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Abstract. We classify n-dimensional multi-helicoidal submanifolds of nonzero con-
stant sectional curvature and cohomogeneity one in the Euclidean space R?"~!, that
is, n-dimensional submanifolds of nonzero constant sectional curvature in R?"~!
that are invariant under the action of an (n — 1)-parameter subgroup of isome-
tries of R?*~! with no pure translations. This is accomplished by first giving a
complete description of all these subgroups and then deriving a multidimensional
version of a lemma due to Bour. We also prove that such submanifolds are precisely
the ones that correspond to solutions of the generalized sine-Gordon and elliptic
sinh-Gordon equations that are invariant by an (n — 1)-dimensional subgroup of
translations of the symmetry group of these equations.
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1. Introduction

The classical correspondence between solutions of the sine-Gordon and elliptic sinh-Gordon
equations and surfaces in Euclidean three-space with constant negative and positive gaussian
curvature, respectively, was extended to higher dimensions in [1], [13] and [11], [7], respec-
tively, where similar correspondences were obtained between n-dimensional submanifolds
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M™(c) with constant negative or positive sectional curvature in (2n — 1)-dimensional Eu-
clidean space R?"~! and solutions of certain nonlinear systems of partial differential equations
called the generalized sine-Gordon and elliptic sinh-Gordon equations, respectively (cf. §5
below). These systems will be referred to hereafter as GSGE and GEShGE.

The symmetry groups of local Lie-point transformations of the n-dimensional GSGE and
GEShGE were determined in [14] and [8], [9], respectively, for n > 3. It was shown that they
are finite-dimensional and consist only of translations. Moreover, the class £ of all solutions
invariant by an (n — 1)-dimensional translation subgroup was explicitly described.

As pointed out in [2], it is in general a nontrivial problem to determine the submanifolds
associated to a particular class of solutions. For the special subclass of £ consisting of
solutions that depend on a single variable, this was done in [12] and [4] (see also [7] for more
general results), where the submanifolds were shown to be multi-rotational submanifolds with
curves as profiles. The general class of submanifolds associated to elements of £ was studied
in [2]. It was shown, among other things, that the submanifolds carry a foliation by flat
hypersurfaces, which are foliated themselves by curves with constant Frenet curvatures in
the ambient space. However, a classification has not been achieved.

In this paper we prove that these submanifolds are precisely the multi-helicoidal n-
dimensional submanifolds of nonzero constant sectional curvature and cohomogeneity one
in R?*~! that is, n-dimensional submanifolds of nonzero constant sectional curvature that
are invariant under the action of an (n — 1)-parameter subgroup of isometries of R?"~! with
no pure translations (see §2 for the precise definitions). Moreover, after providing a com-
plete description of these subgroups, we are able to give explicit parametrizations of all such
submanifolds. Our main tool is a multi-dimensional version of a lemma due to Bour ([3];
cf. also [6], pp. 129-130 and [5]), which is of independent interest and should have other
applications.

We point out that the aforementioned results in [2] were actually derived for submanifolds
of constant sectional curvature in arbitrary pseudo-Riemannian space forms. On the other
hand, our proof that solutions in £ correspond to multi-helicoidal submanifolds of cohomo-
geneity one (cf. Theorem 7 below) extends to this more general setting with minor changes.
However, classifying all (n — 1)-parameter subgroups of arbitrary pseudo-Riemannian space
forms and deriving the corresponding Bour’s-type lemmas would require a lengthy case-by-
case study which we do not undertake here.

2. (n — 1)-parameter subgroups of ISO(R?*"~1)

A k-parameter subgroup of isometries of R™ is a continuous homomorphism G : (R*, +) —

ISO(R™) into the isometry group of R™. A 1l-parameter subgroup of isometries R is said to

be generated by G if there is a = (ay,...,a;) € R¥ such that R(s) = G(sa) for any s € R.

We say that G' has no pure translations if no one-parameter subgroup R generated by G is a

pure translation, that is, given by R(s)(z) = = + sv for some v € R™ and all z € R™, s € R.
Let R?"~! be identified with the affine hyperplane

R2"1 = {(z1,...,29p) € RQ";:BQH =1}.

