A Gel'fand Model for a Weyl Group of Type $\boldsymbol{B}_{\boldsymbol{n}}$

J. O. Araujo
Facultad de Ciencias Exactas - UNICEN
Paraje Arroyo Seco, 7000 - Tandil, Argentina

Abstract

A Gel'fand model for a finite group G is a complex representation of G which is isomorphic to the direct sum of all the irreducible representation of G (see [9]). Gel'fand models for the symmetric group and the linear group over a finite field can be found in [2] and [8]. Using the same ideas as in [2], in this work we describe a Gel'fand model for a Weyl group of type B_{n}. When K is a field of characteristic zero and \mathfrak{G} is a Weyl group of type B_{n}, we give a finite dimensional K-subspace \mathcal{N} of the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$. If K is the field of complex numbers, then \mathcal{N} provides a Gel'fand model for \mathfrak{G}. The space \mathcal{N} can be defined in a more general way (see [3]), obtained as the zeros of certain differential operators (symmetrical operators) in the Weyl algebra. However, in the case of a group G of type D_{n} (n even), \mathcal{N} is not a Gel'fand model for G.

1. Symmetrical operators and the space \mathcal{N}

Let K be a field of characteristic zero. Fix a natural number n. We will denote by \mathcal{A} the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$ and by \mathcal{W} the Weyl algebra of K-linear differential operators $K\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}\right\rangle$ generated by the multiplication operators x_{i} and the differential operators $\partial_{i}=\frac{\partial}{\partial x_{i}}$ where $i=1, \ldots, n$. The angular brackets are used to indicate that the generators do not commute, indeed, $\partial_{i} x_{i}=1+x_{i} \partial_{i}$ for each $i=1, \ldots, n$. We will make use of some basic properties of the algebra \mathcal{W}, which are proved in [4].
Let $\mathbb{I}_{n}=\{1,2, \ldots, n\}$ and \mathcal{M} be the set of functions $\alpha: \mathbb{I}_{n} \rightarrow \mathbb{N}_{0}$, where \mathbb{N}_{0} denotes the set of non-negative integers. Such a function is called a multiindex, and we put $\alpha_{i}=\alpha(i)$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

0138-4821/93 \$ 2.50 © 2003 Heldermann Verlag

For two multiindexes α, β in \mathcal{M} we will use the following notations:

$$
\begin{gathered}
|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, \quad \alpha!=\prod_{i=1}^{n} \alpha_{i}!, \quad\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\beta!\prod_{i=1}^{n}\binom{\alpha_{i}}{\beta_{i}} \\
x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, \quad \partial^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{n}^{\alpha_{n}}}=\partial_{1}^{\alpha_{1}} \cdots \partial_{n}^{\alpha_{n}} .
\end{gathered}
$$

We will denote by \mathfrak{S}_{n} the symmetric group of order n and by \mathcal{C}_{2} the cyclic group of order two given by $\mathcal{C}_{2}=\{ \pm 1\}$. A group \mathfrak{G} of type B_{n} can be presented as follows:

$$
\mathfrak{G}=\mathcal{C}_{2}^{n} \times_{s} \mathfrak{S}_{n}
$$

where the semidirect product is induced by the natural action of \mathfrak{S}_{n} on $\mathcal{C}_{2}^{n}=\mathcal{C}_{2} \times \cdots \times \mathcal{C}_{2}(n$ factors), i.e.

$$
\sigma \cdot\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)=\left(\omega_{\sigma(1)}, \omega_{\sigma(2)}, \ldots, \omega_{\sigma(n)}\right),\left(\omega_{i} \in \mathcal{C}_{2}\right)
$$

\mathfrak{S}_{n} acts on \mathcal{M} by

$$
\sigma \cdot \alpha=\alpha \circ \sigma^{-1} \text { if } \sigma \in \mathfrak{S}_{n} \text { and } \alpha \in \mathcal{M}
$$

Then, we have a natural homomorphism of \mathfrak{G} in $\operatorname{Aut}(\mathcal{A})$, given by

$$
(\omega, \sigma)\left(\sum_{\alpha \in \mathcal{M}} \lambda_{\alpha} x^{\alpha}\right)=\sum_{\alpha \in \mathcal{M}} \lambda_{\alpha}(\omega x)^{\sigma \cdot \alpha}
$$

where $\lambda_{\alpha} \in K$, and

$$
(\omega x)^{\sigma \cdot \alpha}=\prod_{i=1}^{n}\left(\omega_{i} \cdot x_{i}\right)^{(\sigma \cdot \alpha)_{i}} .
$$

Let \mathcal{Z} be the centralizer of \mathfrak{G} in \mathcal{W}. Then \mathcal{Z} is a subalgebra of \mathcal{W}. The elements of \mathcal{Z} will be called symmetrical operators.
We know that each operator $\mathcal{D} \in \mathcal{W}$ can be written in a unique way as a finite sum

$$
\mathcal{D}=\sum_{\alpha, \beta \in \mathcal{M}} \lambda_{\alpha, \beta} x^{\alpha} \partial^{\beta} \quad, \text { where } \lambda_{\alpha, \beta} \in K
$$

where α and β are multiindexes (see [4]).
Putting

$$
\mathcal{W}_{i}=\left\{\sum_{\alpha, \beta \in \mathcal{M}} \lambda_{\alpha, \beta} x^{\alpha} \partial^{\beta}:|\alpha|-|\beta|=i\right\}
$$

we have that

$$
\mathcal{W}=\bigoplus_{i \in \mathbb{Z}} \mathcal{W}_{i}
$$

When $\mathcal{D} \neq 0$, starting from this expression for \mathcal{D}, we define the degree of \mathcal{D} by:

$$
\operatorname{deg}(\mathcal{D})=\max \left\{|\alpha|-|\beta|: \lambda_{\alpha, \beta} \neq 0\right\} .
$$

Let \mathcal{Z}^{-}be the subspace of \mathcal{Z} defined by:

$$
\mathcal{Z}^{-}=\{\mathcal{D} \in \mathcal{Z}: \operatorname{deg}(\mathcal{D}) \leq-1\}
$$

and let \mathcal{N} be the subspace of \mathcal{A} defined by

$$
\mathcal{N}=\left\{P \in \mathcal{A}: \mathcal{D}(P)=0, \forall \mathcal{D} \in \mathcal{Z}^{-}\right\}
$$

Using the results in [3] and the fact that \mathfrak{G} has a subgroup of type B_{n-1}, we have

$$
\operatorname{dim}(\mathcal{N}) \leq(2 n)^{n}
$$

also, we have that every simple $K[\mathfrak{G}]$-module is isomorphic to a $K[\mathfrak{G}]$-submodule of \mathcal{N}. It is clear that

$$
\mathcal{Z}^{-} \supseteq \bigoplus_{i \leq-1} \mathcal{Z}_{i}
$$

where $\mathcal{Z}_{i}=\mathcal{Z}^{-} \cap \mathcal{W}_{i}$.

