by an isomorphism of restrictions of the trivial bundles to the infinitesimal punctured disc
D3, that is, by an automorphism of the trivial bundle on D3 [20, 1.4]. Hence, by definition,
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a vector bundle of rank n over P ;) is a pair (M, V,,) where M is a free L[r]-module of rank
n, Vio is a free L[7~']-submodule of L((77")) ®,; M such that the induced map

L(r™) @) Ve — L((ﬂ))@M (3.1.1)

Llr='] L[r]

is an isomorphism [24, 3.13].

For a Drinfeld-Anderson sheaf (2.4.1) we denote M; = H%(X \ 00,&) and V. =
HO(Spec(Ox®L), ;). Tt is easy to see that Vi is a free L[t 'J-module of rank n [24,
3.11]. The following result may be proved in the same manner as [24, 3.17].

Proposition 3.1.1. The functor associating the pair
(M =H°(X \ 00, &), Vo = H(Spec(OBL), &))

to (2.4.1) defines an equivalence between the category of Drinfeld-Anderson sheaves over L
and the full subcategory of the category of vector bundles over Pi(ﬂ such that

(i) A acts on M/TM wvia o,

(ii) M is finitely generated as an A ®p, L-module and

(i) Vi is finitely generated as (’)oo@)FqL—module.
If the Drinfeld-Anderson sheaf (2.4.1) is pure of weight w = u/v then, in addition,
(iv) 77vdes@V = ¥V

where ws s an uniformizer of the completed local Ting O .

3.2. Formally trivial motives

When we work over a perfect field L the notion of Drinfeld-Anderson motive is somewhat more
general. First of all, the action of A on M /7M may be not diagonal and, as Anderson showed
[4, §2], a lattice V, verifying (3.1.1) does not always exist. However, it is always possible
to uniformize rigid-analytically trivial ¢t-motives (loc. cit.). In this section we generalize
Anderson’s results. In the following definition we don’t fix X and oo but just suppose that
A is a Dedekind domain with the constant field IF,.

Definition 3.2.1. [29, 5.1] A Drinfeld-Anderson A-motif M of rank r and T-rank n is a left
(A ®r, L[1])-module verifying the following conditions:

(i) M is a free L[t|-module of rank n;
(ii) M is a torsion-free (A ®r, L)-module of rank r;
(i) (a — ay(a)) acts nilpotently on M/TM for any a € A.
A morphism of Drinfeld-Anderson motives is an (A ®g, L[7])-linear map.

Furthermore, M is said to be formally trivial if there exists a lattice Vy, in L((T71)) @ pi M

verifying (3.1.1). A formally trivial Drinfeld-Anderson motive is pure of weight w = u/v if
condition (iv) of Proposition 3.1.1 is satisfied.
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If there exist a complete curve X over F,, a smooth closed point co such that A = H(X \
00,Ox) and a torsion-free sheaf & as in Proposition 3.1.1 then (M,Vy,) is said to be of
geometric origin. In this case (X, 00,&) will be called the underlying geometric triple of a
formally trivial motive (M, V).

Such formally trivial A-motives are analogues of Anderson’s rigid-analytically trivial ¢-
motives (loc. cit.).

3.3. Multicomponent Sato Grassmannians and Schur pairs

First of all, recall one of the “classical” definitions of the Sato Grassmannian ([25], [32], [33]).
For the moment, let L be a field of characteristic zero and let

LItJ(0~") = LIEI((d/dt) ™)

denote the ring of microdifferential operators in one variable, i.e. the ring of Laurent series
in a formal symbol 7! = (d/dt)~! with the commutation rule

AN 2 wdfa A\
() =2 (7)

for any a € L[t] (cf. [26, p. 140]). Consider the subring L(0~')) € L[t](0~')) of microdiffer-
ential operators with constant coefficients. We say that a map of vector spaces is Fredholmian
if it has both finite kernel and cokernel. The index of a Fredholm map ~ is defined by:

ind v = dim; Ker v — dim; Coker 7.

For any natural integer n the set

Gr,, ={ subspaces W C L((07!))®" such that the projection
Yo 2 W = (L(07Y) /07 L[07])®™ is Fredholmian }

is called the n-component Sato Grassmannian. In the ¢-twisted case we simply mimic this
definition. Let L be again a perfect field over F,.