Denote
coskf@ sink0

R(Q’k):<—sink‘9 cosk@)’ L(¢’h):<(1) h1¢>
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and consider the (n — 1)-parameter subgroup F of ]IS@(R2"_1) given by

F(¢) = Fi(¢1) o...0 Fy1(n-1),
where ¢ = (¢1,...,¢n_1) € R* ' and Fi(¢;) € ISOR* "), 1 <i < n — 1, is represented by
the 2n x 2n matrix (R}, ..., R'"!, L;) with 2 x 2 diagonal blocks
' 0, j#1i

The action of F' has a simple description in terms of cylindrical coordinates ry,6;,...,7,_1,
0,_1,7 in R?! which are related to cartesian coordinates by

; L; = L(¢i, hi), ki,hi € R, k; #0.

(901, T2, ..., Lon—3, L2n—2, $2n—1) = (7“1 expifi,...,Th_1€xpil,_1, Z)

In fact, the orbit of a point P = (ry,0y,...,7,-1,0,_1,2) under F is the (n — 1)-dimensional
submanifold of R?"~! parametrized by

n—1
F(¢)(P) = (r1,01 + ki1, -, Tn1,0n 1+ kn1$n1,2 + Z hig;)

=1

with flat induced metric

n—1
ds* = 3" (kir} + h3)dg} + 3 hihydgido;.
=1 ij

Our first result shows that F is essentially the only (n—1)-parameter subgroup of ISO(R**™")
with no pure translations.

Theorem 1. Let G be an (n — 1)-parameter subgroup of isometries of R**~1 with no pure
translations. Then, there is H € O(2n — 1) and B € GL(R"™!) such that G(¢) = H ' o
F(B¢)o H for any ¢ € R"1.

Proof. Denote by I the component of the identity of ]IS@(]RZ"A) and by Z the Lie algebra of
I. Identify Z with the Lie algebra of the 2n x 2n-matrices

Uy
4 : 7At = _Aa ULy eey U2n—1 eR
Ugn—1
0 0

acting (as Killing fields) in R?*"~! by
((0,2), X) = X(0,2)"

for x € R?! and X € Z. Then, for X,Y € Z the Lie bracket [ , | of Z is given by
[X,Y] = XY —YX. It is easy to prove that X € Z is induced by a pure translation if and
only if X is nilpotent, that is, the endomorphism adx(Z) = [X, Z|, Z € Z, is nilpotent.
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Let G; be the 1-parameter subgroup generated by G given by G;(s) := G(se;), where
e1,...,e,_1 is the canonical basis of R""!. Then G;(s) = expsX; for some X; € Z, where
exp: Z — I is the exponential map. Since G;(s) o G;(t) = G;(t) o Gi(s) for all s,t € R, it
follows that [X;, X;] =0for 1 <i,5 <n—1. Let A be the commutative Lie subalgebra of Z
spanned by Xi,..., X, 1. By the Jordan-Chevalley decomposition theorem (Proposition of
[10], §4.2), we may write X; = S;+ N;, where N; is nilpotent and S; is semisimple, that is, the
operator adg, is diagonalizable over C. We observe that Sy, ..., S,_; are linearly independent
vectors, otherwise G would contain a pure translation, contrary to the hypothesis. Since any
endomorphism commuting with X; commutes with S; and V;, it follows that the Lie algebra
IC spanned by 51, ..., S,_1 is commutative. Moreover, I is a Cartan subalgebra of Z, because
dim/C =n — 1.

Denote by E;, i = 1,...,n—1, the skew-symmetric matrix of Z having 1 at the (2: — 1, 27)
entry, -1 at the (2,2 — 1) entry and 0 at the other entries. We observe that each E; is
semisimple. Let H be the commutative (n — 1)-dimensional Lie subalgebra of Z spanned by
Ey,...,E, 4. Since 7 is a semisimple Lie algebra of rank n — 1 which has only one Cartan
subalgebra up to conjugation, there is H € I such that HKXH ' = H. For any given i,
it follows that HN;H ! commutes with all E;. Some matrix computations then show that
HN,H ' = a,F for some a;, where E € T has 1 at the (n — 1,n) entry and 0 at the other
ones. Thus

HAH™' Cspan{Ey,...,E, 1, E}.

