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Abstract. In this paper we continue to investigate the algebro-geometric structure
of Drinfeld-Anderson motives introduced in [28] and [29]. In the first part we
construct shtukas related to Drinfeld-Anderson motives. The main result of the
second part is uniformization Theorem 3.4.2.
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1. Introduction

Drinfeld-Anderson motives are “toy models” of hypothetical twisted (noncommutative) mo-
tives in positive characteristic. They are a direct generalization of Drinfeld modules [12]
and Anderson t-motives [4]. In [29] we showed how these motives are related to the mul-
ticomponent KP hierarchy. There are however many open questions and this paper is de-
voted to two of them. First of all, one would like to have an algebro-geometric definition
of Drinfeld-Anderson A-motives valid over an arbitrary Fq-scheme. We were able to give
such a definition earlier ([28, 1.6], [29, 6.2]). In the first part of this paper we go further
and define Drinfeld-Anderson shtukas. Then the purity of A-motives is the property of a
quasi-periodic propagation of associated shtukas. In the second chapter we consider another
important question concerning the uniformization of A-motives. As Anderson showed [4, §2]
not all motives of this kind are uniformizable. However it is possible to uniformize formally
(or rigid-analytically) trivial motives. The main result of the second part of this paper is the
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uniformization of such motives via Sato Grassmannians (Theorem 3.4.2). This uniformiza-
tion may be considered as an analogue of the Krichever map ([1], [11, Sect. 6]) and also as
a period morphism [30]. Of course, it is also possible to uniformize A-motives via p-adic
symmetric domains. In fact, our result implies that p-adic symmetric domains associated
to formally trivial Drinfeld-Anderson motives may be embedded into multicomponent Sato
Grassmannians. It should give a generalization of Genestier’s results ([15], [16]). We hope to
describe these embeddings in a sequel.

When this paper was mostly finished, the author discovered that similar ideas concerning the
uniformization of A-motives were developped by Alvarez [3]. It seems also that the original
idea to exploit ind-algebraic structures of Drinfeld symmetric domains Ωd is due to Genestier
[16]. He described the Ωd as generalized Deligne-Lusztig varieties embedded in ind-algebraic
flag varieties (loc. cit.).

2. Shtukas related to Drinfeld-Anderson sheaves

2.1. Torsion-free (bi)shtukas

Let X be a geometrically irreducible (possibly singular) complete curve over Fq and S an
arbitrary Fq-scheme. We denote by FrS the Frobenius morphism of S and by τE = (IdX ×
FrS)

∗E the Frobenius pull-back of a sheaf E on X ×Fq S.

Definition 2.1.1. A left (resp. right) torsion-free Drinfeld-Anderson shtuka of rank r and
τ -rank n with a zero α : S → X and a pole β : S → X over S is a diagram

F
sα−→ E

iβ ↘
τE

resp.
E
jβ
−→ G
↗ tα

τE (2.1.1)

of torsion-free sheaves over X×S of rank r such that cokernels of sα and iβ (resp. of tα and jβ)
are direct images of locally free OS-modules of rank n under the morphisms Γα : S → X × S
and Γβ : S → X × S induced by the graphs of α and β.

Remarks 2.1.2. 1) The necessity of torsion-free sheaves (and not only vector bundles) for
the algebro-geometric classification of Krichever (Drinfeld) modules was underlined by Mum-
ford [26].

2) The τ -rank appears in the definitions of t-motives [4] and Drinfeld-Anderson motives [29].
Drinfeld shtukas have τ -rank 1 [14] but D-elliptic sheaves [24] and D-shtukas [21] have τ -rank
d (where d2 is the rank of a division OX-algebra D).

We say that a torsion-free shtuka is separated if its zero and pole are disjoint. It is easy to
see that a separated right (resp. left) shtuka may be completed to a bishtuka, that is, to a
“bicartesian square”:

E
j
−→ G

tc ↗ ↗ t

Gc
jc

−→ τE
resp.

