
Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 42 (2001), No. 1, 203-217.

Maximal Facet-to-Facet Snakes
of Unit Cubes
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Abstract. Let C = 〈C1, C2, . . . , Cn〉 be a finite sequence of unit cubes in the d-
dimensional space. The sequence C is called a facet-to-facet snake if Ci ∩Ci+1 is a
common facet of Ci and Ci+1, 1 ≤ i ≤ n−1, and dim(Ci∩Cj) ≤ max{−1, d+i−j},
1 ≤ i < j ≤ n. A facet-to-facet snake of unit cubes is called maximal if it is not a
proper subset of another facet-to-facet snake of unit cubes. In this paper we prove
that the minimum number of d-dimensional unit cubes which can form a maximal
facet-to-facet snake is 8d− 1 for all d ≥ 3.

1. Introduction

A finite sequence C = 〈C1, C2, . . . , Cn〉 of pairwise nonoverlapping congruent convex bodies
in the d-dimensional space where Ci∩Cj 6= ∅ if and only if |i− j| ≤ 1 is called a snake. If the
snake C is not a proper subset of another snake of convex bodies congruent to the members
of C then we say that the snake is maximal. Now, the problem is to determine the minimum
number of convex bodies congruent to the members of C which can form a maximal snake.
It was proved in [1] that the minimum number of congruent circular discs which can form a
maximal snake is 10.
In this paper we consider a variant of this “min-max” problem which might be interesting

in information theory as well. Let C = 〈C1, C2, . . . , Cn〉 be a finite sequence of d-dimensional
unit cubes. The sequence C is called a facet-to-facet snake if Ci ∩ Ci+1 is a common facet of
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Ci and Ci+1, 1 ≤ i ≤ n − 1, and dim(Ci ∩ Cj) ≤ max{−1, d + i − j}, 1 ≤ i < j ≤ n (by
convention, dim(Ci ∩ Cj) = −1 if and only if Ci ∩ Cj = ∅). A facet-to-facet snake of unit
cubes is called maximal if it is not a proper subset of another facet-to-facet snake of unit
cubes. Answering a question of H. Harborth (see [2]) it was proved in [3] and [4] that the
minimum number of unit squares which can form a maximal facet-to-facet snake is 19 (see
Figure 1).

Figure 1.

H. Harborth and C. Thürmann found essentially different examples of 3-dimensional maximal
facet-to facet snakes of 23 unit cubes (see Figure 2).

Figure 2.

Generalizing these constructions we show that there exist d-dimensional maximal facet-to-
facet snakes of 8d − 1 unit cubes for all d ≥ 3. We also show that 8d − 1 is the smallest
possible number of unit cubes which can form a maximal facet-to-facet snake for all d ≥ 3.
The following theorem summarizes our results.

Theorem 1. The minimum number of d-dimensional unit cubes which can form a maximal
facet-to-facet snake is 8d− 1 for all d ≥ 3.

We note that the problem of determining the exact number of non-congruent d-dimensional
maximal facet-to-facet snakes of 8d− 1 unit cubes remains open.

2. Constructions

In this section we show that there exist maximal facet-to-facet snakes in the d-dimensional
space consisting of 8d− 1 unit cubes for all d ≥ 3. The simplest way to describe these snakes
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is to list the coordinates of the centres ci of the cubes Ci, 1 ≤ i ≤ 8d − 1, in a Cartesian
coordinate system whose axes are parallel to the sides of the cubes. Let e1, e2, . . . , en denote
the coordinate unit vectors of such a coordinate system. The centre of the first cube is

c1 = −e1.

For 1 ≤ i ≤ d− 1,

c4i−2 = −2ei,

c4i−1 = −2ei − ei+1,

c4i = −2ei − 2ei+1,

c4i+1 = −ei − 2ei+1.

The centres of the next four cubes are

c4d−2 = −2ed,

c4d−1 = e2 − 2ed,

c4d = 2e2 − 2ed,

c4d+1 = 2e2 − ed.

For 2 ≤ i ≤ d− 1,

c4d+4i−6 = 2ei,

c4d+4i−5 = 2ei + ei+1,

c4d+4i−4 = 2ei + 2ei+1,

c4d+4i−3 = ei + 2ei+1.

Finally, the centres of the last six cubes are

c8d−6 = 2ed,

c8d−5 = e1 + 2ed,

c8d−4 = 2e1 + 2ed,

c8d−3 = 2e1 + ed,

c8d−2 = 2e1,

c8d−1 = e1.

To prove that the above cubes indeed form a facet-to-facet snake it is enough to observe that:

(1) For any two consecutive cubes there is exactly one coordinate in which their centres
differ. The difference in this coordinate is one, i.e. the dimension of the intersection of
the cubes is d− 1.