One may find a basis Ry, ..., R,_1 of HAH~! such that
R, =kE; + hE
for some k;, h; € R, 1 <i<n—1. Let A= (a;;) € GL(R"!) be given by
n—1
Z a,-jHXjH_l = Rz
j=1
Set Hj = Zz a’z]qbz for ¢ - (¢17 R an—l) € Rn—l. Then;
G(Ap) = G(pa,- s pn-1) = Gi(pa) 0. 0 Gp1(pin-1)
= exp(mX1)o...oexp(n1Xn_1) = exp(d_ 1; X;),

hence 7
HoG(Ap)o H™' = exp(d uHX;H ™) = exp(d (D ayd) HX;H )
J j i
= exp(d_¢i(D_ai HX;H™Y)) = exp(d ¢iRi)
i j i
= F1(¢1)0---O n—l(gbn—l) :F(¢)7
and the conclusion follows by setting A = B~ O

We say that an isometric immersion f: M"™ — R2?"~! is a multi-helicoidal submanifold of
cohomogeneity one if it is invariant under the action of an (n — 1)-parameter subgroup G of
ISO(R* ), that is, there exists an (n — 1)-parameter subgroup T' of ISO(M") such that

G(p)o f = foT(¢), for any ¢ € R" 1.
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An isometric immersion g: M™ — R?"7! is said to be congruent to f if there exists H €
ISO(R**™") such that g = H o f.

Corollary 2. Any multi-helicoidal submanifold f: M™ — R2"1 of cohomogeneity one is
congruent to a submanifold that is invariant under the action of F.

Proof. Let G and T be (n—1)-parameter subgroups of HS@(RQn*l) and ISO(M"), respectively,
such that G(¢)o f = foT(¢) for any ¢ € R""1. By Theorem 1, there is H € Q(2n — 1) and
A € GLL(R"!) such that G(A¢) = H™* o F(¢) o H for any ¢ € R"1. Hence,

F(¢)o(Ho f)=(Hof)o(ToA)s),
thus H o f is invariant under F'. O

3. A Bour’s-type lemma

A parametrization X (s,t,...,t,_1) of a multi-helicoidal submanifold of cohomogeneity one
is said to be natural if the coordinate hypersurfaces s = sy € R are orbits of F' and the
induced metric has the form

n—1
do® = ds® + > U(s)*dt; + > hhjdt;dt;. (1)
i=1 i#j
We now prove the extension of Bour’s lemma referred to in the introduction.

Lemma 3. 1) Every multi-helicoidal submanifold M™ of cohomogeneity one in R*"~! has
locally a natural parametrization.
2) Suppose that Uy(s),...,U,_1(s) and hy,... h,1 € R satisfy U? > h?, 1 <i<n-—1, and

let \; = \i(s) be defined by
)\i — \/ Uz2 — h?

r— 1 ———
)\1:m Uf—h%, )\2:% Ug—h%, m%(),

if n = 3. Suppose further that 7= (\))? < 1 everywhere and define

ifn >4, and by

M(s) = [ 0(n)e(r) dr,

where
n—1 n—1 12
h;

PY(s) = |1= D (N)? and &(s)= 1+;§.

i=1
Finally, define ¢; = ¢;(s,t;), 1 <i<n—1, by
P()

o=t S
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ifn >4 and
oty [0 L, YD
b= b Seee 0w e
ifn=3. Then
n—1
X(S7t17 e ,tnfl) = ()\1, ¢1, ceey )\nfl, (ﬁnfl; )\n -+ Z hz¢z) (2)
i=1

is a natural parametrization of a multi-helicoidal submanifold of cohomogeneity one in R?"1
with induced metric given by (1).

Proof. 1) Let the intersection of M™ with the subspace
R" = {(Tlv 917 <oy -1, enfla Z)y 01 == enfl = 0}
be locally parametrized by the curve A\: (—¢,e) — R™, A = (Aq,..., \,), with X\;(p) > 0 for all

p € (—€,¢), 1 <i<n. Then, a local parametrization of M" is

n—1
X(P; ¢17 ey ¢n—1) = (/\1()0); ¢17 ceey A’rl—1(10)7 ¢n—1; An(P) + Z hz¢l)7
i=1

where we assumed k; = 1 for all 1 < ¢ < n — 1 after a change of coordinates. The metric
induced by X is