F
s
−→ E
i ↘ ↘ ic

τE
sc
−→F c (2.1.2)
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([14], [21, I.1], [23]). This is a natural functorial construction and the stacks of left and right
shtukas are naturally equivalent outside of the diagonal ∆X = X × X (loc. cit.). We say
that a left (resp. right) shtuka with the same zero and pole

E
tc
←− Gc

jc

−→ τE resp. τE
ic
−→F c

sc
←− E (2.1.3)

is conjugate to a right (resp. left) shtuka (2.1.1) and we fix such a conjugation. One can
also consider a dual shtuka of a left (resp. right) shtuka (2.1.1) by taking dual sheaves and
morphisms. The zeros and poles of a shtuka and its dual are interchanged.

2.2. Shifts and propagations

There is an one more procedure to pass from a left to a right shtuka and vice versa. Namely,
let rnSht (resp. Sht

r
n) denote the moduli stacks of left (resp. right) shtukas of rank r and

τ -rank n. Consider maps Fr0 :
r
nSht→ Sht

r
n and Fr∞ : Sht

r
n →

r
nSht such that:

Fr0 :
F

s
−→ E
i↘

τE
7→

F
↘ i

τF
τs
−→ τE

and Fr∞ :
E

j
−→ G
↗ t

τE
7→

G
t↗
τE

τj
−→ τG

then, obviously, Fr0 ◦Fr∞ = FrS and Fr∞ ◦Fr0 = FrS. Combining it with the conjugation we
obtain a left (resp. right) shtuka

τF
i1←−F1

s1−→ F resp. G
j1−→ G1

t1←− τG.

Such a procedure will be called a left (resp. right) 1-shift. A left-shifted (resp. right-shifted)
shtuka has the zero α ◦ FrS (resp. α) and the pole β (resp. β ◦ FrS). Continuing such shifts
indefinitely we obtain a propagated left (resp. right) shtuka, that is a diagram

F2
s2−→F1

s1−→ F
s
−→E

. . . i2 ↘ i1 ↘ i↘
τF1−→ τF−→ τE

resp.
E

j
−→G

j1−→ G1
j2−→ G2

↗ t ↗ t1 ↗ t2 . . .
τE −→ τG −→ τG1

2.3. Relatively pure shtukas

Let I be an invertible sheaf on X and denote Ĩ = I�OS the corresponding sheaf on X ×S.
Then

τE ⊗ Ĩ
i
←− F ⊗ Ĩ

s
−→ E ⊗ Ĩ resp. E ⊗ Ĩ

j
−→ G ⊗ Ĩ

t
←− τE ⊗ Ĩ (2.3.1)

are also shtukas with the same zero and pole as (2.1.1) [14, constr. 5].

Definition 2.3.1. A left (resp. right) torsion-free shtuka (2.1.1) is called relatively pure of

weight w = deg I/k with respect to Ĩ if the k-shifted shtuka

Fk
sk−→ Fk−1

ik ↘
τFk−1

resp.
Gk−1

jk−→Gk
↗ tk

τGk−1 (2.3.3)

is isomorphic to left (resp. right) shtuka (2.3.1).
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When I = OX(∞) this is the usual condition of purity (with weight 1/d) for shtukas
associated to Drinfeld modules [14, §1].

2.4. Drinfeld-Anderson sheaves

Let ∞ be a smooth closed point on X and denote A = H0(X \∞,OX).

Definition 2.4.1. ([29, 6.2]) A Drinfeld-Anderson sheaf of pole ∞, of rank r and of τ -rank
n over an A-scheme S, consists of the following commutative diagram:

. . .
j
↪→ Ei−1

j
↪→ Ei

j
↪→ Ei+1

j
↪→ . . .

t↗ t↗ t↗ t↗

. . .
τ j
↪→ τEi−1

τ j
↪→ τEi

τ j
↪→ τEi+1

τ j
↪→ . . .

(2.4.1)

such that any left i-truncation

Ei
j
↪→ Ei+1

j
↪→ Ei+2 . . .

t↗ t↗
τEi

τ j
↪→ τEi+1 . . .

is a propagated right torsion-free shtuka of pole ∞ and of zero α : S → SpecA. A Drinfeld-
Anderson sheaf (2.4.1) is pure of weight w = u/v if any right shtuka

Ei
j
−→ Ei+1

t
←− τEi

is relatively pure of weight w with respect to OX(u∞)�OS. In other words, it means that

Ei+v deg∞ ' Ei({u∞}× S)

for any integer i.