Definition 3.3.1. The set

q-Gr,, ={ subspaces W C L((771))®™ such that the projection
Yo o W = (L(771) /7 L[ 1])®™ is Fredholmian }

will be called the g-twisted Sato Grassmannian. The virtual dimension of W s just the index
of vw- Denote g-Gr, (1) the Grassmannian of subspaces of virtual dimension l. Then

q-Gr/(0) o {W € ¢-Gr,,(0) | dim;Ker 7y, = dim;Coker 7y, = 0}
is called the big cell of ¢-Gr,,.

Remarks 3.3.2. 1) The ind-proalgebraic variety structure of ¢-Gr,, will be discussed in the
next section.

2) The n-component Sato Grassmannian may be also described as the set of colattices in
L((771)®" with the respect to the Tate topology (cf. Appendix 4.2).
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We would like to have a functorial correspondence between the category of Drinfeld-
Anderson motives of 7-rank n and a certain category related to the n-component Sato
Grassmannian. Fortunately, an apropriate construction was already found by Mulase in
the differential context [25].

Definition 3.3.3. Let R be a non-trivial commutative subring of M, (L[7]) stabilizing a sub-
space W € q-Gr,, (that is, such that RW C W) then (R, W) will be called a q-twisted Schur
DaiT.

It is well-known (cf. [25]) that if for a fixed W € Gr,, a Schur pair (R, W) exists then W has
the algebro-geometric origin.

3.4. Admissible Schur pairs and uniformizable Drinfeld-Anderson motives

In this subsection we shall prove the anti-equivalence of the category of formally trivial
Drinfeld-Anderson motives and the category of admissible Schur pairs. It describes Drinfeld-
Anderson motives in terms of (co)lattices and, consequently, it generalizes uniformization
results of Drinfeld and Anderson ([12, §3] and [4, §2]).

In [29] we considered non-trivial and non-degenerate commutative subrings R C M, (L[7])
satisfying the following Anderson’s condition:

Hom(G} ;,G, ) =) Voa (3.4.1)

a€ER

for a certain finite-dimensional L-subspace V' C Hom(G} ,G, ) (cf. [29, Sect. 5], [4, 1.1.3])
and such that for any D € R
evy(D) — D, - 1d,, (3.4.2)

is nilpotent for a certain D, € L. Here
evy : M, (L[7]) = M, (L)

is the evaluation map at “r = 0”. We suppose also that R contains F, via the diagonal
injection a +— diag(a,...,a). It was shown that any such ring is given by an embedding

0: A=HX\ oo, Ox) — M,(L[r])

for an appropriate curve X and a smooth closed point co on it. In addition, the correspon-
dence a — D, for D = ¢(a) equips L with an A-module structure.

Definition 3.4.1. A commutative ring R as above satisfying conditions (3.4.1) and (3.4.2) is
called admissible or Drinfeld-Anderson abelian A-module (by analogy with Anderson’s abelian
t-modules [4, 1.1]). A morphism

u: Ry =Im(p;) = Ry = Im(y,)

is an element u € M, (L[T]) such that up,(a) = ¢y(a)u for any a € A.
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Theorem 3.4.2. The category of formally trivial Drinfeld-Anderson motives M of T-rank
n is anti-equivalent to the category of admissible Schur pairs (R, W) where R is admissible
and W € q-Gr,,. If (X, 00,En) is the underlying geometric triple of M and (R, W) is the
corresponding Schur pair then

dim. virt. Wy, = h°(Ex) — R (Enr)

where h°(Eyr) = dim HY(X, Eyy) and W (Eyr) = dim HY (X, Eyy).

Proof. The anti-equivalence of the category of Drinfeld-Anderson motives of 7-rank n with
the category of admissible commutative subrings of M, (L[r]) was proved in [29, Th. 5.3|.
Namely, the (A ®r, L)-module structure of a Drinfeld-Anderson motive M of rank n defines
a morphism ¢,, : A — EndpjM, that is, a commutative subring of M, (L[7]). Then the
functor M +— Im(p,,) makes these categories anti-equivalent (loc. cit.).