n n—1 n—1
do® = (X)’dp” + XS (A + h)de; + 2N, 3 hidpdy + 3 hihjdidd;,
=t =1 i=1 i
where the prime denotes derivative with respect to p. Let tq,...,t,_1 be locally defined by
dt; = d¢; — N, fidp,
where the functions f; = fi(p) are to be determined. Then
do? = (1 (N2 + (N2 0! fulha + g0)) dp? + S0 (A2 + h2)dt?
2N, S0 gidpdt; + 5 hihydtidt,
where
J#i
Let A = A(p) be the (n — 1) x (n — 1)-matrix with entries
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Since L
det A = T2 A7 + Y WIS > 0,
i=1
the linear system Af = —h, where h = (hy,...,h,_1)", has a solution f = (f1,..., fn_1)"
Therefore, the f/s can be chosen so that g; = 0 for all 1 < ¢ < n — 1. Explicitly, an easy
computation shows that

_hi n—142 hi
fi det AH]7£'L )\] - ? . (3)
Now observe that
(/\’ )? ni1y2
h;f; = N TN ,
i:Zl Z f Zzl ) detA =1 "% > 0

hence a function s = s(p) is locally well-defined by

n n—1 n—1 = 1y2
ds> = [ SN+ N2 hifi | dp* = > dA; + —= A d\2. (4)
i=1 i=1 i=1 det A
From
8(8 tl e n n-l
o )\;L 2 hzfl:
8<p,¢1,...,¢n 1) J; ( ) ;
we have that s,t;,...,t,_1 define locally a system of coordinates. Let

P = ,O(S,tl, Ce ,tn,1>, ¢l = ¢i(5,t1, e ,tnfl)

be the coordinate change. Since ds/0¢; = 0 for all 1 < ¢ < n — 1, the chain rule gives
Op/ot; = 0 for all 1 < i < n — 1. Therefore p = p(s) and, denoting UZ(s) = A?(p(s)) + hZ,
we conclude that

X(S,tl, Ce 7tn—1) = X(p(S),¢1(S,t1, e ,tn_l), P qbn_l(s,tl, e ;tn—l))

is a natural parametrization of M".

2) We look for functions \; and ¢; of s,t1,...,t, 1 satisfying

n—1 1
ds* = ) dN) + ————5d)\], (5)
=1 1+ 3000 5

and
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where f; is given by (3). Equation (5) implies that A; = A\;(s) for all 1 <+ <n and that

o = (1-Sowe) (1+ £ 5 ®)

=1

Equations (6) and (7) yield

o, Od; .

for n > 4 and )
A2+ h2, Uy=—\/A3+h3,
m
0p1  Opy 0 0p1 0py 1
- = = , —=m PR _
Oty oty

o, 0 Oty m
for some m # 0 if n = 3. In both cases,

Op; _ hy

A)?

7]
2

P—‘HA

and the proof follows. |

Remarks 4. 1) It follows from Lemma 3 that the orbits of a multi-helicoidal submanifold
M™ of cohomogeneity one in R?*~! provide a foliation of M™ by flat geodesically parallel hy-
persurfaces. Moreover, any such hypersurface is foliated itself by curves with constant Frenet
curvatures in the ambient space, namely, the orbits of the 1-parameter subgroups generated
by F. These are the properties that were shown in [2] to be satisfied by n-dimensional sub-
manifolds in R?"~! which are associated to solutions of the GSGE and GEShGE that are
invariant by an (n— 1)-dimensional translation subgroup of their symmetry groups. They fol-
low immediately from Theorem 7 below, according to which such submanifolds are precisely
the multi-helicoidal submanifolds of nonzero constant sectional curvature and cohomogeneity
one in R?"~1,

2) Suppose that G is an (n — 1)-parameter subgroup of isometries of R?"~! that contains
a pure translation, say, G(sa)(z) = x + sv for some vectors a € R"! v € R and all
x € R?1 s € R. Then, it is easily seen that any submanifold M™ that is invariant under
the action of G is isometric to an open subset of a Riemannian product M"™ ! x R, the one-
dimensional leaves of the product foliation correspondent to the R-factor being immersed as
straight lines in R?"~! parallel to v.