3. Uniformization of Drinfeld-Anderson motives

3.1. Associated bundles on twisted projective line

Let L be a perfect field over Fq equipped with a Fq-morphism αL : A → L and L[τ ] the
twisted polynomial ring with the commutation rule τa = aqτ . Denote L(τ) the quotient
skew-field of L[τ ], L[[τ ]] the ring of skew power series and L((τ)) the skew-field of Laurent
series [24, Sect. 3].

Let PL(τ) denote the projective line over L(τ) (cf. [31, Ch. VII] for the general definition).
Vector bundles over PL(τ) may be defined using the following well-known description (due to
Grothendieck) of vector bundles on a smooth curve X. Any closed point P on X gives a
“covering” of X by X−P and the infinitesimal disc DP at P . Then any vector bundle is given
by an isomorphism of restrictions of the trivial bundles to the infinitesimal punctured disc
D∗P , that is, by an automorphism of the trivial bundle on D

∗
P [20, 1.4]. Hence, by definition,
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a vector bundle of rank n over PL(τ) is a pair (M,V∞) where M is a free L[τ ]-module of rank
n, V∞ is a free L[[τ

−1]]-submodule of L((τ−1))⊗L[τ ]M such that the induced map

L((τ−1))
⊗

L[[τ−1]]

V∞ → L((τ
−1))
⊗̂

L[τ ]

M (3.1.1)

is an isomorphism [24, 3.13].

For a Drinfeld-Anderson sheaf (2.4.1) we denote Mi = H
0(X \ ∞, Ei) and Vi,∞ =

H0(Spec(O∞⊗̂L), Ei). It is easy to see that Vi,∞ is a free L[[τ−1]]-module of rank n [24,
3.11]. The following result may be proved in the same manner as [24, 3.17].

Proposition 3.1.1. The functor associating the pair

(M = H0(X \∞, E0), V∞ = H
0(Spec(O∞⊗̂L), E0))

to (2.4.1) defines an equivalence between the category of Drinfeld-Anderson sheaves over L
and the full subcategory of the category of vector bundles over P1L(τ) such that
(i) A acts on M/τM via αL,

(ii) M is finitely generated as an A⊗Fq L-module and

(iii) V∞ is finitely generated as O∞⊗̂FqL-module.

If the Drinfeld-Anderson sheaf (2.4.1) is pure of weight w = u/v then, in addition,

(iv) τ−v deg(∞)V∞ = $
u
∞V∞

where $∞ is an uniformizer of the completed local ring O∞.

3.2. Formally trivial motives

When we work over a perfect field L the notion of Drinfeld-Anderson motive is somewhat more
general. First of all, the action of A onM/τM may be not diagonal and, as Anderson showed
[4, §2], a lattice V∞ verifying (3.1.1) does not always exist. However, it is always possible
to uniformize rigid-analytically trivial t-motives (loc. cit.). In this section we generalize
Anderson’s results. In the following definition we don’t fix X and ∞ but just suppose that
A is a Dedekind domain with the constant field Fq.

Definition 3.2.1. [29, 5.1] A Drinfeld-Anderson A-motif M of rank r and τ -rank n is a left
(A⊗Fq L[τ ])-module verifying the following conditions:

(i) M is a free L[τ ]-module of rank n;

(ii) M is a torsion-free (A⊗Fq L)-module of rank r;

(iii) (a− αL(a)) acts nilpotently on M/τM for any a ∈ A.

A morphism of Drinfeld-Anderson motives is an (A⊗Fq L[τ ])-linear map.

Furthermore, M is said to be formally trivial if there exists a lattice V∞ in L((τ
−1))⊗L[τ ]M

verifying (3.1.1). A formally trivial Drinfeld-Anderson motive is pure of weight w = u/v if
condition (iv) of Proposition 3.1.1 is satisfied.
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If there exist a complete curve X over Fq, a smooth closed point ∞ such that A = H0(X \
∞,OX) and a torsion-free sheaf E0 as in Proposition 3.1.1 then (M,V∞) is said to be of
geometric origin. In this case (X,∞, E0) will be called the underlying geometric triple of a
formally trivial motive (M,V∞).

