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Abstract. By extending the main result of [6], we characterize the harmonicity of
any ϕ-morphism Φ : TM → TN, covering a map ϕ :M → N, between Riemannian
manifolds, when the tangent bundles carry the complete lift metric. By following
the pattern of (classical) harmonic morphisms [1], [3], we introduce in a natural way
the notion of harmonic ϕ-morphism and give a characterization that corresponds to
the one obtained in [4], [8]. One of the properties is that ϕ is a harmonic morphism
if and only if dϕ is a harmonic ϕ-morphism. We end with some examples and
applications to (1,1)-tensor fields.
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Introduction

A distinguished class of harmonic maps is the class of harmonic morphisms, these are defined
as maps between (semi)-Riemannian manifolds which pull back local harmonic functions to
local harmonic functions. We refer to [1] as the first monograph on this topic.

Let ϕ : (M, g) → (N, h) be a map between Riemannian manifolds. From vector bundles
category theory Φ : TM → TN is a ϕ-morphism, provided the fibre restriction Φp : TpM →
Tϕ(p)N is linear at any p ∈ M. Thus Φ determines a 1-form Φ ∈ A1(ϕ−1TN) with values in
the pull-back bundle ϕ−1TN. We prove that Φ : (TM, gc) → (TN, hc) is a harmonic map
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between semi-Riemannian manifolds (where c denotes the complete lift defined in [11]), if
and only if Φ ∈ A1(ϕ−1TN) is coclosed w.r.t. the pull back connection ∇ϕ

−1TN . When we
particularize Φ to a (1,1)-tensor field K on M, viewed as a map K : (TM, gc) → (TN, hc),
then its harmonicity was characterized in [6]. Here we characterize the (1,1)-tensor field K
of maximal rank which are harmonic morphisms and we find that K has to be the identity
up to a non-zero constant factor. This restrictive condition is a reason to introduce harmonic
ϕ-morphisms, by following the pattern of (classical) harmonic morphisms. If ∇ is a linear
connection of ϕ−1TN, compatible with Φ, then we call Φ a harmonic ϕ-morphism w.r.t. ∇,
provided any harmonic local function f on N has the pull-back df ◦ Φ coclosed on M. We
prove that ϕ : (M, g) → (N, h) is a harmonic morphism if and only if dϕ : TM → TN is
a harmonic ϕ-morphism w.r.t. ∇ϕ

−1TN . Different fom the behaviour of the harmonic maps,
the composition of two harmonic morphisms is a harmonic morphism. We provide a class of
connections w.r.t. which the same property is valid for ϕ-morphisms. Corresponding to the
characterization of [4], [8] of harmonic morphisms as horizontally weakly conformal harmonic
maps, we characterize here the harmonic ϕ-morphisms.

At the end, we apply the notion of harmonic ϕ-morphism to certain classes of (1,1)-tensor
fields (almost complex and almost product structures and the Ricci (1,1)-tensor field).

Throughout the paper, all data are smooth and we assume the Einstein convention on the
summing of repeated indices.

Acknowledgement. First author warmly thanks John C. Wood for useful discussions and
suggestions during her visit at Leeds University. Both authors are very indebted to the referee
for all his suggestions and useful ideas.

1. Preliminaries

To fix notations, let ϕ : (M, g)→ (N, h) be a map between Riemannian manifolds, with ∇M

and ∇N the corresponding Levi-Civita connections and let Φ : TM → TN be a ϕ-morphism.

A linear connection D of a vector bundle E → M, defines the exterior derivative d and the
coderivative δ of any bundle valued 1-form ω ∈ A1(E), respectively by

dω(X, Y ) = Dω(X, Y )−Dω(Y,X) , (1.1)

where Dω(X, Y ) = (DXω)Y, ∀X, Y ∈ Γ(TM) and

δω = −divω = −traceDω . (1.2)