(2) If the difference between the indices of two cubes is two then either there is exactly one
coordinate or there are exactly two coordinates in which their centres differ. In the first
case the difference in the coordinate is two, i.e. the cubes are disjoint. In the second
case the difference in both coordinates is one, i.e. the dimension of the intersection of
the cubes is d− 2.
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(3) If the difference between the indices of two cubes is at least three then there is a
coordinate in which their centres differ by at least two, i.e. the cubes are disjoint.

We can continue the snake at C1 neither parallel to the axis of direction e1 because of the
presence of C2 and C8d−1, nor parallel to the axis of direction ei because of the presence of
C4i−2 and C4d−4i+6, 2 ≤ i ≤ d. Similarly, we can continue the snake at C8d−1 neither parallel
to the axis of direction e1 because of the presence of C1 and C8d−2, nor parallel to the axis
of direction ei because of the presence of C4i−2 and C4d−4i+6, 2 ≤ i ≤ d. Therefore the above
snake is maximal.
We note that the above construction coincides with the construction given on the left

hand side of Figure 2 for d = 3. We also note that one can generalize the construction given
on the right hand side of Figure 2 as well for all d ≥ 3.

3. Proof of Theorem 1

In what follows facet-to-facet snakes of d-dimensional unit cubes will be briefly called snakes.
Consider a snake C = 〈C1, C2, . . . , Cn〉. Let e1, . . . , ed denote the coordinate unit vectors of
a Cartesian coordinate system whose axes are parallel to the edges of the cubes in C. With
the snake C we can associate a sequence V = 〈v1, . . . , vn−1〉 of unit vectors parallel to the
coordinate axes so that Ci+1 = vi + Ci, i = 1, 2, . . . , n − 1. Thus |C| = |V | + 1 holds. We
mention a simple property of C and V .

Proposition 1. For 1 ≤ i < j ≤ n either Ci ∩ Cj = ∅ or dim(Ci ∩ Cj) = d + i − j. In
addition, in the latter case the vectors vi, vi+1, . . . , vj−1 are mutually orthogonal.

Proof. If Ci ∩Cj 6= ∅ then dim(Ci ∩Cj) ≤ d+ i− j by definition. The projections of Ci and
Cj on the coordinate axes are also not disjoint and dim(Ci ∩ Cj) is equal to the number k
of axes where the projections of Ci and Cj coincide. If the projections of Ci and Cj do not
coincide on a coordinate axis then at least one of the vectors vi, vi+1, . . . , vj−1 is parallel to
this axis from which d − k ≤ j − i. Together with the previous inequality this implies that
dim(Ci ∩ Cj) = d+ i− j and the vectors vi, vi+1, . . . , vj−1 are mutually orthogonal. �

Corollary 1. For 1 ≤ i < j < k ≤ n the inequality dim(Ci ∩Ck) ≤ dim(Ci ∩Cj) holds with
equality if and only if both Ci ∩ Ck and Ci ∩ Cj are empty.

Our strategy for proving that any maximal snake consists of at least 8d − 1 cubes will be
the following. Consider a maximal snake C. With this snake we associate the subsequences
V1, . . . , Vd of V consisting of vectors parallel to e1, . . . , ed, respectively. We will show that
there are at most five axes such that the corresponding subsequences Vi consist of at most
seven elements. Then the proof will be completed by a rather technical case-by-case analysis
based on the number and the structure of the subsequences Vi consisting of at most seven
elements.
First we introduce the concept of blocking. If C = 〈C1, C2, . . . , Cn〉 is a maximal snake

then for each e = ±em, m = 1, . . . , d there exists a cube Ci in C which intersects e + C1 in
a face of dimension at least max{d − i + 1, 0}. In this case we will say that C1 is blocked
by Ci from direction e. Project Ci, C1, e + C1 onto the coordinate axis of direction e. Since
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(e+C1)∩Ci 6= ∅ the same holds for their projections as well. There are three different cases,
(1) the projections of 2e+C1 and Ci coincide, (2) the projections of e+C1 and Ci coincide,
(3) the projections of C1 and Ci coincide. Since the projections of e + C1 and C1 on the
other coordinate axes coincide therefore the projections of C1 and Ci on the other coordinate
axes intersect each other. Thus in the second and third cases C1 ∩ Ci 6= ∅ which implies
that i ≤ d+ 1 in these cases. Observe that the third case cannot occur because in this case
dim((e+C1)∩Ci)+1 = dim(C1∩Ci) = d− i+1, i.e. C1 is not blocked by Ci from direction
e, a contradiction. The second case may occur of course. Similar things hold for Cn as well.
The above discussion easily implies that C1 ∩ Cn = ∅ and no cube in C intersects both