2. Minimal orbits

Let \mathcal{O} be the orbit space of \mathfrak{S}_{n} in \mathcal{M}. For each γ in \mathcal{O} we put

$$
\mathcal{S}_{\gamma}=\left\{\sum_{\alpha \in \gamma} \lambda_{\alpha} x^{\alpha}: \lambda_{\alpha} \in K\right\} .
$$

Given $\alpha, \beta \in \mathcal{M}$, we put $\alpha \equiv \beta$ if and only if for every $i \in \mathbb{I}_{n}, \alpha_{i}$ and β_{i} both have the same parity. Two orbits γ and μ in \mathcal{O} are said to be equivalent if there are $\alpha \in \gamma$ and $\beta \in \mu$ such that $\alpha \equiv \beta$.
It is not difficult to prove that: γ and μ are equivalent if and only if there exists a bijection $\varphi: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ which satisfies:
i) $\varphi(k)$ and k both have the same parity, $\forall k \in \mathbb{N}_{0}$.
ii) $\mu=\{\varphi \circ \alpha: \alpha \in \gamma\}$.

When γ and μ are equivalent, we write $\gamma \sim \mu$.
We observe that if α and β are in a given orbit γ, then we have $|\alpha|=|\beta|$ and $\alpha!=\beta$!. So, we will put $|\gamma|$ and γ ! respectively for these coincident values.
Let $\gamma \sim \mu$ be and φ as above. We define the operator

$$
\partial_{\gamma}^{\mu}=\frac{1}{\mu!} \sum_{\alpha \in \gamma} x^{\alpha} \partial^{\varphi \circ \alpha} .
$$

An orbit γ in \mathcal{O} is called minimal if $|\gamma| \leq|\mu|$ for all μ in \mathcal{O} such that $\mu \sim \gamma$.

Proposition 2.1.

i) $\mathcal{Z}^{-}=\bigoplus_{i \leq-1} \mathcal{Z}_{i}$.
ii) ∂_{γ}^{μ} is a symmetrical operator of degree $|\gamma|-|\mu|$.
iii) $\partial_{\gamma}^{\mu}: \mathcal{S}_{\mu} \rightarrow \mathcal{S}_{\gamma}$ is a \mathfrak{G}-isomorphism.

Proof. First, we observe that for β, δ in \mathcal{M} and σ in \mathfrak{S}_{n} we have:
a) If $\delta-\beta$ is in \mathcal{M}, then $\sigma \cdot(\delta-\beta)=\sigma \cdot \delta-\sigma \cdot \beta$.
b) Since the same factors occur in both numbers $\left[\begin{array}{l}\delta \\ \beta\end{array}\right]$ and $\left[\begin{array}{c}\sigma \cdot \delta \\ \sigma \cdot \beta\end{array}\right]$, we have that $\left[\begin{array}{l}\delta \\ \beta\end{array}\right]=\left[\begin{array}{c}\sigma \cdot \delta \\ \sigma \cdot \beta\end{array}\right]$.

Now, we can establish the identities:

$$
\begin{align*}
\partial^{\beta} \circ \omega\left(x^{\delta}\right) & =\omega^{\delta} \partial^{\beta}\left(x^{\delta}\right) \quad\left(\omega \in \mathcal{C}^{n}\right) \tag{1}\\
\sigma \circ \partial^{\beta} & =\partial^{\sigma \cdot \beta} \circ \sigma
\end{align*}
$$

In fact, the first identity is clear. For the second one, by using a) and b), we have

$$
\begin{aligned}
\sigma\left(\partial^{\beta}\left(x^{\delta}\right)\right) & =\sigma\left(\left[\begin{array}{l}
\delta \\
\beta
\end{array}\right] x^{\delta-\beta}\right)=\left[\begin{array}{l}
\delta \\
\beta
\end{array}\right] x^{\sigma \cdot \delta-\sigma \cdot \beta} \\
& =\left[\begin{array}{l}
\delta \\
\beta
\end{array}\right]\left[\begin{array}{l}
\sigma \cdot \delta \\
\sigma \cdot \beta
\end{array}\right]^{-1} \partial^{\sigma \cdot \beta}\left(x^{\sigma \cdot \delta}\right)=\partial^{\sigma \cdot \beta} \circ \sigma\left(x^{\delta}\right)
\end{aligned}
$$

It follows that

$$
\sigma \circ\left(x^{\alpha} \partial^{\beta}\right) \circ \sigma^{-1}\left(x^{\delta}\right)=\sigma\left(x^{\alpha} \sigma^{-1}\left(\partial^{\sigma \cdot \beta}\left(x^{\delta}\right)\right)\right)=x^{\sigma \cdot \alpha} \partial^{\sigma \cdot \beta}\left(x^{\delta}\right)
$$

that is

$$
\begin{equation*}
\sigma \circ\left(x^{\alpha} \partial^{\beta}\right) \circ \sigma^{-1}=x^{\sigma \cdot \alpha} \partial^{\sigma \cdot \beta} \tag{2}
\end{equation*}
$$

For $\omega \in \mathcal{C}_{2}^{n}$ and $\alpha, \beta, \delta \in \mathcal{M}$, we have

$$
\begin{aligned}
\left(\omega \circ\left(x^{\alpha} \partial^{\beta}\right) \circ \omega^{-1}\right)\left(x^{\delta}\right) & =\omega\left(\omega^{\delta} \cdot\left[\begin{array}{l}
\delta \\
\beta
\end{array}\right] x^{\alpha+\delta-\beta}\right)=\omega^{\beta-\alpha} \cdot\left[\begin{array}{l}
\delta \\
\beta
\end{array}\right] x^{\alpha+\delta-\beta}= \\
& =\omega^{\beta-\alpha} \cdot\left(\left(x^{\alpha} \partial^{\beta}\right)\left(x^{\delta}\right)\right)=\left(\omega^{\beta-\alpha} \cdot\left(x^{\alpha} \partial^{\beta}\right)\right)\left(x^{\delta}\right) .
\end{aligned}
$$