ω is called harmonic if it is both closed (dω = 0) and coclosed (δω = 0). Note that d and
δ depend on D and therefore the closure, coclosure and harmonicity properties of ω also
depend on D. In particular, when E = ϕ−1TN (resp. E=M×R) carries a linear connection
∇ (resp. standard connection on the trivial bundle), then dΦ (resp. d(θ ◦ Φ)) denotes the
exterior derivative of Φ ∈ A1(ϕ−1TN) (resp. θ ◦ Φ ∈ A1(M), for any θ ∈ A1(N)). We
distinguish between dΦ ∈ A2(ϕ−1TN) and the tangent map dΦ : TTM → TTN. Which we
use will be clear from the context.
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Notation. Throughout this note, a pair (Φ, ∇) will denote any ϕ-morphism Φ : TM → TN
and any linear connection ∇ on ϕ−1TN.

Examples of Φ. (i) Obviously, dϕ : TM → TN is a ϕ-morphism; (ii) any (1,1)-tensor field
on M determines a 1M -morphism K : TM → TM, where 1M denotes the identity map of M.

Examples of ∇. (i) Let ∇ϕ
−1TN be the unique (see [3]) linear connection on ϕ−1TN, which

satisfies
∇ϕ

−1TN
X ϕ∗U = ϕ∗∇NdϕXU ∀X ∈ Γ(TM), U ∈ Γ(TN), (1.3)

where
ϕ∗U ∈ Γ(ϕ−1TN), (ϕ∗U)p = Uϕ(p), ∀p ∈M. (1.4)

(ii) Define ∇Φ to be the linear connection on ϕ−1TN which satisfies

∇ΦXϕ
∗U = ϕ∗∇NΦXU, ∀X ∈ Γ(TM), U ∈ Γ(TN). (1.5)

The existence and uniqueness of ∇Φ are proved as in [2, pp. 4] by replacing dϕ with Φ.

Obviously (ii) generalizes (i) since ∇ϕ
−1TN = ∇dϕ.

From a straightforward calculation, we obtain:

Lemma 1.1.
(a) The following conditions are equivalent for a pair (Φ, ∇):

∇Φ is symmetric ⇔ Φ ∈ A1(ϕ−1TN) is closed ⇔

⇔ ∇X(ΦY )−∇Y (ΦX) = Φ[X, Y ], X, Y ∈ Γ(TM);
(1.6)

(b) The pair (dϕ, ∇ϕ
−1TN) satisfies (1.6);

(c) The pair (Φ, ∇Φ) satisfies (1.6) if and only if [ΦX, ΦY ]=Φ[X, Y ], ∀X, Y ∈ Γ(TM).

Note that not every pair (Φ, ∇) satisfies these conditions, for example if (M, g) is a Rieman-
nian manifold with ∇ the Levi-Civita connection, then the pairs (fI, ∇) do not satisfy (1.6),
where f is a non-constant function on M and I : TM → TM is the identity.

Formula. For any ϕ-morphisms Φ, Ψ : TM → TN, the pair (Φ, ∇Ψ) satisfies:

∇Ψ(θ ◦ Φ) = θ ◦ ∇ΨΦ +∇Nθ(Ψ·,Φ·), ∀θ ∈ A1(N). (1.7)

Proof.

∇Ψ(θ ◦ Φ)(X, Y ) = (∇ΨX(θ ◦ Φ))Y = (∇
Ψ
X(θ ◦ Φ(Y ))− θ ◦ Φ(∇

M
X Y ) =

= (∇NΨXθ)ΦY + θ(∇
Ψ
X(ΦY ))− θ ◦ Φ(∇

M
X Y ) = (∇

N
ΨXθ)ΦY + θ(∇

Ψ
XΦ)Y =

= ∇Nθ(ΨX, ΦY ) + θ ◦ ∇ΨΦ(X, Y ), ∀X, Y ∈ Γ(TM).
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2. Compatible pairs

This section is devoted to a certain class of pairs (Φ, ∇), for which Φ and ∇ are related by
a certain compatibility relation.