C1 and Cn.
Since C1∩Cn = ∅ therefore there exists at least one coordinate axis where the projections

of C1 and Cn are disjoint. The axes with this property will be called primary axes while the
axes where the projections of C1 and Cn are not disjoint will be called secondary axes. As
we have already mentioned, with the snake C we can associate the subsequences V1, . . . , Vd
of V consisting of vectors parallel to e1, . . . , ed, respectively. Instead of the vectors of these
subsequences we will also use the sign + when the vector is identical with the corresponding
coordinate unit vector and the sign − otherwise.
We distinguish four types P1–P4 of subsequences associated with the primary axes. Con-

sider the projections of the centres of the cubes in C on a primary axis. For the sake of
simplicity assume that the direction of this axis is e1. Let A and B denote the centres of
the projections of C1 and Cn, respectively. Without loss of generality we may assume that−−→
AB = te1 where t ≥ 2 is the distance between A and B. Let D,C,E, F be points on the
axis of direction e1 such that

−−→
DC =

−−→
CA =

−−→
BE =

−−→
EF = e1. The cube C1 is blocked from

−e1 by a cube in C and the projection of the centre of this cube is C or D. Similarly, the
cube Cn is blocked from e1 by a cube in C and the projection of the centre of this cube is E
or F .

Type P1. The projection of C goes through both D and F . Then |V1| ≥ t+8 with equality
if and only if V1 = 〈−,−,+,+, . . . ,+,+,−,−〉 where the number of the + signs is t+ 4.

Type P2. The projection of C goes through F and avoids D. The projection of the centre
of the cube in C which blocks C1 from −e1 must be C. Therefore this cube intersects
C1. This implies that the first element of V1 is − and before the first vector of V1 there
cannot be two identical vectors in V . Now |V1| ≥ t + 6 with equality if and only if V1 =
〈−,+,+, . . . ,+,+,−,−〉 where the number of the + signs is t+ 3.

Type P3. The projection of C goes through D and avoids F . The projection of the centre
of the cube in C which blocks Cn from e1 must be E. Therefore this cube intersects Cn. This
implies that the last element of V1 is − and after the last vector of V1 there cannot be two iden-
tical vectors in V . Now |V1| ≥ t+6 with equality if and only if V1 = 〈−,−,+,+, . . . ,+,+,−〉
where the number of the + signs is t+ 3.

Type P4. The projection of C avoids both F andD. Here both the first and the last elements
of V1 are −. Now |V1| ≥ t+ 4 with equality if and only if V1 = 〈−,+,+, . . . ,+,+,−〉 where
the number of the + signs is t+ 2.

We also distinguish six types S1–S6 of the subsequences associated with the secondary
axes. Consider the projections of the centres of the cubes in C on a secondary axis. For the
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sake of simplicity assume again that the direction of this axes is e1. Let A and B denote the
centres of the projections of C1 and Cn, respectively.
In the first two types S1, S2 the points A and B coincide. Without loss of generality

we may assume that the first element of V1 is −e1. Let D,C,E, F be points on the axis of
direction e1 such that

−−→
DC =

−−→
CA =

−−→
BE =

−−→
EF = e1. The cube C1 is blocked from −e1

by a cube in C and the projection of the centre of this cube is C or D. Similarly, the cube
Cn is blocked from e1 by a cube in C and the projection of the centre of this cube is E or F .
Obviously, the cube in C blocking C1 from e1 does not intersect C1 hence the projection of C
cannot avoid F .

Type S1. The projection of C goes through both D and F . Then |V1| ≥ 8 with equality if
and only if V1 = 〈−,−,+,+,+,+,−,−〉.

Type S2. The projection of C avoids D and goes through F . In this case the cubes in C
blocking C1 and Cn from −e1 intersect C1 and Cn, respectively. This implies that the first
two and the last two elements of V1 are −,+ and it cannot be two identical vectors in V
before the first and after the last vector of V1. Thus |V1| ≥ 8 with equality if and only if
V1 = 〈−,+,+,+,−,−,−,+〉.

In the remaining four types S3–S6 the points A and B do not coincide. Without loss of
generality we may assume that

−−→
AB = e1. Let D,C,E, F be points on the axis of direction

e1 such that
−−→
DC =

−−→
CA =

−−→
BE =

−−→
EF = e1. The cube C1 is blocked from −e1 by a cube in

C and the projection of the centre of this cube is C or D. Similarly, the cube Cn is blocked
from e1 by a cube in C and the projection of the centre of this cube is E or F .

Type S3. The projection of C goes through both D and F . Then |V1| ≥ 9 with equality if
and only if V1 = 〈−,−,+,+,+,+,+,−,−〉.