In particular, when $\alpha \equiv \beta$, we have that

$$
\begin{equation*}
\omega \circ\left(x^{\alpha} \partial^{\beta}\right) \circ \omega^{-1}=x^{\alpha} \partial^{\beta} . \tag{3}
\end{equation*}
$$

Using the identities in (2) and (3), it follows that

$$
\tau \circ \mathcal{D} \circ \tau^{-1} \in \mathcal{W}_{i}, \forall \tau \in \mathfrak{G}, \forall \mathcal{D} \in \mathcal{W}_{i}
$$

On other hand, every $\mathcal{D} \in \mathcal{Z}^{-}$can be written in a unique way as

$$
\mathcal{D}=\mathcal{D}_{1}+\cdots+\mathcal{D}_{k}, \mathcal{D}_{i} \in \mathcal{W}_{-i}
$$

Given $\tau \in \mathfrak{G}$, from the identity

$$
\tau \circ \mathcal{D} \circ \tau^{-1}=\mathcal{D}
$$

we have

$$
\tau \circ \mathcal{D}_{1} \circ \tau^{-1}+\cdots+\tau \circ \mathcal{D}_{k} \circ \tau^{-1}=\mathcal{D}_{1}+\cdots+\mathcal{D}_{k}
$$

that is

$$
\tau \circ \mathcal{D}_{i} \circ \tau^{-1}=\mathcal{D}_{i} \quad(i=1, \ldots, k)
$$

It follows that

$$
\mathcal{Z}^{-} \subseteq \bigoplus_{i \leq-1} \mathcal{Z}_{i}
$$

and we have i).
ii) follows from the preceding identities (2), (3) and the fact that $\gamma \sim \mu$. On the other hand, it is clear that $\operatorname{deg}\left(\partial_{\gamma}^{\mu}\right)=|\gamma|-|\mu|$.
iii) For $\beta \in \mu$, let $\delta \in \gamma$ be such that $\beta=\varphi \circ \delta$. We have

$$
\partial_{\gamma}^{\mu}\left(x^{\beta}\right)=\frac{1}{\mu!} \sum_{\alpha \in \gamma} x^{\alpha} \partial^{\varphi \circ \alpha}\left(x^{\beta}\right)=\frac{\beta!}{\mu!} x^{\delta}=x^{\delta} .
$$

It follows that ∂_{γ}^{μ} is an isomorphism.
Corollary 2.2. If $\mu \in \mathcal{O}$ is non-minimal then $\mathcal{N} \cap \mathcal{S}_{\mu}=0$.
Proof. Let γ in \mathcal{O} be such that $\gamma \sim \mu$ with $|\gamma|<|\mu|$. Then $\operatorname{deg}\left(\partial_{\gamma}^{\mu}\right) \leq-1$, and so

$$
\partial_{\gamma}^{\mu}\left(\mathcal{N} \cap \mathcal{S}_{\mu}\right)=0 .
$$

Now, Corollary 2.2 follows from ii) and iii) of Proposition 2.1.
Corollary 2.3. Let $P \in \mathcal{N}$, then the homogeneous components of P are also in \mathcal{N}.
Proof. Assume that:

$$
P=P_{1}+\cdots+P_{m}, \quad \operatorname{deg}\left(P_{i}\right)=i
$$

where P_{1}, \ldots, P_{m} are the homogeneous components of P. On the other hand, for every $\mathcal{D} \in \mathcal{Z}_{j}$ we have

$$
0=\mathcal{D}(P)=\mathcal{D}\left(P_{1}\right)+\cdots+\mathcal{D}\left(P_{m}\right) .
$$

Since the $\mathcal{D}\left(P_{i}\right)$ are zero if $i<j$ or they are in homogeneous components of degree $i-j$, it follows that

$$
\mathcal{D}\left(P_{i}\right)=0 \quad \forall \mathcal{D} \in \mathcal{Z}_{j} .
$$

Using 2.1 i), we have that $P_{i} \in \mathcal{N}$.
Corollary 2.4.

$$
\mathcal{N}=\bigoplus_{\gamma \text { minimal }} \mathcal{N} \cap \mathcal{S}_{\gamma} .
$$

Proof. It is clear that

$$
\mathcal{N} \supseteq \underset{\gamma \text { minimal }}{ } \bigoplus_{\mathcal{N}} \cap \mathcal{S}_{\gamma} .
$$

By Corollary 2.3 we have that the homogeneous components of an element P in \mathcal{N}, are also in \mathcal{N}. We assume that P is a nonzero homogeneous polynomial and write

$$
P=P_{1}+\cdots+P_{m}
$$

where the P_{i} are nonzero polynomials in $\mathcal{S}_{\gamma_{i}}$, and $\left|\gamma_{i}\right|=\operatorname{deg}(P)$ for $i=1, \ldots, m$. It follows from Proposition 2.1 that the operator

$$
\partial_{\gamma_{i}}=\frac{1}{\gamma_{i}!} \sum_{\alpha \in \gamma_{i}} x^{\alpha} \partial^{\alpha}
$$

is symmetrical and has degree zero.
Observe that if α and β are multiindexes such that $|\alpha|=|\beta|$ then

$$
\partial^{\alpha}\left(x^{\beta}\right)=\left\{\begin{array}{r}
0 \text { if } \alpha \neq \beta \\
\alpha!\text { if } \alpha=\beta
\end{array}\right.
$$

Since $\left|\gamma_{i}\right|=\operatorname{deg}\left(P_{j}\right)$ for all i, j, it follows that

$$
\partial_{\gamma_{i}}\left(P_{j}\right)=\left\{\begin{array}{c}
0 \text { if } j \neq i \\
P_{i} \text { if } j=i
\end{array}\right.
$$