More precisely, the above Formula leads us to the following:

Definition 2.1. A pair (Φ, ∇) is called compatible if it satisfies the following compatibility
relation

∇(θ ◦ Φ) = θ ◦ ∇Φ +∇Nθ(Φ·, Φ·), ∀θ ∈ A1(N). (2.1)

Example. Let Φ, Ψ : TM → TN be ϕ-morphisms. Then the pair (Φ, ∇Ψ) is compatible if
and only if Φ = Ψ. In particular, (dϕ, ∇ϕ

−1TN) is compatible.

Lemma 2.2. Any compatible pair (Φ, ∇) satisfies

d(θ ◦ Φ) = θ ◦ dΦ + dθ(Φ·, Φ·), ∀θ ∈ A1(N); (2.2)

∇(df ◦ Φ)(X, Y ) = [(∇XΦ)Y ]f +∇Ndf(ΦX,ΦY ), ∀X, Y ∈ Γ(TM), f ∈ F(N); (2.3)

δ(df ◦ Φ) = (δΦ)f + trace∇Ndf(Φ·, Φ·), ∀f ∈ F(N). (2.4)

Proof. (2.1) and (1.1) yield (2.2). From (2.1) applied to any exact form θ, it follows (2.3).
We end the proof by obtaining (2.4) from (2.3) and (1.2).

Proposition 2.3. Let (Φ, ∇) be a compatible pair.

(i) Let Φ ∈ A(ϕ−1TM) be closed. Then θ ◦ Φ ∈ A1(M) is closed if and only if ∇Nθ is
symmetric in its two variables restricted to the image of Φ.

In particular, if θ is closed, so is θ ◦ Φ and the converse holds if rank Φ = dimN ;

(ii) Φ ∈ A1(ϕ−1TN) is closed if and only if θ ◦ Φ ∈ A1(M) is closed whenever θ ∈ A1(N)
is closed;

(iii) ∇Φ is symmetric if and only if ∇(df ◦ Φ) is so.

Proof. (i) follows from (2.2) and (1.1). We derive (ii) and (iii) from (2.3) and the symmetry
of the Hessian ∇Ndf, f ∈ F(N), which complete the proof.

As a consequence of Proposition 2.3, (ii), we obtain:

Corollary 2.4. The following assertions are equivalent for any compatible pair (Φ, ∇) with
closed Φ ∈ A−1(ϕ−1TN):

(i) For any harmonic local function f : U ⊂ (N, h) → R, the pull-back df ◦ Φ is coclosed
on M;

(ii) Φ pulls back any harmonic 1-form θ on N to a harmonic form θ ◦ Φ on M.
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3. Harmonic ϕ-morphisms

The main notion of this note is naturally introduced in this section, as being suggested by
Corollary 2.4; note however that we do not require Φ to be closed.

Definition 3.1. Let (Φ, ∇) be a compatible pair. Then we define Φ to be a harmonic ϕ-
morphism (w.r.t. ∇), or briefly a ∇-harmonic ϕ-morphism, if ϕ pulls back any harmonic
1-form θ on N to a harmonic form θ ◦ ϕ on M.

An example of a large class of harmonic ϕ-morphisms is given by the following:

Theorem 3.2. Any map ϕ : (M, g) → (N, h) is a harmonic morphism if and only if
dϕ : TM → TN is a harmonic ϕ-morphism w.r.t. ∇ϕ

−1TN .

The proof follows from Lemma 1.1 (b) and Corollary 2.4.

In order to characterize the harmonic ϕ-morphisms by analogy with the harmonic morphisms
[4], [8], we state first the following:

Lemma 3.3 Let ϕ : (Mm, g)→ (Nn, h) and Φ : TM → TN be as above. If Hp = [KerΦp]⊥

denotes the horizontal space at p ∈M, then the following assertions are equivalent:

(i) For any p ∈ Mm, either Φp = 0 or Φp is surjective and there exists a positive function
λ ∈ F(Mm), called the dilation, such that:

h(ΦX,ΦY ) = λg(X, Y ), ∀X, Y ∈ Hp ; (3.1)

(ii) There exists a positive function λ ∈ F(Mm) such that

gijΦαi Φ
β
j = λh

αβ (3.2)

for any local frames

{
∂

∂xi
, i = 1,m

}
and

{
∂

∂xα
, α = 1, n

}
on Mm and Nn, respec-

tively.