Type S4. The projection of C goes through F and avoids D. Here the first two elements
of V1 are −,+ and it cannot be two identical vectors in V before the first vector of V1. Now
|V1| ≥ 7 with equality if and only if V1 = 〈−,+,+,+,+,−,−〉.

Type S5. The projection of C goes through D and avoids F . Here the last two elements
of V1 are +,− and it cannot be two identical vectors in V after the last vector of V1. Now
|V1| ≥ 7 with equality if and only if V1 = 〈−,−,+,+,+,+,−〉.

Type S6. The projection of C avoids both F and D. The first two elements of V1 are
−,+ while the last two elements are +,−, and there cannot be two identical vectors in V
before the first and after the last vector of V1. Now |V1| ≥ 5 with equality if and only if
V1 = 〈−,+,+,+,−〉. Here we mention that if |V1| 6= 5 then |V1| ≥ 7 with equality if and
only if V1 is 〈−,+,−,+,+,+,−〉, 〈−,+,+,−,+,+,−〉, or 〈−,+,+,+,−,+,−〉.

The following simple observation will be used frequently in the proof.

Lemma 1. For the vectors of V , if vi = −vj for some 1 ≤ i < j ≤ n− 1 then one can find
two indices i < k < l < j such that vk = vl.

Proof. It is enough to prove the lemma when vm ⊥ vi for all i < m < j. First we show that
there exist two indices i < k′ < l′ < j such that vk′ ‖ vl′ . If this is not true then vk′ ⊥ vl′ for all
i < k′ < l′ < j which implies that dim(Ci∩Cj) = d+i−j. Thus dim(Ci∩Cj+1) = d+i+1−j,
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a contradiction. Now, if vk′ = vl′ then we are done. On the other hand, if vk′ = −vl′ then we
can repeat the above argument with i = k′ and j = l′. �

Corollary 2. The first two vectors cannot be opposite in all V1, . . . , Vd.

The next three lemmas will show that there are at most five axes such that the corresponding
subsequences Vi consist of at most seven elements.

Lemma 2. If there is a subsequence Vi corresponding to a primary axis which consists of at
most seven elements then the other subsequences corresponding to the primary axes consist
of at least nine elements.

Proof. If we have only one primary axis then there is nothing to prove. Without loss of
generality we may assume that i = 1 and V2 also corresponds to a primary axis. Now
V1 = 〈−,+,+, . . . ,+,+,−〉 where the number of the + signs is 4 or 5. Obviously, if the
first element of V2 is + then |V2| ≥ 10 and we are done. Thus we may assume that the first
element of V2 is −. Let t1 and t2 be the distances between the projections of C1 and Cn on
the axes of direction e1 and e2, respectively.
If t2 ≥ 3 then consider the projection of the snake on the plane of e1 and e2 (see Figure 3).

Figure 3.

Using the notations of Figure 3 the projection of C1 is the square L. The cube C1 is blocked
from e1 and from e2 by cubes Ci and Cj in C, respectively. The projection of Ci is P , M , or
K while the projection of Cj is H, I, or J , since the first element of V1 and V2 is − and thus
both C1 ∩Ci and C1 ∩Cj are empty. Then j < i because of the structure of V1. This implies
that V2 6= 〈−,+,+, . . . ,+,+,−〉 from which |V2| ≥ t2 + 6 ≥ 9.
If t2 = 2 and t1 = 3 then consider the projection of the snake on the plane of e1 and e2

(see Figure 4).

Figure 4.

Using the notations of Figure 4 the projections of C1 and Cn are L and N , respectively. The
cube C1 is blocked from e2 by a cube Ci and the cube Cn is blocked from −e2 by a cube
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Cj. The projection of Ci is P , M , or K while the projection of Cj is H, I, or J . Then
i < j because of the structure of V1. This implies that |V2| ≥ 10 with equality if and only if
V2 = 〈−,+,+,+,−,−,+,+,+,−〉.
Finally, if t2 = 2 and t1 = 2 then consider the projection of the snake on the plane of e1

and e2 (see Figure 5).

Figure 5.

Using the notations of Figure 5 the projections of C1 and Cn are L and N , respectively. The
cube C1 is blocked from e2 by a cube Ci and the cube Cn is blocked from −e2 by a cube Cj.
The projection of Ci is P , M , or K while the projection of Cj is H, I, or J . If i < j then
using a similar argument as before we conclude that |V2| ≥ 10. On the other hand, if i > j
then consider a cube Ck which blocks C1 from e1 and a cube Cl which blocks Cn from −e1.
The projection of Ck is S, I, or T while the projection of Cl is G, M , or R. Then i < k and
l < j because of the structure of V1. Together with i > j these imply that l < k from which
|V2| ≥ 10 with equality if and only if V2 = 〈−,+,+,−,+,+,−,+,+,−〉. �

To formulate the next two lemmas we need a definition. A secondary axis will be called a
bad secondary axis if the subsequence corresponding to this axis consists of at most seven
elements. Recall that there are only six possibilities for bad secondary axes:

〈−,+,+,+,+,−,−〉,

〈−,−,+,+,+,+,−〉,

〈−,+,+,+,−〉,

〈−,+,−,+,+,+,−〉,

〈−,+,+,−,+,+,−〉,

〈−,+,+,+,−,+,−〉.

