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Abstract. We consider a fairly general class of natural non standard metric prod-
ucts and classify those amongst them, which yield a product of certain type (for
instance a length space) for all possible choices of factors of this type (length
spaces). We further prove the additivity of the Minkowski rank for a large class of
metric products.

1. Introduction

Given a finite number (Xi, di), i = 1, . . . , n, of metric spaces there are different possibilities
to define a metric d on the product Πni=1Xi. The standard choice is of course the Euclidean
product metric

d
(
(x1, . . . , xn), (y1, . . . , yn)

)
=
( n∑

i=1

d2i (xi, yi)
) 1
2
.

A generalization of this construction is given by warped products ([1],[5]), which have been
proven to be useful for the construction of Hadamard spaces. In this paper we consider
another generalization, namely the following class of product metrics:
Let (Xi, di), i = 1, . . . , n, be metric spaces and denote the product set by X = Π

n
i=1Xi. It is

natural to define a metric product d on X of the form d = dΦ,

dΦ

(
(x1, . . . , xn), (y1, . . . , yn)

)
= Φ

(
d1(x1, y1), . . . , dn(xn, yn)

)
,
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where Φ : Qn −→ [0,∞) is a function defined on the quadrant Qn = [0,∞)n.
Note that for Banach spaces a class of product spaces of this type appears in [6].

The function Φ has to satisfy certain natural conditions ((A) and (B) in Lemma 1) in order
that dΦ is a metric. These conditions still allow strange metrics on the product (even the
trivial product when n = 1). In particular, Φ does not have to be continuous.

However, once we require for example that Φ : Qn −→ [0,∞) yields a length space (X, dΦ)
for all possible choices of length spaces (Xi, di), the conditions on Φ become very rigid. In
fact, those conditions imply that Φ now has to be continuous.

In order to state the corresponding theorem we consider the function

Ψ : Rn −→ [0,∞), Ψ
( n∑

i=1

xi ei

)
:= Φ

( n∑

i=1

|xi| ei
)

and say that Φ is induced by a norm if and only if the function Ψ is a norm.

We say that Φ preserves length spaces if the product of length spaces, endowed with the
metric dΦ, again is a length space (and correspondingly for other types of metric spaces).

Theorem 1. Let Φ : Qn −→ [0,∞) be a function satisfying conditions (A) and (B) of
Lemma 1. Then Φ preserves
i) length spaces,

ii) geodesic spaces,

iii) uniquely geodesic spaces,

iv) metric spaces of non-positive Busemann curvature,

v) metric spaces of curvature bounded from above (or below),

if and only if

i),ii) Φ is induced by a norm.

iii),iv) Φ is induced by a norm with strictly convex norm ball.

v) Φ is induced by a scalar product.

In Section 3 we consider the behaviour of the Minkowski rank under non standard metric
products. The Minkowski rank, rankM(X, d), of a metric space (X, d) is the supremum of the
dimensions of normed vector spaces isometrically embedded into X. We generalize results of
[7] to those metric products (X, dΦ) where Φ is induced by a norm with strictly convex unit
ball:

Theorem 2. Let Φ : Qn −→ [0,∞) be a function such that Ψ : Rn −→ [0,∞), defined as
above, is a norm with a strictly convex norm ball. Let (Xi, di), i = 1, . . . , n, be metric spaces
and X = Πni=1Xi. Then

rankM

(
X, dΦ

)
=

n∑

i=1

rankM

(
Xi, di

)
.
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This shows one advantage of the Minkowski rank over the Euclidean rank, since the latter
one is not additive, even with respect to the standard product ([7]).
A geodesic metric space (X, d) is called convex, if for every pair c1 : [a1, b1] −→ X and

c2 : [a2, b2] −→ X of constant speed geodesics the function d◦(c1, c2) : [a1, b1]× : [a2, b2] −→ R
is convex.