The proof follows from the following algebraic result:

Fact. [3, pp. 41] Let F : U → W be a non-constant linear map between Euclidean spaces. By
the identification V ∗ = V and W ∗ = W, the adjoint F ∗ : W → V is given by <F ∗(w), v>=
<F (v), w >, ∀v ∈ V, w ∈W. Then F satisfies Lemma 3.3 (i) if and only if F ∗ embeds W
conformally in (KerF )⊥ ⊂ V.

Example. On any almost Hermitian (resp. Riemannian almost product) manifold, the
almost complex (resp. almost product) structure satisfies the equivalent conditions of Lemma
3.3.

Properties. Let Φ : TM → TN be a ϕ-morphism which satisfies the equivalent conditions
of Lemma 3.3. Then:
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(a) rankΦ = dimN ≤ dimM on an open subset on M ;

(b) Φp = 0 at any p ∈M, where rank Φp < dimN.

Proof. From Lemma 3.3 (i), at any p ∈M, either λ(p) = 0 and then rank Φ = 0, or λ(p) 6= 0
and rank Φ = dimN.

The proof given in [3, pp. 42] to characterize the harmonic morphisms can be easily adapted
here (by replacing dϕ with Φ) such that from (2.4) and (3.2) we obtain

Theorem 3.4. Let (Φ, ∇) be a compatible pair. Then Φ is a ∇-harmonic ϕ-morphism if and
only if Φ satisfies the equivalent conditions of Lemma 3.3 and Φ ∈ A1(ϕ−1TN) is coclosed
(w.r.t. ∇).

Corresponding to the composition property of the harmonic morphisms, the harmonic ϕ-
morphisms have the following behaviour:

Proposition 3.5. For i = 1, 2, let ϕi :Mi →Mi+1 be a map between Riemannian manifolds
and let Φi : TMi → TMi+1 be a harmonic ϕi-morphism with Φi ∈ A2(ϕ−1TMi+1) closed
w.r.t. ∇Φi . Then Φ2 ◦ Φ1 is a ∇Φ2◦Φ1-harmonic ϕ2 ◦ ϕ1-morphism.

Proof. From Lemma 1.1 (c), Φ2 ◦ Φ1 is closed (since Φi ∈ A1(ϕ
−1
i TMi+1), i = 1, 2 are so)

We remark that both pairs (Φi, ∇Φi) , i = 1, 2, are compatible from the Example following
Definition 2.1. Let θ be a harmonic 1-form, then by applying Corollary 2.4 (ii) to Φ2, we see
that θ ◦ Φ2 is harmonic; applying it to Φ1 then shows that θ ◦ Φ2 ◦ Φ1 is harmonic.

Due to Theorem 3.4, the main notion of this note, introduced by Definition 3.1 for compatible
pairs, may be extended to arbitrary pairs, as follows:

Definition 3.6. Let the pair (Φ, ∇) be arbitrary, then we define Φ to be a generalized
harmonic ϕ-morphism (w.r.t. ∇, or briefly a ∇-harmonic ϕ-morphism), if Φ satisfies the
equivalent conditions of Lemma 3.3 and Φ∈A1(ϕ−1TN) is coclosed w.r.t. ∇.

The class of harmonic ϕ-morphisms is larger than the one provided by Theorem 3.2 and
moreover, the pair (Φ, ∇) need not be compatible, as one can see from the following:

Example. Let M = N = R2 be the Euclidean space with the canonical coordinates (x1, x2)
and let ϕ be the identity map of R2. If Φ : TR2 → TR2 is the ϕ-morphism defined such that

Φ

(
∂

∂x1

)
= x1

∂

∂x1
+ x2

∂

∂x2
and Φ

(
∂

∂x2

)
= −x2

∂

∂x1
+ x1

∂

∂x2
, then δΦ = 0 w.r.t. the flat

connection of R2 and Φ satisfies (3.1) with dilation λ(x1, x2) = (x1)2 + (x2)2. It follows that
Φ is a generalized harmonic ϕ-morphism, which is not the tangent map of ϕ.