Lemma 3. There are at most two bad secondary axes of the forms

〈−,+,+,+,+,−,−〉,

〈−,+,+,+,−〉,

〈−,+,+,−,+,+,−〉,

〈−,+,+,+,−,+,−〉.

In addition, if there are exactly two bad secondary axes of the above forms then the first
element of each subsequence associated with a primary axis is +.
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Lemma 4. There are at most two bad secondary axes of the forms

〈−,−,+,+,+,+,−〉,

〈−,+,+,+,−〉,

〈−,+,+,−,+,+,−〉,

〈−,+,−,+,+,+,−〉.

In addition, if there are exactly two bad secondary axes of the above forms then the last
element of each subsequence associated with a primary axis is +.

By symmetry, it is enough to prove Lemma 3 only.

Proof of Lemma 3. If we have at most one secondary axis of the form described in the lemma
then there is nothing to prove. Thus we may assume, without loss of generality, that the
axes of direction e1 and e2 are bad secondary axes of the forms described in the lemma. We
may also assume that the first vector of V1 is before the first vector of V2 in the sequence V .
Consider the projection of the snake on the plane of e1 and e2 (see Figure 6).

Figure 6.

Using the notations of Figure 6 the projections of C1 and Cn are L and N , respectively.
The cube Cn is blocked from −e1 and −e2 by a cube Ci and a cube Cj, respectively. The
projection of Ci is P ,M , orK while the projection of Cj is H, I, or J . Any cube in C blocking
C1 from the direction −e2 must intersect C1 because of the structure of V2. This implies that
it cannot be two parallel vectors in V before the first vector of V2. Now there exists a cube
in C whose projection on the plane of e1 and e2 is the square G. Among these cubes let Ck
be that one whose index is minimal. Then the first vector in V2 is vk−1. Observe that k < j
and the projections of the cubes in C whose indices are greater than j are on the right of
the line l separating the squares K and L because of the structure of V1. Moreover, none
of the vectors vk, . . . , vj−1 belongs to V2 because of the structure of V2. This immediately
yields i < k. Since Cn is blocked by Ci therefore the projections of Ci and Cn intersect each
other on the axes of direction different from e1, especially on every primary axis. Since there
do not exist two parallel vectors in V before the first vector of V2, therefore the projections
of C1 and Ci intersect each other on every axis. Thus the distance between the projections
of the centres of C1 and Cn on the primary axes is exactly two and the first element of
each subsequence associated with the primary axes is +. In addition, the first element of
V2 is after the first element of the subsequences associated with the primary axes in V . Let
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vs denote the first element in V1. Obviously s ≤ i − 1. Furthermore s < i − 1 otherwise
Ci−1∩Cn 6= ∅, a contradiction. The projections of Cs and Cn on the secondary axes intersect
each other. Indeed, this is trivial for the axis of direction e1 while on the other secondary
axes the projections of C1 and Ci intersect the projection of Cn and thus the projections of
the cubes in C between C1 and Ci also intersect the projection of Cn since there do not exist
two parallel vectors in V before vi−1. Combining this with the fact that Cs ∩ Cn = ∅ we
obtain that there is a primary axis on which the projections of Cs and Cn are disjoint. The
index of the first vector in the subsequence associated with such a primary axis is greater
than s because the first element of the subsequence associated with any primary axis is +.
Without loss of generality we may assume that V3 is that subsequence whose first vector is
the last one in V among the first vectors of the subsequences associated with the primary
axes. It is clear that V3 is independent from the choice of V1 and V2, i.e. from the two bad
secondary axes chosen at the beginning. Furthermore, the first element of V3 is between the
first elements of V1 and V2 in V . This implies that a third bad secondary axis of the forms
described in the lemma different from V1 and V2 cannot occur. �

By Lemma 3 and Lemma 4 there are at most four bad secondary axes. We distinguish five
different cases with respect to the number of the bad secondary axes.

Case 1. There are four bad secondary axes. Then the subsequences associated with these
axes consist of seven elements and both the first and the last element in the subsequences
associated with the primary axes are +. This implies that the subsequences associated with
the primary axes consist of at least 14 elements from which |V | ≥ 4·7+14+(d−5)·8 = 8d+2
follows.