Such formally trivial A-motives are analogues of Anderson’s rigid-analytically trivial t-
motives (loc. cit.).

3.3. Multicomponent Sato Grassmannians and Schur pairs

First of all, recall one of the “classical” definitions of the Sato Grassmannian ([25], [32], [33]).
For the moment, let L be a field of characteristic zero and let

L[[t]]((∂−1)) = L[[t]](((d/dt)−1))

denote the ring of microdifferential operators in one variable, i.e. the ring of Laurent series
in a formal symbol ∂−1 = (d/dt)−1 with the commutation rule

(
d

dt

)−1
· a =

∞∑

k=0

(−1)k
dka

dtk
·

(
d

dt

)−k−1

for any a ∈ L[[t]] (cf. [26, p. 140]). Consider the subring L((∂−1)) ⊂ L[[t]]((∂−1)) of microdiffer-
ential operators with constant coefficients. We say that a map of vector spaces is Fredholmian
if it has both finite kernel and cokernel. The index of a Fredholm map γ is defined by:

ind γ = dimLKer γ − dimLCoker γ.

For any natural integer n the set

Grn ={ subspaces W ⊂ L((∂
−1))⊕n such that the projection

γW : W → (L((∂
−1))/∂−1L[[∂−1]])⊕n is Fredholmian }

is called the n-component Sato Grassmannian. In the q-twisted case we simply mimic this
definition. Let L be again a perfect field over Fq.

Definition 3.3.1. The set

q-Grn ={ subspaces W ⊂ L((τ
−1))⊕n such that the projection

γW : W → (L((τ
−1))/τ−1L[[τ−1]])⊕n is Fredholmian }

will be called the q-twisted Sato Grassmannian. The virtual dimension of W is just the index
of γW . Denote q-Grn(l) the Grassmannian of subspaces of virtual dimension l. Then

q-Gr+n (0)
def
= {W ∈ q-Grn(0) | dimLKer γW = dimLCoker γW = 0}

is called the big cell of q-Grn.

Remarks 3.3.2. 1) The ind-proalgebraic variety structure of q-Grn will be discussed in the
next section.

2) The n-component Sato Grassmannian may be also described as the set of colattices in
L((τ−1))⊕n with the respect to the Tate topology (cf. Appendix 4.2).
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We would like to have a functorial correspondence between the category of Drinfeld-
Anderson motives of τ -rank n and a certain category related to the n-component Sato
Grassmannian. Fortunately, an apropriate construction was already found by Mulase in
the differential context [25].

Definition 3.3.3. Let R be a non-trivial commutative subring of Mn(L[τ ]) stabilizing a sub-
space W ∈ q-Grn (that is, such that RW ⊂ W ) then (R,W ) will be called a q-twisted Schur
pair.

It is well-known (cf. [25]) that if for a fixed W ∈ Grn a Schur pair (R,W ) exists then W has
the algebro-geometric origin.

3.4. Admissible Schur pairs and uniformizable Drinfeld-Anderson motives

In this subsection we shall prove the anti-equivalence of the category of formally trivial
Drinfeld-Anderson motives and the category of admissible Schur pairs. It describes Drinfeld-
Anderson motives in terms of (co)lattices and, consequently, it generalizes uniformization
results of Drinfeld and Anderson ([12, §3] and [4, §2]).

In [29] we considered non-trivial and non-degenerate commutative subrings R ⊂Mn(L[τ ])
satisfying the following Anderson’s condition:

Hom(Gna,L,Ga,L) =
∑

a∈R

V ◦ a (3.4.1)

for a certain finite-dimensional L-subspace V ⊂ Hom(Gna,L,Ga,L) (cf. [29, Sect. 5], [4, 1.1.3])
and such that for any D ∈ R

ev0(D)−Dα · Idn (3.4.2)

is nilpotent for a certain Dα ∈ L. Here

ev0 : Mn(L[τ ])→ Mn(L)

is the evaluation map at “τ = 0”. We suppose also that R contains Fq via the diagonal
injection a 7→ diag(a, . . . , a). It was shown that any such ring is given by an embedding

ϕ : A = H0(X \∞,OX) ↪→ Mn(L[τ ])

for an appropriate curve X and a smooth closed point ∞ on it. In addition, the correspon-
dence a 7→ Dα for D = ϕ(a) equips L with an A-module structure.