From Theorem 3.4 we note that the coclosure condition in Definition 3.6 is necessary for
any harmonic ϕ-morphism. We characterize this condition in a special case, by giving a
geometrical interpretation of it.

First we recall that some geometrical objects on a manifold M that can be lifted on TM by
the vertical and complete lifts.
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Definition 3.7. [11] Let π : TM → M be the canonical projection. If f ∈ F(M), X ∈
Γ(TM), g ∈ T 02 (M) and ∇ denote respectively a real function, a vector field, a (0, 2)-tensor
field and a linear connection on M, then their vertical and complete lifts on TM are defined
by:

f v, f c ∈ F(TM), f v = f ◦ π, f c = df ; (3.3)





Xv, Xc∈Γ(TTM), Xvf v= 0

Xvf c=(Xf)v=Xcf v, Xcf c=(Xf)c;
(3.4)






gv, gc∈T 02 (TM), g
v(Xv, Y v)=gv(Xv, Y c)=gv(Xc, Y v)=0

gv(Xc, Y c)=(g(X, Y ))v and gc(Xv, Y v)= 0,

gc(Xv, Y c)=(g(X, Y ))v=gc(Xc, Y v), gc(Xc, Y c)=(g(X, Y ))c;

(3.5)






∇cXvY
v= 0, ∇cXvY

c= (∇XY )v = ∇cXcY
v,

∇cXcY
c= (∇XY )c, ∀Y ∈Γ(TM).

(3.6)

Remarks. (i) Any tensor field on TM may be expressed locally in terms of the vertical and
complete lifts of some tensors on M ;

(ii) Γ(TTM) = span{Xv, Xc : X ∈ Γ(TM};

(iii) If (M, g) is a Riemannian manifold of m-dimension and ∇ is its Levi-Civita connection,
then gc is a semi-Riemannian metric on TM of signature (m, m) and ∇c is its Levi-Civita
connection.

Local coordinates 3.8. If (M, g) is a Riemannian manifold of m-dimension, let (xi) and
(xi, yi) be local coordinates which induce the local frames

{
∂

∂xi
: i = 1,m

}
and

{
∂

∂xi
=

(
∂

∂xi

)c
,
∂

∂yi
=

(
∂

∂xi

)v
: i = 1,m

}

onM and TM, respectively. With respect to the last local frame, we have the following local
expression:

gc =




yk
∂gij

∂xk
gij

gij 0



 , (gc)−1 =




0 gij

gij yk
∂gij

∂xk



 . (3.7)

Now we characterize the coclosure condition in a special case:

Theorem 3.9. Let ϕ : (M, g)→ (N, h) be a map between Riemannian manifolds. Then any
ϕ-morphism Φ : (TM, gc) → (TN, hc) is a harmonic map if and only if Φ ∈ A1(ϕ−1TN) is
coclosed w.r.t. ∇ϕ

−1TN .

This theorem is a consequence of the following
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Formula. τ(Φ) = 2(δΦ)v.

Proof. The second fundamental form of Φ is given by, for all U, V ∈ Γ(TTM):

∇dΦ(U, V ) = ∇Φ
−1TTN
U dΦ(V )−dΦ

(
M

5cU V

)
=

N

5cdΦ(U) dΦ(V )−dΦ

(
M

5cU V

)
. (3.8)

Let m and n be the dimensions of M and N , respectively. Similarly to the local coordinates
which induce the local frames

{
∂

∂uα
: α = 1, n

}
and

{
∂

∂uα
=

(
∂

∂uα

)c
,
∂

∂vα
=

(
∂

∂uα

)v
: i = 1,m

}

on N and TN, respectively. Then the map Φ : TM → TN is given in local coordinates by

Φ(x, y) =
(
ϕα(x),Φαi (x)y

i
)
, α = 1, n . (3.9)

where x = (x1, . . . , xm), y = (y1, . . . , yn). Then:

dΦ

(
∂

∂xi

)
=
∂ϕα

∂xi
∂

∂uα
+
∂Φαk
∂xi
yk
∂

∂vα
;

dΦ

(
∂

∂yi

)
= Φαi

∂

∂vα
, i = 1,m .