Case 2. There are three bad secondary axes. Then at least two of the subsequences asso-
ciated with these axes consist of seven elements. In the subsequences associated with the
primary axes the first or the last element is +. This implies that the subsequences associated
with the primary axes consist of at least 10 elements. If there is a five-element subsequence as-
sociated with a bad secondary axis then in the subsequences associated with the primary axes
both the first and the last element are + from which |V | ≥ 5+7+7+14+(d−4) ·8 = 8d+1
follows. On the other hand, if the subsequences associated with the bad secondary axes
consist of seven elements then |V | ≥ 7 + 7 + 7 + 10 + (d− 4) · 8 = 8d− 1.

Case 3. There are two bad secondary axes. We may assume that V1 and V2 are associated
with these axes. We may also assume, without loss of generality, that |V1| ≤ |V2|.

Case 3.1. |V1| = |V2| = 5. Then both the first and the last element in the subsequences
associated with the primary axes are + from which |V | ≥ 5 + 5 + 14 + (d− 3) · 8 = 8d.

Case 3.2. |V1| = 5 and |V2| = 7. Then the first or the last element in the subsequences
associated with the primary axes is +. This implies that |V | ≥ 5+7+10+(d−3) ·8 = 8d−2.

Case 3.3. |V1| = |V2| = 7 and the two bad secondary axes belong to the same group
among the two groups introduced in Lemma 3 and Lemma 4. Then the first or the last
element in the subsequences associated with the primary axes is +. This implies that |V | ≥
7 + 7 + 10 + (d− 3) · 8 = 8d.
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Case 3.4. |V1| = |V2| = 7 and the two bad secondary axes belong to different groups among
the two groups introduced in Lemma 3 and Lemma 4. Without loss of generality we may as-
sume that V1 is 〈−,+,+,+,+,−,−〉 or 〈−,+,+,+,−,+,−〉 while V2 is 〈−,−,+,+,+,+,−〉
or 〈−,+,−,+,+,+,−〉. If the subsequences associated with the primary axes consist of
at least 8 elements then we are done. Therefore assume that there is a subsequence, say
V3, associated with a primary axis such that |V3| ≤ 7. Then V3 is 〈−,+,+,+,+,−〉 or
〈−,+,+,+,+,+,−〉.

Case 3.4.1. There is one more primary axis besides the axis of direction e3. Without loss
of generality we may assume that this axis is of direction e4. Then, by Lemma 2, |V4| ≥ 9.
If |V3| = 7 then we are done. Otherwise V3 = 〈−,+,+,+,+,−〉. Consider the projection of
the snake on the plane of e1 and e3 (see Figure 7).

Figure 7.

Using the notations of Figure 7 the projections of C1 and Cn are L and N , respectively.
The cube Cn is blocked from −e1 and −e3 by a cube Ci and a cube Cj, respectively. The
projection of Ci is P , M , or K while the projection of Cj is H, I, or L. Then j < i because
of the structure of V3. Moreover, the projection of Cj is L because of the structure of V1.
The projections of Cj and Cn on the axis of direction e4 intersect each other since Cj blocks
Cn from −e3. On the other hand, the projections of C1 and Cn on the axis of direction e4
are disjoint since the axis of direction e4 is a primary axis. These observations imply that
C1 and Cj are different cubes. The vector vj−1 is before the first element of V1 in V because
of the structure of V1. This implies that there are no two parallel vectors in V before vj−1.
Therefore the first element in V4 is + from which V4 is of type P1 or P3. Moreover, the
distance between the projections of the centres of C1 and Cn is two. Thus |V4| ≥ 10 since
|V4| is an even number and V4 6= 〈−,−,+,+,+,+,+,−〉. Summing up the vectors of the
subsequences we obtain that |V | ≥ 7 + 7 + 6 + 10 + (d− 4) · 8 = 8d− 2.

Case 3.4.2. There is no primary axis besides the axis of direction e3. Consider the projection
of the snake on the plane of e1 and e3 (see Figure 8). Here Figures 8a and 8b correspond to
the cases where |V3| = 6 and |V3| = 7, respectively.
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Figure 8.