If, in addition, (M, V,,) is a formally trivial Drinfeld-Anderson motive then we define
WS (M) C L)
choosing the following trivialization:
n: Ve — (7 L7

It is precisely condition (3.1.1) which makes W a well-defined subspace of L((77!))®". We
should prove that W is a point of ¢-Gr, () with [ = h°(Exyr) — b (Enr)-

First of all, let us show that any (M, V,) is a Drinfeld-Anderson motive of geometric
origin, that is, it has an underlying geometric triple (X, 00,&) (cf. Def. 3.2.1). It is easy to
see that X = Proj (gr R) where the gradation is taken with respect to the degree function on
R C M, (L[7]) [29, (5.2)]. Moreover, oo is the unique point of X corresponding to the same
degree function in such a manner that deg(D)/deg(oo) is the pole order of D at co. Finally,
isomorphism (3.1.1) is exactly the gluing condition for a torsion-free sheaf €.

Denote Uy, = Spec(Ox®L) (resp. UX = Spec(K,®L)) the infinitesimal (resp. infinites-
imal punctured) disc at oo on X x L where K, is the quotient field of O.,. We have

H(X,€) ~ HYX\ o0, &) NH (U, &)
~ W NV, = Ker vy

and

HY(X,&) ~ HYUL,&)/H X\ o00,E)+H (U, &)
~ L((7")®"/(W + V) ~ Coker vy,

where 7y, is the projection W — (L(7™1) /7 L[ ])®" (cf. [25, proof of Th. 2.7]). The
following equalities finish the proof:

dim.virt. W = dim; Ker 7y, — dim; Coker vy, = h°(€) — h'(€).
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Indeed, the inverse construction (R, W) +— (M, V,,) is obvious since we can identify W with
M and Va, with (17 *L[r—'])®" as above. O

Remark. For the sake of simplicity we suppose that morphisms in the category of Schur
pairs are defined as morphisms of underlying admissible subrings. Thus, the uniformiza-
tion of Drinfeld-Anderson motives arise as a by-product of the anti-equivalence between the
categories of A-motives and admissible abelian A-modules restricted to the formally trivial
case.

The correspondence M +— W), is an analogue of the famous Krichever map ([1], [11, Sect. 6]).
It is well-known that its image is the so-called algebraic part of the Sato Grassmannian. If we
consider Drinfeld-Anderson motives of fixed rank r then one can give more precise description.
Let ¢-Gr denote the r-reduced m-component Sato Grassmannian (cf. Appendix 4.2 for a
definition).

Corollary 3.4.3. If M is a Drinfeld-Anderson motive of rank r and T-rank n then
WM c q-Gr;(hO(SM) — hl(gM))

4. Appendices

4.1. Proalgebraic structure of Sato Grassmannians

The n-component Sato Grassmannian has many different structures. From the algebro-
geometric point of view it may be easily described as a proalgebraic variety [8, 4.3], [25,
Sect. 1].

Let us recall that the set of L-subspaces of L((77!))®" has the following Tate topology |8,
2.4.1]: U C L((t71)®" is open if =N L[771]®" C U for a sufficiently big positive integer N.
Moreover, U is bounded if U C 7™ L[r=1]®" for N > 0. A subspace both open and bounded
is called a lattice. Finally, a subspace V is discrete if for some open U one has U NV = 0.
In this language the points of the n-component Sato Grassmannian are exactly colattices
(maximal discrete subspaces) in L((7~1)®". According to [8, 4.3] the set ¢-Gr("") of colattices
transversal to any fixed lattice V is a Hom(L((771))®"/V,V)-torsor and, consequently, the
projective limit of finite-dimensional spaces. The gluing of q—Grflv) for different V' defines a
structure of a proalgebraic variety on ¢-Gr,,.

4.2. Ind-algebraic structure of r-reduced (loop) Grassmannians

As shown above the Sato Grassmannians are disjoint unions of strata of different virtual
dimension. Another “stratification” is given by r-reduced Sato Grassmannians:

q¢-Gr, = {W € ¢-Gr,, | "W C W}.

Notice that if W € ¢-Gr] then W/r"W is an nr-dimensional vector space. Any nr-tuple
w = (wy,...,w,,) of W spanning W/7"W defines a twisted formal loop 7, with values in
GL,, [33, p. 14], that is,

Yo € ¢-LGLy, = GLy, (L(77H)).
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This loop is uniquely defined up to an element of
¢-LTGL,, := GL,. (L[ ']).

As a consequence we can identify ¢-Gr, with the formal loop Grassmannian ¢-LGL,,/
¢-L*GL,,. There are two well-known and equivalent ind-structures on the (twisted) loop
Grassmannians: the usual one given by the pole orders and the ind-structure given by gen-
eralized Schubert varieties ([20], [34], [22, Sect. 4]).
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