(3.10)

From (3.8), (3.10) and (3.6), it follows:

∇dΦ

(
∂

∂yi
,
∂

∂yj

)
= 0, i, j = 1,m . (3.11)

By using (3.7), (3.8), (3.11) and the symmetry of ∇dΦ, we obtain the local expression of the
tensor field τ = trace∇dΦ:

τ = 2gij∇dΦ

(
∂

∂yj
,
∂

∂xi

)
. (3.12)

Let
M

Γkij and
N

Γγαβ denote the Christoffel symbols of
M

5 and
N

5, respectively. Then (3.8), (3.10)
and (3.6) yield:

τ = 2gij

(

Φαj
∂ϕβ

∂xi

N

Γγαβ −
M

Γkij Φ
α
k

)
∂

∂vγ
. (3.13)

On the other hand, from (1.2) we infer the local expression:

δΦ = gij
(
∇ϕ

−1TN
∂

∂xi

Φ

)
∂

∂xj
. (3.14)

From (1.3), by a straightforward calculation, we obtain:

δΦ = gij

(

Φαj
∂ϕβ

∂xi

N

Γγαβ −
M

Γkij Φ
α
k

)
∂

∂uγ
. (3.15)
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Then (3.13) and (3.15) yield the formula.

Remark. If in particular Φ is a (1,1)-tensor field on M (as in Section 1, Example of Φ),
then the main theorem of [6] is obtained.

4. Applications to (1,1)-tensor fields

In the remaining part of the paper, the results of Section 3 are applied in the case when
(M, g) = (N, h) and ϕ is the identity map 1M of M. Hence any ϕ-morphism Φ becomes a
(1,1)-tensor field K : TM → TM which is given in the local coordinates (3.8) by

K(x, y)=(K1, . . . , Km;Km+1, . . . , K2m)=(x1, . . . , xm;K1j y
j, . . . , Kmj y

j) (4.1)

where x = (x1, . . . , xm), y = (y1, . . . , ym), K
∂

∂xj
= Kij

∂

∂xj
and Kij = K

i
j(x), i, j =

= 1,m.

As we mentioned in the last remark of Section 3, the class of all harmonic (1,1)-tensor fields
K : (TM, gc) → (TM, gc) was studied in [6]. Here we determine the subclass of all (1,1)-
tensor fields K : (TM, gc)→ (TM, gc) which are harmonic morphisms. First we recall one of
the equivalent definitions provided in [1].

Definition 4.1 Let F : (A, g) → (B, h) be a map between semi-Riemannian manifolds and
let a ∈ A. Then F is called:

(i) weakly conformal at a, if there is Λ(a) ∈R such that:

h(dFa(U), dFa(V )) = Λ(a)g(U, V ), ∀U, V ∈ TaA , (4.2)

(Λ(a) is called the conformality factor).

(ii) horizontally weakly conformal at a if there is Λ(a) ∈R such that for any local frame
{Zα : α = 1, n} on B:

g(gradFα, gradF β) = Λ(a)hαβ, α, β = 1, n , (4.3)

where n = dimB.

(iii) (horizontally) weakly conformal on A if F is (horizontally) weakly conformal at all
a ∈ A.

Proposition 4.2. [1] Let F : (A, g)→ (B, h) be a map between semi-Riemannian manifolds
and let a ∈ A. Then F is weakly conformal at a if and only if one of the following holds:

(i) dFa = 0;

(ii) dFa maps TaA conformally onto its image, i.e. there exists Λ(a) 6= 0 such that (4.2)
holds good;

(iii) the image of dFa is non-zero and lightlike w.r.t. the semi-Riemannian metric h, i.e. h
restricted to the image of dFa is zero.
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From (4.1), Definition 4.1 and Proposition 4.2, we obtain:

Lemma 4.3. Let K : (TM, gc) → (TM, gc) be a (1-1)-tensor field of maximal rank (i.e.
rankK = dimM). Then the following assertions are equivalent:

(a) K is weakly conformal;

(b) K is horizontally conformal;

(c) at any a ∈ A, K satisfies condition (ii) of Proposition 4.2.