4. Multi-helicoidal submanifolds of constant curvature

Our aim in this section is to classify n-dimensional multi-helicoidal submanifolds of coho-
mogeneity one and nonzero constant sectional curvature in R**~!. This follows by putting
together Lemma 3 and the following result.
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Lemma 5. Assume that the metric

n—1
do® = ds* + ) Uy(s)*dt; + Y h;hjdt;dt; (9)

i=1 i#j

has constant sectional curvature ¢ # 0.
1) If n > 4, then ¢ < 0, at most one of the h; is nonzero and, up to a coordinate change
s — +s+ sg, Us(s) = ueﬁs, where p; € R, 1 < i <n—1, satisfy X7 p? = 1.
2) If n = 3, then, up to a coordinate change s — +s + so, one of the following possibilities
holds:
a) ¢ <0, hiho = 0 and Ui(s) = eV =, where 1, o € R satisfy p? + p3 = 1.
b) hihe = 0 and Ui(s) = uip(ks), Ua(s) = ua¢'(ks), where ui,ps € R, k = \/H, o(s) =
cosh s orsinhs if ¢ <0 and ¢(s) = coss orsins if ¢ > 0.
c) hihy # 0 and

= B¢(2ks) + D, U; = a(B¢(2ks) — D),
where B* > D?, a = h3h3/(B* — D?), ¢(s) = coshs if ¢ < 0 and ¢(s) = coss or sins if
c>0.

Proof. Set g;; = (0/0t;,0/0t;), 1 <i,j < n — 1, where inner products are taken in the
metric do?. Thus, g; = U? and g;; = h;h; for i # j. We first show that do? having constant
sectional curvature c is equivalent to the system of equations

i) 29” (951)29” +4cg;; =0, 1<j<n-—1, (10)
i) gi95; +4c(gigi; — hz2h32) =0,1<it#j5<n—1,

where (¢g/) denotes the inverse matrix of (gij)-

The sectional curvature K (Z,-2-) along the plane spanned by 2 ot 0

ot is given by

95 Bt;
0 0 0 0 0
K(a at>gﬂ - <vtvé’s£_vasvgfi$ 8t>
0 10,0 0
55"~ 35 a ar)

= Vol —552\ar o,/

One can easily check that
0 kj
Vi s~ 2% Z 8tk

hence the first term on the right-hand-side of (11) equals

(95, |'"&< kj\2 = kj i
1 Z(g )gkk+zg 97 Gri
P 7k

The expression between brackets is easily seen to be equal to g//, hence K (%, %) = cif and
J
only if equation (10) i) holds.
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A similar computation shows that the sectional curvature K (8%, %_) along the plane
spanned by %, % is given by
i J

o 0 1
K — 1 (giigii — 9%) = —=q..q".,
( . atj> (931945 — 93;) 19i19i;

hence K (2, 2) = c is equivalent to (10) ii).
i J
Assume first that n > 4. Since M"™ has constant sectional curvature ¢ # 0 and the

coordinate hypersurfaces s = sy € R are flat, they must be umbilic in M™ and ¢ < 0. Hence

0 0

<v3iti(97ti’ %)

=v-cgi 1<i<n-1, (13)
up to a sign. By (12), the left-hand-side of (13) is equal to —(1/2)g.;, thus

gy =—-2vV—cgy, 1<i<n-—1

Replacing into (10) ii) yields h;h; =0 for all 1 <i # j <n — 1, and part 1) follows easily.
Assume now that n = 3. Then equations (10) reduce to

. (911)2922
i 2g], — —=2"2 4 degy; = 0,
) H 911922 — h%h% H
I \2
ii) 295 — (92) 01 +4cgar = 0, (14)

911922 — h%h%

iii)  g}1ghs +4c(gi1920 — AIR3) = 0.

Notice that the last equation implies that g}, and g5, are nowhere vanishing. Plugging it into
the others yields

922911 = —2c(g11922)" = 952911 (15)
which implies (g1,/d5,)" = 0. Thus, there exist a,b € R, a # 0, such that

922 = agu +b. (16)

From (16) and (15) we get

2ch
—=
Set D = —b/2a. Then g11(s) = ByY(2ks)+D, B # 0, k = y/|c|, and g22(s) = a(By(2ks)—D),
where, after a coordinate change s — +s + sy, we may assume that ¥ (s) = coss or sin s if
¢ > 0 and ¢(s) = cosh s, sinh s or e® if ¢ < 0. Replacing into (14) iii) gives

g1 + 4degin + 0.