Definition 3.4.1. A commutative ring R as above satisfying conditions (3.4.1) and (3.4.2) is
called admissible or Drinfeld-Anderson abelian A-module (by analogy with Anderson’s abelian
t-modules [4, 1.1]). A morphism

u : R1 = Im(ϕ1)→ R2 = Im(ϕ2)

is an element u ∈ Mn(L[τ ]) such that uϕ1(a) = ϕ2(a)u for any a ∈ A.
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Theorem 3.4.2. The category of formally trivial Drinfeld-Anderson motives M of τ -rank
n is anti-equivalent to the category of admissible Schur pairs (R,W ) where R is admissible
and W ∈ q-Grn. If (X,∞, EM) is the underlying geometric triple of M and (R,WM) is the
corresponding Schur pair then

dim. virt. WM = h
0(EM)− h

1(EM)

where h0(EM) = dim H0(X, EM) and h1(EM) = dim H1(X, EM).

Proof. The anti-equivalence of the category of Drinfeld-Anderson motives of τ -rank n with
the category of admissible commutative subrings of Mn(L[τ ]) was proved in [29, Th. 5.3].
Namely, the (A⊗Fq L)-module structure of a Drinfeld-Anderson motive M of rank n defines
a morphism ϕM : A → EndL[τ ]M , that is, a commutative subring of Mn(L[τ ]). Then the
functor M 7→ Im(ϕM) makes these categories anti-equivalent (loc. cit.).

If, in addition, (M,V∞) is a formally trivial Drinfeld-Anderson motive then we define

W
def
= η(M) ⊂ L((τ−1))⊕n

choosing the following trivialization:

η : V∞
∼
−→ (τ−1L[[τ−1]])⊕n.

It is precisely condition (3.1.1) which makes W a well-defined subspace of L((τ−1))⊕n. We
should prove that W is a point of q-Grn(l) with l = h

0(EM)− h1(EM).

First of all, let us show that any (M,V∞) is a Drinfeld-Anderson motive of geometric
origin, that is, it has an underlying geometric triple (X,∞, E) (cf. Def. 3.2.1). It is easy to
see that X = Proj (grR) where the gradation is taken with respect to the degree function on
R ⊂ Mn(L[τ ]) [29, (5.2)]. Moreover, ∞ is the unique point of X corresponding to the same
degree function in such a manner that deg(D)/deg(∞) is the pole order of D at ∞. Finally,
isomorphism (3.1.1) is exactly the gluing condition for a torsion-free sheaf E .

Denote U∞ = Spec(O∞⊗̂L) (resp. U∗∞ = Spec(K∞⊗̂L)) the infinitesimal (resp. infinites-
imal punctured) disc at ∞ on X × L where K∞ is the quotient field of O∞. We have

H0(X, E) ' H0(X \∞, E) ∩ H0(U∞, EU∞)

' W ∩ V∞ = Ker γW

and

H1(X, E) ' H0(U∗∞, EU∞)/(H
0(X \∞, E) + H0(U∞, EU∞))

' L((τ−1))⊕n/(W + V∞) ' Coker γW

where γW is the projection W → (L((τ
−1))/τ−1L[[τ−1]])⊕n (cf. [25, proof of Th. 2.7]). The

following equalities finish the proof:

dim.virt.W = dimLKer γW − dimLCoker γW = h
0(E)− h1(E).
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Indeed, the inverse construction (R,W ) 7→ (M,V∞) is obvious since we can identify W with
M and V∞ with (τ

−1L[[τ−1]])⊕n as above. �

Remark. For the sake of simplicity we suppose that morphisms in the category of Schur
pairs are defined as morphisms of underlying admissible subrings. Thus, the uniformiza-
tion of Drinfeld-Anderson motives arise as a by-product of the anti-equivalence between the
categories of A-motives and admissible abelian A-modules restricted to the formally trivial
case.