Lemma 4.4. Let K be a (1,1)-tensor field on M and let m = dimM. Then K : (TM, gc)→
(TM, gc) is horizontally weakly conformal of maximal rank and of conformality factor Λ ∈
F(TM) if and only if (4.4) and (4.5) are satisfied:

K = ΛI, (4.4)

where I is the identity tensor field and

either Λ = 1 or Λ ∈ F(M), Λ(x) 6= 0 (4.5)

and at any x ∈M, 2
∂ ln |Λ− 1|

∂xi
= trace

(
L ∂

∂xi
g
)
, i = 1,m, where L denotes Lie derivative.

Remark. Actually, (4.5) says that Λ depends only on x ∈M and not on (x, y) ∈ TM.

Proof. Let Kα, α = 1, 2m, be defined as in (4.1). Then:

gc(gradKα, U) = UKα, ∀U ∈ Γ(TTM), α = 1, 2m. (4.6)

Replacing all instances of U by

(
∂

∂xi

)v
,

(
∂

∂xi

)c
, i = 1,m, in turn we obtain:

gradKs = gsj
∂

∂yj
; (4.7)

gradKm+s = Ksi g
ik ∂

∂xk
+ yk

(
gij
∂Ksh
∂xi
+
∂gjl

∂xh
Ksl

)
∂

∂yj
, s = 1,m.

From (4.7) and (3.7) one obtains:

gc(gradKt, gradKs) = 0; (4.8)

gc(gradKt, Km+s) = Ksi g
it, s, t = 1,m . (4.9)

From (4.3), Lemma 4.3 and (3.7), K is horizontally weakly conformal if and only if there
exists Λ ∈ F(TM) such that (4.8), (4.10) and (4.11) hold good, where

gc(gradKt, gradKm+s) = Λgst; (4.10)

gc(gradKm+t, gradKm+s) = Λyk
∂gst

∂xk
, s, t = 1,m . (4.11)
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Note that (4.8) is always satisfied and that (4.10) is equivalent to (4.4) by virtue of (4.9).

Hence the previous assertion combined with Lemma 4.3 and Proposition 4.2 ensure that K is
horizontally weakly conformal of maximal rank and dilation Λ ∈ F(TM) if and only if (4.4)
and (4.11) are satisfied for Λ(x, y) 6= 0, ∀(x, y) ∈ TM. Now, the lemma will be a consequence
of the following:

Fact. If (4.4) is satisfied for Λ(x, y) 6= 0, ∀(x, y) ∈ TM, then (4.11) is equivalent to (4.5).

To show this fact, we assume (4.4) and then from (4.7) and (3.7) the following equivalence
holds:

(4.11)⇔

⇔ Λ2gtkgsl
∂gkl

∂xh
yh + Λgtkyh

(
gij
∂Λ

∂xi
δsh + Λ

∂gjs

∂xh

)
ghj+

+Λgskyh
(
gij
∂Λ

∂xi
δth + Λ

∂git

∂xh

)
gkj = Λ

∂gts

∂xh
yh ⇔

⇔ −Λ2
∂gts

∂xh
yh + Λyh

(
git
∂Λ

∂xi
δsh + g

is ∂Λ

∂xi
δts + 2Λ

∂gts

∂xh

)
= Λ
∂gts

∂xh
yh ⇔

⇔ Λ2
∂gts

∂xi
yi + Λ

∂Λ

∂xi
(gitys + gisyt) = Λ

∂gts

∂xi
yi ⇔

⇔
∂Λ

∂xi
(gitys + gisyt) = (1− Λ)yi

∂gts

∂xi
(since Λ 6= 0 at any point of TM)⇔

⇔
∂Λ

∂xi
2yi = (Λ− 1)yi

∂gts

∂xi
gts ⇔ (4.5),

which complete the above fact and hence the Lemma.