P(aks) + (2R = g (D7 M), (7

where € = ¢/|c|. Then one of the following possibilities holds:
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i) D = hihy = 0; then ¢ < 0, ¥(s) = €® and a) holds.

ii) hihy = 0 # D; then B? = D? and v (s) = cosh s if ¢ < 0, which gives rise to case b).

iii) hihy # 0; then the right-hand-side of (17) equals 1, which implies that B> > D? a =
h2h3/(B? — D?) and ¢(s) = cosh s if ¢ < 0. Hence c¢) holds. O
Therefore, any n-dimensional multi-helicoidal submanifold M"(¢) of cohomogeneity one and
nonzero constant sectional curvature ¢ in R**~! can be parametrized in terms of cylindrical

coordinates in R?"~! by (2), where );, ¢; are given by Lemma 3 in terms of parameters h; and
functions U; as in Lemma 5. For instance, if n > 4 then M"(c) has a natural parametrization

X(S,tl, Ce ,tnfl) = ()\1(8), le(tl, S), )\2(8),?52, ey )\n,1<8),tn,1, )\n(8> + ]’L(bl),

where \i(s) = \/ple?ks —h2 \(s) = pe?*, 2 < i < n—1,k = /—¢, 0 'p? =1,
1=t — L [TeFG(T)dr, \(8) =y f§ "G (7)dr and

w1

\/c,u%e‘““ + [(1 + ch?)u? — ch?]e?ks — h2

Iu/%eZkS — h2

G(s) =

For h = 0, it reduces to the classical Schur’s n-dimensional pseudo-sphere of constant sectional
curvature c.

The submanifold M™(c) is isometric to an open subset of hyperbolic space H"(c) bounded
by two concentric horospheres. More precisely, Euclidean space R™ endowed with the metric
do? = ds* + S0 p2e?*sdt? k = /—c, S p? = 1, is a model of H"(c) in which the
coordinate hypersurfaces s = sy € R are horospheres with common center 2, the s-coordinate
curves being the orthogonal unit-speed geodesics through 2. The translations T'(¢), ¢ €
R"~! that leave the horospheres s = s, invariant form an (n — 1)-parameter subgroup of
isometries of (R", do?) such that F(¢) o X = X o T(¢). Hence, X sends each horosphere
s = Sp, So ranging on a certain open interval, onto an orbit of F.

Similarly, it is not difficult to check that the three-dimensional multi-helicoidal submani-
folds of constant sectional curvature ¢ < 0 (respectively, ¢ > 0) for which the functions Uy, U,
are given as in part 2b) or 2¢) of Lemma 5 are isometric to open subsets of hyperbolic space
H3(c) (respectively, Euclidean sphere S3(c)) bounded by two tubes over a common geodesic
~. Each intermediate tube over = is represented by a coordinate surface s = so, which is sent
by X onto an orbit of F'. The s-coordinate curves are the unit-speed geodesics orthogonal
to the family of geodesically parallel tubes. In particular, this clarifies all the assertions in
Theorem 3.1 of [2].

5. The GSGE and GEShGE

We denote by 0?"(c) either the hyperbolic space H?"(c) or the Lorentzian space form L?"(c)
of constant sectional curvature ¢, according to ¢ < 0 or ¢ > 0, respectively. Recall that the
index of relative nullity of a submanifold at a point x is the dimension of the kernel of its
second fundamental form a at x, whereas its first normal space at x is the subspace of the
normal space at x spanned by the image of . The following result was proved in [7].
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Theorem 6. Let M™(c) C Q*"(c) be a simply connected submanifold with flat normal bundle,
vanishing index of relative nullity and nondegenerate first normal bundle. Then M"(c) admits
a global principal parametrization X:U C R® — Q?"(c) with induced metric

ds* = vf du;, v; > 0, (18)
and a smooth orthonormal normal frame &, ...,&, such that its second fundamental form
and normal connection satisfy

g 0 1
a(ﬁui’ 87%) = 0305, Va%fj = hi;&i, (19)

where h;; = (1/v;)0v;/0u;. Moreover, the pair (v,h), where v = (v1,...,v,) and h = (h;;),
satisfies the completely integrable system of PDFEs