The correspondenceM 7→ WM is an analogue of the famous Krichever map ([1], [11, Sect. 6]).
It is well-known that its image is the so-called algebraic part of the Sato Grassmannian. If we
consider Drinfeld-Anderson motives of fixed rank r then one can give more precise description.
Let q-Grrn denote the r-reduced n-component Sato Grassmannian (cf. Appendix 4.2 for a
definition).

Corollary 3.4.3. If M is a Drinfeld-Anderson motive of rank r and τ -rank n then

WM ∈ q-Gr
r
n(h

0(EM)− h
1(EM)).

4. Appendices

4.1. Proalgebraic structure of Sato Grassmannians

The n-component Sato Grassmannian has many different structures. From the algebro-
geometric point of view it may be easily described as a proalgebraic variety [8, 4.3], [25,
Sect. 1].

Let us recall that the set of L-subspaces of L((τ−1))⊕n has the following Tate topology [8,
2.4.1]: U ⊂ L((τ−1))⊕n is open if τ−NL[[τ−1]]⊕n ⊂ U for a sufficiently big positive integer N .
Moreover, U is bounded if U ⊂ τNL[[τ−1]]⊕n for N � 0. A subspace both open and bounded
is called a lattice. Finally, a subspace V is discrete if for some open U one has U ∩ V = 0.
In this language the points of the n-component Sato Grassmannian are exactly colattices
(maximal discrete subspaces) in L((τ−1))⊕n. According to [8, 4.3] the set q-Gr(V )n of colattices
transversal to any fixed lattice V is a Hom(L((τ−1))⊕n/V, V )-torsor and, consequently, the
projective limit of finite-dimensional spaces. The gluing of q-Gr(V )n for different V defines a
structure of a proalgebraic variety on q-Grn.

4.2. Ind-algebraic structure of r-reduced (loop) Grassmannians

As shown above the Sato Grassmannians are disjoint unions of strata of different virtual
dimension. Another “stratification” is given by r-reduced Sato Grassmannians:

q-Grrn = {W ∈ q-Grn | τ
rW ⊂ W}.

Notice that if W ∈ q-Grrn then W/τ
rW is an nr-dimensional vector space. Any nr-tuple

w = (w1, . . . , wnr) of W spanning W/τ
rW defines a twisted formal loop γw with values in

GLnr [33, p. 14], that is,
γw ∈ q-LGLnr := GLnr(L((τ

−1))).
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This loop is uniquely defined up to an element of

q-L+GLnr := GLnr(L[[τ
−1]]).

As a consequence we can identify q-Grrn with the formal loop Grassmannian q-LGLnr/
q-L+GLnr. There are two well-known and equivalent ind-structures on the (twisted) loop
Grassmannians: the usual one given by the pole orders and the ind-structure given by gen-
eralized Schubert varieties ([20], [34], [22, Sect. 4]).
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243, SMF, 1997.

[22] Laszlo, Y.; Sorger, Ch.: The line bundles on the moduli of parabolic G-bundles over
curves and their sections. Ann. Sci. Ecole. Norm. Sup. 30 (4) (1997), 499–525.

[23] Laumon, G.: Drinfeld shtukas. In: [27], 50–109.

[24] Laumon, G.; Rapoport, M.; Stuhler, U.: D-elliptic sheaves and the Langlands corre-
spondence. Invent. Math. 113 (2) (1993), 217–338.

[25] Mulase, M.: Category of vector bundles on algebraic curves and infinite-dimensional
Grassmannians. Internat. J. Math. 1 (3) (1990), 293–342.

[26] Mumford, D.: An algebro-geometric construction of commuting operators and of solu-
tions of the Toda lattice equations, Korteweg-de Vries equation and related nonlinear
equations. Proc. Int. Sympos. Alg. Geom. (Kyoto 1977), 115–153, Kinokuniya, Tokyo
1978.

[27] Narasimhan, M. S. (ed.): Vector bundles on curves – new directions. Lectures given at
the 3rd C.I.M.E. session held in Cetraro (June 19–27, 1995), Lecture Notes in Math.
1649, Springer, Berlin 1997.

[28] Potemine, I. Yu.: Arithmétique des corps globaux de fonctions et géométrie des schémas
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