Since \mathcal{W} has no divisors of zero, for every $\mathcal{D} \in \mathcal{Z}^{-}$we have $\mathcal{D} \circ \partial_{\gamma_{i}} \in \mathcal{Z}^{-}$. Hence

$$
0=\mathcal{D} \circ \partial_{\gamma_{i}}(P)=\mathcal{D}\left(P_{i}\right)
$$

That is $P_{i} \in \mathcal{N} \cap \mathcal{S}_{\gamma_{i}}$. Since $P_{i} \neq 0$, it follows from Corollary 2.2 that γ_{i} is minimal.
The following proposition will be used for the characterization of the minimal orbits.
Proposition 2.5. Let $k_{1} \geq k_{2} \geq \cdots \geq k_{n}$ be a sequence of natural numbers. If e_{1}, \ldots, e_{n} are distinct non-negative integers, then the minimal value of the sum

$$
\sum_{i=1}^{n} k_{i} e_{i}
$$

occurs only when $e_{i}=i-1$.
Proof. Fix a sum $\sum_{i=1}^{n} k_{i} e_{i}$. For $i<j$ such that $k_{i}=k_{j}$ we can assume that $e_{i}<e_{j}$. Let π be a permutation of \mathbb{I}_{n} such that the sequence $e_{\pi(1)}, \ldots, e_{\pi(n)}$ is increasing. Suppose that there exists j such that

$$
e_{j} \neq e_{\pi(j)}
$$

we can assume that j is minimal in the inequality above. It follows that

$$
e_{j}>e_{\pi(j)} \text { and } \pi(j)>j
$$

Putting

$$
f_{i}=\left\{\begin{array}{ccc}
e_{i} & \text { if } & i \neq j, \pi(j) \\
e_{\pi(j)} & \text { if } & i=j \\
e_{j} & \text { if } & i=\pi(j)
\end{array}\right.
$$

we have

$$
\sum_{i=1}^{n} k_{i} e_{i}=\sum_{i=1}^{n} k_{i} f_{i}+\left(k_{j}-k_{\pi(j)}\right)\left(e_{j}-e_{\pi(j)}\right) \geq \sum_{i=1}^{n} k_{i} f_{i} .
$$

Hence we may consider only the sums where the sequence e_{1}, \ldots, e_{n} is increasing. In this case, we have that

$$
e_{i} \geq i-1
$$

hence, the minimal value is

$$
\sum_{i=1}^{n} k_{i}(i-1)
$$

and it is clear that it occurs only when $e_{i}=i-1$.
We will denote by $|A|$ the cardinality of a set A.
Proposition 2.6. Given an orbit γ we have
i) γ is minimal if and only if for every $\alpha \in \gamma$ the following holds: Given $i, j \in \mathbb{N}_{0}$ is such that $i<j$ and i, j both have the same parity, then $\left|\alpha^{-1}(i)\right| \geq\left|\alpha^{-1}(j)\right|$.
ii) There is a unique minimal orbit which is equivalent to γ.

Proof. i) Let $\alpha \in \gamma$. We put:

$$
\begin{aligned}
& \operatorname{Im}(\alpha)_{0}=\{p \in \operatorname{Im}(\alpha): p \text { is even }\}=\left\{p_{1}, p_{2}, \ldots, p_{s}\right\} \\
& \operatorname{Im}(\alpha)_{1}=\{q \in \operatorname{Im}(\alpha): q \text { is odd }\}=\left\{q_{1}, q_{2}, \ldots, q_{t}\right\}
\end{aligned}
$$

and assume that $k_{1} \geq k_{2} \geq \cdots \geq k_{s}$ and $h_{1} \geq h_{2} \geq \cdots \geq h_{t}$ where $k_{i}=\left|\alpha^{-1}\left(p_{i}\right)\right|$ and $h_{i}=\left|\alpha^{-1}\left(q_{i}\right)\right|$, therefore, when $k_{i}=k_{i+1}\left(\right.$ respectively $\left.h_{i}=h_{i+1}\right)$ we assume $p_{i}<p_{i+1}$ (respectively $q_{i}<q_{i+1}$).
Let $\varphi: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ be a bijection such that

$$
\varphi\left(p_{i}\right)=2(i-1) \text { and } \varphi\left(q_{i}\right)=2 i-1
$$

It is clear that there exists such a function. We put $\alpha^{*}=\alpha \circ \varphi$ and denote by γ^{*} the orbit of α^{*}. Notice that γ^{*} is uniquely determined by s, t and the sequences $k_{1}, \ldots, k_{s}, h_{1}, \ldots, h_{t}$.

We claim that γ^{*} is minimal. In fact, putting $p_{i}=2 e_{i}, q_{i}=2 f_{i}+1$ and using the Proposition 2.5, we have

$$
\begin{aligned}
|\gamma| & =\sum_{i=1}^{s} k_{i} p_{i}+\sum_{i=1}^{t} h_{i} q_{i}=2 \sum_{i=1}^{s} k_{i} e_{i}+2 \sum_{i=1}^{t} h_{i} f_{i}+\sum_{i=1}^{t} h_{i} \\
& \geq 2 \sum_{i=1}^{s} k_{i}(i-1)+2 \sum_{i=1}^{t} h_{i}(i-1)+\sum_{i=1}^{t} h_{i} \\
& =\sum_{i=1}^{s} k_{i} \varphi\left(p_{i}\right)+\sum_{i=1}^{t} h_{i} \varphi\left(q_{i}\right)=\left|\gamma^{*}\right| .
\end{aligned}
$$

This inequality becomes an equality only if $p_{i}=2(i-1)$ and $q_{i}=2 i-1$. It follows that γ is minimal if and only if $\gamma=\gamma^{*}$.
ii) Let us suppose that γ and μ are equivalent, and that the values h_{j} and $k_{1}, \ldots, k_{h_{j}}$ given in i) are the same for γ and μ. Then we must have $\gamma^{*}=\mu^{*}$. Therefore, if γ and μ are minimal, from i) we have $\gamma=\gamma^{*}=\mu^{*}=\mu$.

3. The Laplacian

We denote by Δ the Laplace's operator given by:

$$
\Delta=\sum_{i=1}^{n} \partial_{i}^{2}
$$

It is clear that Δ is a symmetrical operator.
For $\gamma \in \mathcal{O}$, let \mathcal{S}_{γ}^{o} be the subspace of \mathcal{S}_{γ} defined by:

$$
\mathcal{S}_{\gamma}^{o}=\left\{P \in \mathcal{S}_{\gamma}: \Delta(P)=0\right\}
$$

Given $\alpha \in \gamma$, we denote by \mathcal{H} the isotropy group of x^{α} in \mathfrak{G}. We have a projector in $\operatorname{End}_{K}(\mathcal{A})$ given by

$$
\Delta_{\mathcal{H}}=\frac{1}{|\mathcal{H}|} \sum_{\eta \in \mathcal{H}} \eta .
$$

Proposition 3.1. Suppose $\tau \in \mathcal{H}$ and $P \in \mathcal{A}$ such that $\tau(P)=\lambda \cdot P$ where $\lambda \in K$ is different from 1. Then $\Delta_{\mathcal{H}}(P)=0$.