Using the notations of Figure 8 the projections of C1 and Cn are L and N , respectively. The
cube C1 is blocked from e1 by a cube Ci and the cube Cn is blocked from −e1 by a cube Cj.
The projection of Ci is P , M , or K while the projection of Cj is H, I, or J . It is clear that
j < i because of the structure of V1. If |V3| = 7 then this is impossible because of the structure
of V3. Therefore |V3| = 6 and the projections of Ci and Cj are K and H, respectively. Now
C1 and Cj are disjoint therefore there is an axis, say the axis of direction ek, k 6= 1, 3, on
which the projections of C1 and Cj are also disjoint. The projections of Cj and Cn on the
axis of direction ek are not disjoint since Cn is blocked by Cj, therefore the projection of C1
and Cn on this axis cannot coincide. Thus the axis of direction ek is a secondary axis of type
different from S1 or S2. The projections of cubes blocking Cn from ek and −ek intersects the
projection of Cn on the plane of e1 and e3. Therefore these cubes are after Cj in C from which
k 6= 2 follows taking the structure of V2 into account. Repeating the above argument with
Cn and Ci instead of C1 and Cj, respectively, we again find an axis, say the axis of direction
el where l 6= 1, 2, 3, on which the projections of Cn and Ci are disjoint. This axis is again not
of type S1 or S2. If k 6= l then |V | ≥ 7 + 7 + 6 + 9 + 9 + (d− 5) · 8 = 8d− 2. On the other
hand, if k = l then the projections of Ci, C1, Cn, Cj are in this order on the axis of direction
el and j < i. This implies that |Vk| ≥ 11 from which |V | ≥ 7+7+6+11+(d−4) ·8 = 8d−1.

Case 4. There is only one bad secondary axis. We may assume that V1 is associated with
this axis.

Case 4.1. |V1| = 7. If there is a Vk consisting of at least 9 elements then we are done.
Therefore assume that |Vr| ≤ 8 for all 1 ≤ r ≤ d. If the sequences associated with the
primary axes consist of at least 7 elements then we are again done. Thus we assume that
there is a sequence, say V2, associated with a primary axis which consists of 6 elements. By
Lemma 2 this is the only primary axis. Consider the projection of the snake on the plane of
e1 and e2 (see Figure 9).

Figure 9.

Using the notations of Figure 9 the projections of C1 and Cn are L and N , respectively. The
cube C1 is blocked from e1 by a cube Ci and the cube Cn is blocked from −e1 by a cube Cj.
The projection of Ci is P , M , or K while the projection of Cj is H, I, or J . Then j < i
because of the structure of V1 and the projections of Ci and Cj are K and H, respectively.
Now C1 and Cj are disjoint therefore there is an axis, say the axis of direction ek, on which
the projections of C1 and Cj are also disjoint. It is clear that k 6= 1, 2. The projections of Cj
and Cn on the axis of direction ek are not disjoint, therefore the projections of C1 and Cn on
this axis cannot coincide. Thus the axis of direction ek is a secondary axis of type different
from S1 or S2. This implies that |Vk| is an odd number and thus |Vk| ≥ 9, a contradiction.
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Case 4.2. |V1| = 5. Then V1 = 〈−,+,+,+,−〉.

Case 4.2.1. There is a primary axis such that the subsequence, say V2, associated with this
axis consists of at most 7 elements. Consider the projection of the snake on the plane of e1
and e2 (see Figure 10). Here Figures 10a and 10b correspond to the cases where |V2| = 6 and
|V2| = 7, respectively.

Figure 10.

Using the notations of Figure 10 the projections of C1 and Cn are L and N , respectively.
The cube C1 is blocked from e1 by a cube Ci and the cube Cn is blocked from −e1 by a
cube Cj. The projection of Ci is P , M , or K while the projection of Cj is H, I, or J . It is
clear that j < i because of the structure of V1. If |V2| = 7 then this is impossible because
of the structure of V2. Therefore |V2| = 6 and the projections of Ci and Cj are K and H,
respectively.
If there is one more primary axis then the subsequence, say Vl, associated with this axis

starts and ends with +. Indeed, let Ck be a cube in C which blocks Cn from −e2. The
projections of Ck and Cn on the axis of direction e2 are disjoint since the last element of V2
is −. Then k < j because of the structure of V2. Thus the projection of Ck on the plane of
e1 and e2 is L because of the structure of V1. The projections of Ck and Cn on the axis of
direction el intersect each other since Ck blocks Cn. On the other hand, the projections of
C1 and Cn on the axis of direction el are disjoint since the axis of direction el is a primary
axis. These observations imply that C1 and Ck are different cubes. The vector vk−1 is before
the first element of V1 in V because of the structures of V1. This implies that there are
no two parallel vectors in V before vk−1. Therefore the first element in Vl is +. Repeating
the above argument with a cube of C which blocks C1 from e2 we obtain that Vl also ends
with + from which Vl is of type P1 and thus |Vl| ≥ 14 with equality if and only if Vl is
〈+,−,−,−,+,+,+,+,+,+,−,−,−,+〉 or 〈+,+,+,+,−,−,−,−,−,−,+,+,+,+〉. Thus
|V | ≥ 5 + 6 + 14 + (d− 3) · 8 = 8d+ 1.
Therefore assume that the only primary axis is the axis of direction e2. Now there is