I hjiv;, I i il v =0,
0 i) du; §iVj ii) O, Ou; +§k: kiltkj + CUY;
I
Ohyy, Oh;; Oh;
7 :hzh . . ij ' i hl B — 0
iii) " ks iv) € P, +¢€; n +ekzk: khixr = 0,

where €, = (&, &) and 1 < i # j # k # i < n. Conversely, let (v,h) be a solution of
(I) on an open simply connected subset U C R™ such that v; > 0 everywhere, ¢, = —1 and
€, =1 for 2 < i <mn (respectively, ¢, = 1 for 1 < i < n). Then there exists an immersion
f: U — Q?"(c) with flat normal bundle, vanishing index of relative nullity and induced metric
ds* = S, v2du? of constant sectional curvature ¢ > 0 (respectively, ¢ < 0).

By embedding Euclidean space R?"~! as a totally umbilical hypersurface of Q%"(c), the above
result was used in [7] to show that simply connected submanifolds M™(c) of R*"~!  free of
weak-umbilics when ¢ > 0, are in correspondence with solutions of the system

1) %hjivj, 11) au: + aujj + zk: hkzhkj + CU;V; = 0,
(IT)
h;
iii) aaq,:f = hijhg, X vl =—1/c,

which is either the GSGE or the GEShGE, according to ¢ < 0 or ¢ > 0, respectively. Recall
from [11] that a point = € M"(c) is said to be weak-umbilic if there is a unit normal vector
¢ at x such that Ac = \/c I, where A, denotes the shape operator in the direction of (.

It was shown in [14] and [8], [9] that all solutions of the GSGE or the GEShGE, respec-
tively, that are invariant by an (n — 1)-dimensional translation subgroup of their symmetry
groups have the form

v; = Ui(€)7 hij = hij(f)a §= Zaiui- (20)
i=1

We now prove that the submanifolds that are associated to such solutions are precisely
the multi-helicoidal submanifolds of cohomogeneity one.
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Theorem 7. A solution of either the GSGE or the GEShGE (system (I1)) is invariant under
an (n—1)-dimensional translation subgroup of its symmetry group if and only if it is associated
to a multi-helicoidal submanifold of cohomogeneity one with constant sectional curvature c
and no weak-umbilics when ¢ > 0.

Proof. Assume first that M"(c) C R?"~! is a multi-helicoidal submanifold of cohomogeneity
one, constant sectional curvature c and free of weak-umbilics when ¢ > 0. We may consider
M™(c) isometrically immersed into ©*"(c) by embedding R?*"~! as a totally umbilical hyper-
surface of @%"(c). It is easily seen that M"(c) having no weak-umbilics as a submanifold of
R?7~1 is equivalent to the first normal spaces of M™(c) being everywhere nondegenerate as a
submanifold of ©?"(c).

Let X:U C R® — 0?"(c) be a principal parametrization of M™(c) given by Theo-
rem 6. Since every isometry of R**~! regarded as an umbilical hypersurface of Q%*(c), is
the restriction of an isometry of @**(c), we have that M"(c) C 0**(c) is invariant by an
(n — 1)-parameter subgroup of isometries of Q@*"(c), which we still denote by F. Endow U
with the metric ds* = Y, v? du? induced by X. We will show that the solution (v,h) of
system (II), v = (v1,...,vs), b = (hy;), associated to M"(c) has the form (20). Let T" be the
(n — 1)-parameter subgroup of isometries of (U, ds?) induced by F', that is,

XoT(¢)=F(¢)o X
for all ¢ € R Then, the second fundamental forms of X and X o T(¢) satisfy
ax (T(¢)(w)(T(9),X,T(¢),Y) = axor(p)(u)(X,Y) = F(¢).ax(u)(X,Y)
for all w € U and X,Y € T,U. Set 7%= = v;X;, 1 <4 <n. Then, from
ax(T(¢)(w)(T(¢),X:, T(¢),X;) = F(¢)wox (u)(Xi, Xj) =0, i #j,
it, follows easily that X; o T(¢) = T(¢),X;. We obtain from the first equation in (19) that
vi(T(9)(w)&(T(¢)(w) = ax(T(9)(w)(Xi(T()(u)), Xi(T(¢)(w)))