Proof. It is not difficult to see that

$$
\tau \Delta_{\mathcal{H}}=\Delta_{\mathcal{H}}=\Delta_{\mathcal{H}} \tau \quad(\tau \in \mathcal{H})
$$

hence

$$
\Delta_{\mathcal{H}}(P)=\Delta_{\mathcal{H}} \tau(P)=\lambda \Delta_{\mathcal{H}}(P)
$$

Since $\lambda \neq 1$, we have $\Delta_{\mathcal{H}}(P)=0$.

Proposition 3.2. Let γ, α and $\Delta_{\mathcal{H}}$ be as before. If $\beta \in \gamma$ is such that $\beta \not \equiv \alpha$, then we have $\Delta_{\mathcal{H}}\left(x^{\beta}\right)=0$.

Proof. Since $\alpha \not \equiv \beta$, there exists $i \in \mathbb{I}_{n}$ such that α_{i} is even and β_{i} is odd. Let $\omega \in \mathcal{C}_{2}^{n}$ be given by $\omega_{i}=-1$ and $\omega_{j}=1$ for $j \neq i$. We have that

$$
\omega\left(x^{\alpha}\right)=x^{\alpha} \text { and } \omega\left(x^{\beta}\right)=-\beta .
$$

Using the Proposition 3.1 for $\lambda=-1$ and $\tau=\omega$, we obtain $\Delta_{\mathcal{H}}\left(x^{\beta}\right)=0$.
Lemma 3.3. For a minimal orbit γ we have

$$
\operatorname{dim}\left(\Delta_{\mathcal{H}}\left(S_{\gamma}^{\circ}\right)\right) \leq 1 .
$$

Proof. We denote by $\widetilde{\alpha}$ the set of $\beta \in \gamma$ such that $\beta \equiv \alpha$. Using the Proposition 3.2, we note that

$$
\Delta_{\mathcal{H}}\left(S_{\gamma}\right)=\left\langle\Delta_{\mathcal{H}}\left(x^{\beta}\right): \beta \in \gamma\right\rangle=\left\langle\Delta_{\mathcal{H}}\left(x^{\beta}\right): \beta \in \widetilde{\alpha}\right\rangle .
$$

On the other hand, for any $\eta \in \mathcal{H}$ and $\beta \in \widetilde{\alpha}$, we have

$$
\eta\left(x^{\beta}\right)=x^{\mu}
$$

where $\mu \in \widetilde{\alpha}$. Put $\eta=\omega \pi, \omega \in \mathcal{C}_{2}^{n}$ and $\pi \in \mathfrak{S}_{n}$. Since $\eta\left(x^{\alpha}\right)=x^{\alpha}$, we have that α_{i} and $\alpha_{\pi(i)}$ have both the same parity, therefore, the number of the indices i such that α_{i} is odd is an even number. Then, for $\beta \in \widetilde{\alpha}$ and $i \in \mathbb{I}_{n}$, we have

$$
\beta_{i} \equiv \alpha_{i} \equiv \alpha_{\pi(i)} \equiv \beta_{\pi(i)} \equiv(\pi \cdot \beta)_{i} \bmod 2, \quad \text { and } \omega \cdot \beta=\beta
$$

It follows that

$$
\Delta_{\mathcal{H}}\left(S_{\gamma}\right) \subseteq\left\langle x^{\beta}: \beta \in \widetilde{\alpha}\right\rangle .
$$

Now, we put

$$
h=\max \{k: k \in \operatorname{Im}(\alpha)\} .
$$

For every $\beta \in \gamma$ we define the vector

$$
\widehat{\beta}=\left(\beta^{0}, \ldots, \beta^{h}\right) \text { where } \beta^{l}=\sum_{k \in \alpha^{-1}(l)} \beta_{k} .
$$

It is clear that for every $\tau \in \mathfrak{S}_{n} \cap \mathcal{H}$ the identity $\widehat{\tau \cdot \beta}=\widehat{\beta}$ holds. We order the vectors $\widehat{\beta}$ according to the lexicographical order, so that $\widehat{\alpha}$ is the minimum element.
Let $\beta \in \gamma$ and suppose that there are two indices $i, j \in \mathbb{I}_{n}$ such that $\beta_{i}=\beta_{j}+2$ and $\alpha_{i}<\alpha_{j}$. Let $\tau \in \mathfrak{S}_{n}$ be the transposition (i, j), then

$$
\widehat{\tau \cdot \beta}<\widehat{\beta}
$$

In fact, from the identities

$$
(\tau \cdot \beta)_{k}=\left\{\begin{array}{lll}
\beta_{k} & \text { if } & k \neq i, j \\
\beta_{j} & \text { if } & k=i \\
\beta_{i} & \text { if } & k=j
\end{array}\right.
$$

it follows that

$$
(\tau \cdot \beta)^{l}= \begin{cases}\beta^{l} & \text { if } l \neq \alpha_{i}, \alpha_{j} \\ \beta^{l}-\beta_{i}+\beta_{j}=\beta^{l}-2 & \text { if } l=\alpha_{i} \\ \beta^{l}-\beta_{j}+\beta_{i}=\beta^{l}+2 & \text { if } l=\alpha_{j}\end{cases}
$$