Example. Let M = S2 = {x = (sin θ cosϕ, sin θ sinϕ, cos θ) ∈ R3/ϕ ∈ [0, 2π], θ∈ [0, π]} be
the unit sphere endowed with the metric g=(dθ)2+ sin2 θ(dϕ)2 induced from R3. Then the
identity I is the only one (1,1)-tensor field K : (TM, gc) → (TM, gc) which are horizontally
weakly conformal and of maximal rank.

Theorem 4.5. Any (1,1)-tensor field K : (TM, gc) → (TM, gc) of maximal rank is a
harmonic morphism (of conformal factor Λ ∈ F(TM)) if and only if K is the identity tensor
field up to a non-zero constant factor Λ ∈ R, which satisfies (4.5)

Proof. As we mentioned in Introduction, the harmonic morphisms are characterized in the
Riemannian case by [4], [8] and in the semi-Riemannian case by [4], as to be the maps which
are horizontally weakly conformal and harmonic. From Theorem 3.9 and Lemma 4.4, K is
a harmonic morphism of maximal rank and of conformal factor Λ ∈ F(TM) if and only if it
satisfies three relations: δK = 0, (4.4) and (4.5). From (4.4) and δK = 0 one can see that Λ
is constant. Therefore these relations are equivalent to K = ΛI, with Λ a non-zero constant
satisfying (4.5) which complete the proof.
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Proposition 4.6. [1] Let F : A→ B be a weakly conformal map between semi-Riemannian
manifolds of the same dimension m which is non-degenerate on a dense subset. Then

(i) if m = 2, F is harmonic;

(ii) if m ≥ 3, F is harmonic if and only if the conformality factor is constant.

Remark. From Proposition 4.6 and Lemma 4.3, any (1,1)-tensor field K : (TM, gc) →
(TM, gc) of maximal rank which is a harmonic morphism, has a constant conformality factor
when dimTM ≥ 3 (i.e. dimM > 1). Therefore Theorem 4.5 shows that Proposition 4.6
(ii) holds for any (1,1)-tensor field K : (TM, gc) → (TM, gc) of maximal rank which is a
harmonic morphism, even when dimM = 1.

Among the (1,1)-tensor fields of maximal rank, the class of (classical) harmonic morphisms
determined by Theorem 4.5 is very restricted, so that we are motivated to study (1,1)-tensor
fields which are harmonic ϕ-morphisms with ϕ the identity map.

5. Examples of harmonic ϕ-morphisms

Some of the examples of harmonic (1,1)-tensor fields obtained in [6] turn out to be of maximal
rank and moreover turn out to be harmonic ϕ-morphisms (with ϕ the identity map) w.r.t.
the canonical connection. We note that the notion of harmonic (1,1)-tensor field given in [6]
is different of that used in [2]. As they are consequences of Definition 3.6 and Theorem 3.9
all the statements of this section are given without proof.

Proposition 5.1. The identity tensor field of a Riemannian manifold M is a harmonic
1M -morphism of dilation one.

Proposition 5.2. On any Einstein manifold M, the Ricci (1,1)-tensor field Ric: TM → TM
is a harmonic 1M -morphism.

We recall that an almost Hermitian manifold (M, g, J) is called cosymplectic [10] or semi-
Kähler [7], provided δJ = 0.

Proposition 5.3. An almost Hermitian manifold (M, g, J) is semi-Kähler if and only if J
is a harmonic 1M -morphism.

Next, an almost product Riemannian manifold is defined as a Riemannian manifold (M, g)
endowed with an almost product structure P (that is a (1,1)-tensor field P 6= ±1TM , with
P 2 = 1TM) such that g(PX, PY ) = g(X, Y ), ∀X, Y ∈ Γ(TM). A classification of these
manifolds is given in [9].

Proposition 5.4. If (M, P, g) is an almost product Riemannian manifold lying in the class
W1 ⊕W2 ⊕W4 ⊕W5, [9] then P is a harmonic 1M -morphism.

The needed property of being in the given class is δP = 0.
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