= F(¢)wax(u)(X;(u), Xi(u))
[(u) F(6):6i(u)

which shows that & o T(¢) = F(¢).& and v; o T(¢) = v;. Moreover, from

Vi) xF(#)& = F(6).VxE,

we get using the second equation in (19) that

hi(T@)(w) = (Vo 006 (T(6) (W), (T (@) (w)
= <vé’_(¢)* 9 (u)F((b)*g](u)?F(¢)*£l(u)>

Ou;

= (P01 (&), P@).&(w) = hi(w)

|
<
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Therefore, the vis and hj;s are constant along the orbits of T'. Hence, there exist smooth
functions 6: U — R and #;, h;;: R — R such that

Ui:’l_)iOG, hij:}_%-oe, 1§Z#]§n

Since .
hijo8 = hij = Lov; _ e

- Uq )

v; Ou; ;00
there exist smooth functions f;: R — R, 1 <1 < n, such that

0., = fiol.
The integrability conditions of the above equations yield

fifi=1if, 1<i#j<n

We can assume f; # 0. Then, there exist constants A, ..., A, such that f; = \;f1,2 <17 < n.

Thus,
0 0
<3ui )\281“)0 0, 2<i<n

Setting & = u; + Y1, A\ju;, we conclude that v; = v;(€),  hy; = hy;(€).

Conversely, assume that M™(c) C R?*"~! is associated to a solution of system (II) of the
form (20). As before, consider M™(c) as a submanifold of @**(c) and let X:U — O%*(c)
be a principal parametrization of M"(c) as in Theorem 6 with induced metric given by (18),
where we may assume

U:{'LLGRn|b1<§<bQ}, bl,bQER.

Define the (n — 1)-parameter group of translations 7" on U by

T =ut ¥ ax,

where ¢ = (¢1,...,¢n—1) and Yy, ..., Y, 1 is an arbitrary basis of the hyperplane £ = 0. Since
T((b)*a%i(u) = %(T(gﬁ)(u)) and the vs are constant along the orbits £ = & € (b, bs) of T,
each T'(¢) is an isometry of (U, ds?). We claim that there exist isometries G(¢) of Q**(c)
such that

X oT(¢) = G(¢) 0 X. (21)

Define a vector bundle isometry 7 (¢) between the normal bundles of X and X o T'(¢) by
setting T(4)(&) = & o T(¢) , 1 < i < n, where &,...,&, is the orthonormal normal frame
given by Theorem 6. Then, we have that

axor(e)(Xi, Xj) = ax(T(¢),X:,T(¢),X;) = ax(X;0T(¢), X;0T(¢))
= v;0T($)0;;& 0 T(¢) = T(d)ax(Xi, X;).
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Moreover,

(Viioro) T (9)(&) T(0)(&)) = hij o T(d) = hiy = (Vx,65, &) =
(T(@)(Vx), T(9)(&)),

hence Vx rsT(9)(&5) = T(6)(Vx,§) for all 1 < i # j < n. Thus, the vector bundle
isometry 7 (¢) preserves the second fundamental forms and normal connections of X and
X oT(¢). The claim now follows from the fundamental theorem of submanifolds.

Let G(¢) denote the restriction of G(¢) to R?"~! and let X be the parametrization of
M"(c) as a submanifold of R?*~! induced by X. Then G(¢) 0 X = X o T(¢), which implies
that

(22)

G(p1+ o) 0o X = G(¢) o X +G(py) o X for any ¢y, dy € R™ 1. (23)

Now observe that X (U) cannot be contained in any totally geodesic hypersurface of Q**(c),
since the first normal bundle of X coincides with its normal bundle by the first equation in
(19). Hence X (U) cannot be contained in any hyperplane of R?*~1. Tt follows from (23) that
G is an (n — 1)-parameter subgroup of ISO(R*"™') that leaves M™(c) invariant. By Remark
4-2), G contains no pure translations, since a Riemannian manifold with nonzero constant
sectional curvature is irreducible. We conclude that M™(c) is a multi-helicoidal submanifold

of cohomogeneity one. O]
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