Hence $l=\alpha_{i}$ is the first index where $\widehat{\tau \cdot \beta}$ and $\widehat{\beta}$ do not coincide, since $(\tau \cdot \beta)^{l}=\beta^{l}-2$ we have that $\widehat{\tau \cdot \beta}<\widehat{\beta}$.
For any β in γ, we fix $i \in \mathbb{I}_{n}$ such that $\beta_{i}>0$. For each j in \mathbb{I}_{n} such that $\beta_{i}=\beta_{j}+2$ consider the transposition τ_{j} in \mathfrak{S}_{n} that switches i and j.
Let P be in $\triangle_{\mathcal{H}}\left(S_{\gamma}^{\circ}\right)$. We write

$$
P=\sum_{\beta \in \widetilde{\alpha}} a_{\beta} x^{\beta} .
$$

Since Δ is symmetrical, and Δ commutes with $\triangle_{\mathcal{H}}$, we have

$$
\Delta(P)=0 .
$$

From this identity it follows that

$$
a_{\beta}+\sum_{j} a_{\tau_{j} \cdot \beta}=0 .
$$

In fact, the left member of the equality from above is, except for a constant factor, the coefficient of the monomial $x^{\widetilde{\beta}}$ in $\Delta(P)$, where $\widetilde{\beta}$ is given by

$$
\widetilde{\beta}_{k}=\left\{\begin{array}{l}
\beta_{k} \text { if } k \neq i \\
\beta_{j} \text { if } k=i .
\end{array}\right.
$$

Since $a_{\tau \beta}=a_{\beta} \forall \tau \in \mathcal{H}$, the relationship between the coefficients can be written as

$$
a_{\beta}+\sum_{\tau_{j} \in \mathcal{H}} a_{\tau_{j} \cdot \beta}+\sum_{\tau_{j} \notin \mathcal{H}} a_{\tau_{j} \cdot \beta}=0 .
$$

Observing that τ_{j} is in \mathcal{H} if and only if $\alpha_{j}=\alpha_{i}$, the preceding identity takes the form

$$
(1+m) a_{\beta}+\sum_{\alpha_{j} \neq \alpha_{i}} a_{\tau_{j} \cdot \beta}=0
$$

where $m \in \mathbb{N}_{0}$.

We will prove Lemma 3.3 by showing that the linear functional

$$
\varphi: \triangle_{\mathcal{H}}\left(S_{\gamma}^{\circ}\right) \rightarrow K
$$

defined by

$$
\varphi(P)=a_{\alpha}
$$

is injective.
Let us suppose that $a_{\alpha}=0$. If $P \neq 0$, we choose β in $\widetilde{\alpha}$ such that $a_{\beta} \neq 0$ and $\widehat{\beta}$ minimal. Since $\widehat{\alpha}<\widehat{\beta}$, there is an index k in $\operatorname{Im}(\alpha)$ such that

$$
\beta^{k}>\alpha^{k} \text { and } \beta^{l}=\alpha^{l} \text { if } l<k
$$

From these conditions we infer that

$$
\beta^{l}=l \cdot\left|\alpha^{-1}(l)\right| \text { if } l<k
$$

But this is only possible if β coincides with α in $\alpha^{-1}\{0,1, \ldots, k-1\}$. On the other hand, from the fact that $\beta^{k}>\alpha^{k}=k \cdot \alpha^{-1}(k)$, there exists i in $\alpha^{-1}(k)$ such that $\beta_{i}>k \geq 0$. Since $\beta \in \widetilde{\alpha}$ we have that β_{i} and k both have the same parity, then $\beta_{i}-2 \geq k$. The indices j for which $\beta_{j}=\beta_{i}-2 \geq k$, belong to $\alpha^{-1}\{k, \ldots, h\}$, and this set is non-empty because γ is minimal. For these indices, the transpositions τ_{j} previously defined, satisfy

$$
\begin{array}{lll}
a_{\tau_{j} \cdot \beta}=a_{\beta} & \text { if } & \alpha_{j}=k \\
\tau_{j} \cdot \beta & \beta \beta & \text { if }
\end{array} \beta_{j}>k .
$$

If $m=\mid\left\{j: \beta_{j}=\beta_{i}-2\right.$ and $\left.\alpha_{j}=k\right\} \mid$, from the relations obtained for the coefficients of P, it follows that

$$
(1+m) a_{\beta}+\sum_{\widehat{\tau_{j} \cdot \beta}<\widehat{\beta}} a_{\tau_{j} ; \beta}=0 .
$$

Since $\widehat{\beta}$ is minimal, we obtain $a_{\beta}=0$, a contradiction.

4. The structure of \mathcal{N}

Let $\mathcal{F} \subseteq \mathbb{I}_{n}, \mathcal{F}=\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ where $f_{i}<f_{i+1}$. Given a function $\mu: \mathcal{F} \rightarrow \mathbb{N}_{0}$, we denote by

$$
\begin{equation*}
e_{\mathcal{F}}^{\mu}=\operatorname{det}\left[x_{f_{i}}^{\mu_{j}}\right] \tag{4}
\end{equation*}
$$

where $\mu_{j}=\mu\left(f_{j}\right)$.
Putting $x^{\mu}=x_{f_{1}}^{\mu_{1}} \cdot x_{f_{2}}^{\mu_{2}} \cdots x_{f_{k}}^{\mu_{k}}$, it is clear that the coefficient of x^{μ} in $e_{\mathcal{F}}^{\mu}$ equals 1. Therefore, we remark that $e_{\mathcal{F}}^{\mu}=0$ if μ is not injective.

Let γ be a minimal orbit and take α in γ. We write $\mathbb{I}_{n}=\mathcal{P} \cup \mathcal{Q}$ where \mathcal{P} and \mathcal{Q} are given by

$$
\mathcal{P}=\left\{i \in \mathbb{I}_{n}: \alpha_{i} \text { is even }\right\} \text { and } \mathcal{Q}=\left\{i \in \mathbb{I}_{n}: \alpha_{i} \text { is odd }\right\} .
$$

An α-partition \mathcal{B} of \mathbb{I}_{n} is a pair of partitions of $\mathcal{P}=\cup_{i} P_{i}$ and $\mathcal{Q}=\cup_{i} Q_{i}$ respectively which satisfies that the restrictions $\left.\alpha\right|_{P_{i}}$ and $\left.\alpha\right|_{Q_{i}}$ of α to P_{i} and α to Q_{i} are minimal and injective. Given a α-partition \mathcal{B}, we put

$$
e_{\mathcal{B}}=\left(\prod_{i} e_{P_{i}}^{\alpha}\right)\left(\prod_{i} e_{Q_{i}}^{\alpha}\right) .
$$