an axis, say the axis of direction e3, on which the projections of C1 and Cj are also disjoint
since C1 and Cj are disjoint. The projections of Cj and Cn on the axis of direction e3 are
not disjoint therefore the projection of C1 and Cn on this axis cannot coincide. Thus the
axis of direction e3 is a secondary axis of type different from S1 or S2. Assume that |V3| = 9
otherwise |V | ≥ 5 + 6 + 11 + (d − 3) · 8 = 8d − 2 and we are done. Let Cm be a cube in C
which blocks Cn from −e3. The projections of Cm and Cn on the plane of e1 and e2 are not
disjoint which implies that m > j. The projections of Cm and Cn on the axis of direction e3
are not disjoint since |V3| = 9. Thus V3 = 〈−,+,+,+,+,−,−,−,+〉.
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Similar argument for Ci and Cn shows that there exists a secondary axis, say the axis
of direction e4, such that V4 = 〈+,−,−,−,+,+,+,+,−〉. Assume that |Vr| = 8 for all
5 ≤ r ≤ d otherwise |V | = 5 + 6 + 9 + 9 + 9 + (d − 5) · 8 = 8d − 2 and we are done. This
implies that the axes of directions e5, . . . , ed are of types S1 or S2. The first two vectors in V2
are opposite hence, by Lemma 3, between these two vectors there exist two identical vectors
in V . Therefore there exists a subsequence, say V5, whose first two elements are identical
and are before the second vector of V2 in V . Also, the first two vectors of V5 are before vj
in V . In fact, the first three vectors of V5 are before vj in V since the projections of Cj
and Cn on the axis of direction e5 are not disjoint. The cube blocking Cn from −e5 is after
Cj in C since the projection of this cube intersects the projection of Cn on the plane of e1
and e2. But this is impossible since there are at least three vectors of V5 before vj in V and
V5 = 〈−,−,+,+,+,+,−,−〉.

Case 4.2.2. The subsequences associated with the primary axes consist of at least 8 elements.
Assume that |Vr| = 8 for all 2 ≤ r ≤ d otherwise |V | = 5+9+(d− 2) · 8 = 8d− 2 and we are
done. This implies among others that the secondary axes are of types S1 or S2. Let V2 be a
subsequence associated with a primary axis of type P2, P3, or P4. Then either the first four
elements of V2 are −,+,+,+ or the last four elements of V2 are +,+,+,−. By symmetry,
we may assume that the first four elements of V2 are −,+,+,+. Consider the projection of
the snake on the plane of e1 and e2 (see Figure 11). Here Figures 11a and 11b correspond
to the cases where the distance between the projections of the centers of C1 and Cn on the
axis of direction e2 is two and four, respectively (note that this distance cannot be an odd
number).
Using the notations of Figure 11 the projections of C1 and Cn are L and N , respectively.

The cube C1 is blocked from e1 by a cube Ci and the cube Cn is blocked from −e1 by a cube
Cj. The projection of Ci is P , M , or K while the projection of Cj is H, I, or J . It is clear
that j < i because of the structure of V1.

Figure 11.

The situation on Figure 11b cannot occur because of the structure of V2. Now, the projections
of Ci and Cj are K and H, respectively. Let Ck be a cube in C which blocks Cn from −e2.
The projections of Ck and Cn on the axis of direction e2 are disjoint since the last element
of V2 is −. Thus the projection of Ck on the plane of e1 and e2 is L taking the structures
of V1 and V2 into account. This implies, as in Case 4.2.1, that the first elements of the
subsequences associated with the primary axes different from the axis of direction e2 are +
which is impossible since the number of elements of these subsequences is eight.
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Therefore the only primary axis is the axis of direction e2. The first two vectors in V2 are
opposite hence, by Lemma 3, between these two vectors there exist two identical vectors in
V . Therefore there exists a subsequence, say V3, whose first two elements are identical and
are before the second vector of V2 in V . Then V3 = 〈−,−,+,+,+,+,−,−〉 and the first two
vectors of V3 are before vj in V . In fact, the first three vectors of V3 are before vj in V since
the projections of Cj and Cn on the axis of direction e3 are not disjoint. The cube blocking
Cn from −e3 is after Cj in C since the projection of this cube intersect the projection of Cn
on the plane of e1 and e2. But this is impossible since there are at least three vectors of V3
before vj in V .

Case 5. There is no bad secondary axis. Then, by Lemma 2, all subsequences associated
with the axes consist of at least eight elements with at most one exception in which the
number of elements is at least six. Thus |V | ≥ 8d− 2.

This completes the proof. �
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