To obtain the coefficient of x^{α} in $e_{\mathcal{B}}$, we need to multiply the coefficients of

$$
x^{\alpha \mid P_{i}} \text { in } e_{P_{i}}^{\alpha} \text { and } x^{\alpha \mid Q_{i}} \text { in } e_{Q_{i}}^{\alpha}
$$

so that the coefficient of x^{α} in $e_{\mathcal{B}}$ equals 1 . On the other hand, notice that $e_{\mathcal{B}}$ is the product of the factors of the form

$$
\left(x_{i} \pm x_{j}\right) \text { where } i, j \in P_{k} \text { or } i, j \in Q_{k} \quad \text { and } \quad x_{i} \text { where } i \in Q_{k} .
$$

All these factors occur with multiplicity 1 in $e_{\mathcal{B}}$.
Let τ be a reflection in \mathfrak{G} associated to one of these factors, that is, the reflection whose hyperplane of fixed points is given by the equations $x_{i}= \pm x_{j}$ or $x_{i}=0$. We have the following

Proposition 4.1. Let τ be as above, then

$$
\begin{equation*}
\tau\left(e_{\mathcal{B}}\right)=-e_{\mathcal{B}} . \tag{5}
\end{equation*}
$$

Proof. Let l be the factor associated to τ. Using (4) we have the following If l is not a factor of $e_{P_{i}}^{\alpha}$ or $e_{Q_{i}}^{\alpha}$, then

$$
\tau\left(e_{P_{k}}^{\alpha}\right)=e_{P_{k}}^{\alpha} \quad \text { and } \quad \tau\left(e_{Q_{k}}^{\alpha}\right)=e_{Q_{k}}^{\alpha} .
$$

If l is a factor of $e_{P_{i}}^{\alpha}$ or $e_{Q_{i}}^{\alpha}$, then

$$
\tau\left(e_{P_{k}}^{\alpha}\right)=-e_{P_{k}}^{\alpha} \quad \text { and } \quad \tau\left(e_{Q_{k}}^{\alpha}\right)=-e_{Q_{k}}^{\alpha} .
$$

Since the multiplicity of l in $e_{\mathcal{B}}$ is 1 , it follows (5).
We denote by δ_{α} the polynomial in \mathcal{S}_{γ} given by

$$
\delta_{\alpha}=\sum_{\mathcal{B}} e_{\mathcal{B}}
$$

where \mathcal{B} runs through all α-partitions. The coefficient of x^{α} in δ_{α} is equal to the number of partitions \mathcal{B} satisfying the required conditions, that is $\delta_{\alpha} \neq 0$.

Proposition 4.2. Let $\tau \in \mathfrak{G}$ be a reflection and r be a root of τ. If $P \in \mathcal{A}$ is such that $\tau(P)=-P$, then the linear form given by $\phi(x)=\sum_{i=1}^{n} r_{i} x_{i}$ is a factor of P.

Proof. Because K is infinite, we may see P as polynomial function on K^{n}.
Let $\left\{\varphi_{1}=\phi, \varphi_{2}, \ldots, \varphi_{n}\right\}$ be a basis of the dual space $\left(K^{n}\right)^{*}$, such that $\tau\left(\varphi_{i}\right)=\varphi_{i}$ if $i \neq 1$. For $x \in K^{n}$ we can write

$$
P(x)=\sum_{\beta} \lambda_{\beta} y^{\beta}
$$

where $\lambda_{\beta} \in K, y^{\beta}=y_{1}^{\beta_{1}} \cdots y_{n}^{\beta_{n}}$ and $y_{i}=\varphi_{i}(x)$. From the condition $\tau(P)=-P$ it follows that $\beta_{1}>0$ when $\lambda_{\beta} \neq 0$. Then $\phi(x)$ is a factor of P.

Lemma 4.3. Let γ be a minimal orbit. Then
i) $e_{\mathcal{B}} \in \mathcal{N}$.
ii) $\triangle_{\mathcal{H}}\left(S_{\gamma}^{\circ}\right)=K \cdot \delta_{\alpha}$.

Proof. i) Suppose that $\mathcal{D} \in \mathcal{Z}^{-}$and that $\tau \in \mathfrak{G}$ is a reflection such that $\tau\left(e_{\mathcal{B}}\right)=-e_{\mathcal{B}}$. We have

$$
\tau \cdot\left(\mathcal{D}\left(e_{\mathcal{B}}\right)\right)=\mathcal{D}\left(\tau \cdot e_{\mathcal{B}}\right)=-\mathcal{D}\left(e_{\mathcal{B}}\right) .
$$

Proposition 4.2 shows that all the linear factors of $e_{\mathcal{B}}$ are factors of $\mathcal{D}\left(e_{\mathcal{B}}\right)$, but any two of these factors being non-proportional, we infer that $e_{\mathcal{B}}$ is a factor of $\mathcal{D}\left(e_{\mathcal{B}}\right)$. Furthermore, if $\mathcal{D}\left(e_{\mathcal{B}}\right) \neq 0$, we have that $\operatorname{deg}\left(\mathcal{D}\left(e_{\mathcal{B}}\right)\right)<\operatorname{deg}\left(e_{\mathcal{B}}\right)$, and so we conclude that $\mathcal{D}\left(e_{\mathcal{B}}\right)=0$.
ii) Let \mathcal{B} be as before. For $\tau \in \mathcal{H}$ we put $\tau=\omega \cdot \pi$ where $\omega \in \mathcal{C}_{2}^{n}$ and $\pi \in \mathfrak{S}_{n}$. Denoting by \mathcal{B}^{τ} the bipartition defined by

$$
\mathcal{P}=\bigcup_{k} \pi\left(P_{k}\right) \quad \text { and } \quad \mathcal{Q}=\bigcup_{k} \pi\left(Q_{k}\right)
$$

It is clear that \mathcal{B}^{τ} satisfies the required conditions for a bipartition. From the identities

$$
\operatorname{det}\left[x_{j}^{(\alpha \circ \pi)_{i}}\right]=\pi^{-1}\left(\operatorname{det}\left[x_{j}^{\alpha_{i}}\right]\right) \quad \text { and } \quad \omega\left(e_{\mathcal{B}}\right)=e_{\mathcal{B}}
$$

we obtain

$$
e_{\mathcal{B}^{\tau}}=\tau^{-1}\left(e_{\mathcal{B}}\right)
$$

It follows that τ permutes the terms of δ_{α}, and so

$$
\tau \cdot \delta_{\alpha}=\delta_{\alpha} \forall \tau \in \mathcal{H}
$$

that is

$$
\Delta_{\mathcal{H}}\left(\delta_{\alpha}\right)=\delta_{\alpha} .
$$

Thus Lemma 3.1 implies ii).
Theorem 4.4. Let γ be a minimal orbit and α in γ. Then
i) The \mathfrak{G}-module $\left\langle\delta_{\alpha}\right\rangle$ generated by δ_{α} is simple.
ii) $\mathcal{S}_{\gamma}^{o}=\mathcal{N} \cap \mathcal{S}_{\gamma}=\left\langle\delta_{\alpha}\right\rangle$.
iii) The multiplicity of \mathcal{S}_{γ}^{o} in \mathcal{N} is 1 .

Proof. We will make use of the fact that when the base field K has characteristic zero all the K-linear representations of a finite group are completely reducible.
i) If \mathcal{S} and \mathcal{T} are submodules of $\left\langle\delta_{\alpha}\right\rangle$ such that

$$
\left\langle\delta_{\alpha}\right\rangle=\mathcal{S} \oplus \mathcal{T}
$$

writing $\delta_{\alpha}=s+t$ where $s \in \mathcal{S}$ and $t \in \mathcal{T}$, we have

$$
\delta_{\alpha}=\Delta_{\mathcal{H}}\left(\delta_{\alpha}\right)=\Delta_{\mathcal{H}}(s)+\Delta_{\mathcal{H}}(t) .
$$

It follows that at least one of terms in the sum is not zero. In conclusion, from ii) of Lemma 4.3, we have that $\delta_{\alpha} \in \mathcal{S}$ or $\delta_{\alpha} \in \mathcal{T}$, that is $\mathcal{S}=0$ or $\mathcal{T}=0$.
ii) From i) of the Lemma 4.3 we have

$$
\left\langle\delta_{\alpha}\right\rangle \subseteq \mathcal{N} \cap \mathcal{S}_{\gamma} \subseteq \mathcal{S}_{\gamma}^{o} .
$$

Let \mathcal{T} be a submodule of \mathcal{S}_{γ}^{o} such that

$$
\mathcal{S}_{\gamma}^{o}=\left\langle\delta_{\alpha}\right\rangle \oplus \mathcal{T}
$$

Let $0 \neq P \in \mathcal{T}$. Replacing P by $\sigma \cdot P$ with σ in \mathfrak{S}_{n}, if necessary, we may suppose that the coefficient a_{α} of x^{α} in P is different from zero. Since the coefficient of x^{α} in $\Delta_{\mathcal{H}}(P)$ is a_{α}, by Lemma 4.3, we have that there exists in K a non-zero element λ such that $\delta_{\alpha}=\lambda \Delta_{\mathcal{H}}(P)$. Thus $\delta_{\alpha} \in \mathcal{T}$, but this is a contradiction.
iii) Let $\theta: \mathcal{S}_{\gamma}^{o} \rightarrow \mathcal{S}_{\mu}^{o}$ be an isomorphism of \mathfrak{G}-modules, where γ and μ are minimal orbits. We can assume that $|\mu| \leq|\gamma|$. Consider α in γ and $e_{\mathcal{B}}$ as above. With similar arguments as in i) of Lemma 4.3, we obtain that $e_{\mathcal{B}}$ is a factor of $\theta\left(e_{\mathcal{B}}\right)$, so that $|\gamma|=|\mu|$ and there is a $\lambda \neq 0$ in K such that

$$
\theta\left(e_{\mathcal{B}}\right)=\lambda e_{\mathcal{B}} .
$$

That is, $\mathcal{S}_{\gamma} \cap \mathcal{S}_{\mu} \neq 0$, therefore $\gamma=\mu$.
Remark. As stated earlier in [3] we defined the space \mathcal{N} for a finite group $G \subset G L_{n}(K)$, and we showed that every simple $K[\mathfrak{G}]$-module is isomorphic to a $K[\mathfrak{G}]$-submodule of \mathcal{N}. When K is the complex number field and \mathcal{N} is a multiplicity-free direct sum of simple $K[G]-$ modules, we have that \mathcal{N} is a Gel'fand model for G. Hence, the following corollary can be obtained by using Corollary 2.4 and Theorem 4.4.

Corollary 4.5. If K is the complex number field, then \mathcal{N} is a Gel'fand Model for \mathfrak{G}. In particular, the number of minimal orbits coincides with the number of conjugacy classes of \mathfrak{G}.

References

[1] Al-Aamily, E.; Morris, A. O.; Peel, M. H.: The Representations of the Weyl Groups of Type B_{n}. J. of Algebra 68 (1981), 298-305.

Zbl 0463.20009
[2] Aguado, J. L.; Araujo, J. O.: A Gel'fand Model for the Symmetric Group. Communications in Algebra 29(4) (2001), 1841-1851.
$\underline{\text { Zbl pre01660922 }}$
[3] Araujo, J. O.; Aguado, J. L.: Representations of Finite Groups on Polynomial Rings. Actas, V Congreso de Matemática Dr. Antonio A. R. Monteiro, 35-40, Bahía Blanca 1999.
[4] Björk, J. E.: Rings of Differential Operators. North-Holland Publishing Company 1979. Zbl 0499.13009
[5] Curtis, C. W.; Reiner, I.: Methods of Representation Theory with Applications of Finite Groups and Orders.Vol. I. Whiley-Interscience 1981. Zbl 0469.20001
[6] Dornhoff, L.: Group Representation Theory. M. Dekker 1971. Zbl 0227.20002
[7] Fulton, W.; Harris, J.: Representation Theory. Springer-Verlag, GTM 129, N. Y. 1991.

Zbl 0744.22001
[8] Klyachko, A. A.: Models for the complex representations of the groups $G(n, q)$. Math. of the USSR - Sbornik 48 (1984), 365-380.

Zbl 0543.20026
[9] Soto-Andrade, J.: Geometrical Gel'fand Models, Tensor Quotients and Weil Representations. Proceedings of Symposia in Pure Mathematics 47, part. 2 (1987), 306-316.

Zbl 0652.20047
[10] Pantoja, J.; Soto-Andrade, J.: Fonctions sphériques et modèles de Gel'fand pour le groupe de mouvements rigides d'un espace paraeuclidien sur un corps local. C. R. Acad. Sci. Paris 302 (1986), 463-466.

Zbl 0602.20039

Received October 23, 2001