Kleiner ([8],Theorem D) proved that for a locally compact, convex, geodesic metric space
(X, d) with cocompactly acting isometry group the Minkowski rank coincides with a number
of other invariants, one of which is the quasi-Euclidean rank. The quasi-Euclidean rank,
rankqE(X, d), is defined as

sup{k | there is a quasi-isometric embedding f : Ek −→ X}.

As a corollary of our results, we show that these invariants are additive under certain prod-
ucts. In particular we obtain the

Corollary 1. Let Φ be as in Theorem 2 and (Xi, di), i = 1, . . . , n, be locally compact convex
metric spaces with cocompactly acting isometry group. Then for the quasi-Euclidean rank,
rankqE, one has

rankqE

(
X, dΦ

)
=

n∑

i=1

rankqE

(
Xi, di

)
.

Acknowledgement. It is a pleasure to thank Janko Latschev for useful discussions.

2. Non standard metric products

On Qn we define a partial ordering ≤ in the following way: if q1 = (q11, . . . , q
1
n) and q

2 =
(q21, . . . , q

2
n) then

q1 ≤ q2 :⇐⇒ q1i ≤ q
2
i ∀i ∈ {1, 2, . . . , n}.

Let Φ : Qn −→ [0,∞) be a function and consider the function dΦ : X ×X −→ [0,∞),

dΦ

(
(x1, . . . , xn), (y1, . . . , yn)

)
= Φ

(
d1(x1, y1), . . . , dn(xn, yn)

)
.

In order that dΦ will be a metric, we clearly have to assume

(A) Φ(q) ≥ 0 ∀q ∈ Q and Φ(q) = 0 ⇔ q = 0.

The symmetry of dΦ is obvious. We now translate the triangle inequality for dΦ into a
condition on Φ.

Let x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn) ∈ X and consider the “distance
vectors”

q1 :=
(
d1(x1, z1), . . . , dn(xn, zn)

)
,

q2 :=
(
d1(x1, y1), . . . , dn(xn, yn)

)
and

q3 :=
(
d1(y1, z1), . . . , dn(yn, zn)

)



502 A. Bernig et al.: Non Standard Metric Products

in Qn. Since for every i ∈ {1, . . . , n}, xi, yi, zi are points in Xi we see that qj ≤ qk + ql for
every permutation {j, k, l} of {1, 2, 3}.
Now dΦ satisfies the triangle inequality if Φ satisfies

(B) for all points q1, q2, q3 ∈ Qn with qj ≤ qk + ql we have

Φ(qj) ≤ Φ(qk) + Φ(ql).

Remark.
i) Note that for q1, q2, q3 one can always take a triple of the form p, q, p+q, hence (B) implies

in particular Φ(p + q) ≤ Φ(p) + Φ(q), which will be called the sub-additivity of Φ in
the following.

ii) The condition (B) can be applied for the triple p, q, q in the case that p ≤ 2q. Then
Φ(p) ≤ 2Φ(q).

It is now easy to prove the following result

Lemma 1. Let Φ : Qn −→ [0,∞) be a function. Then dΦ is a metric on X for all possible
choices of metric spaces (Xi, di), i = 1, . . . , n, if and only if Φ satisfies (A) and (B).

This Lemma still allows strange metrics on a product (even the trivial product n = 1). Let
for example Φ : Qn −→ [0,∞) be an arbitrary function with Φ(0) = 0 and Φ(q) ∈ {1, 2},
∀q ∈ Qn \ {0}. Then dΦ is a metric.

If we, however, require for example that the product metric space X is always a length space
in the case the Xi are, the conditions on Φ are very rigid.

For the convenience of the reader we recall the notion of a length space (compare e.g. [3]
I.3). Let (X, d) be a metric space. For a continuous path c : [0, 1] −→ X one defines as usual
the length

L(c) := sup
{ k∑

j=1

d
(
c(tj−1), c(tj)

)}
, (1)

where the sup is taken over all subdivisions

0 = t0 ≤ t1 ≤ · · · ≤ tk = 1 of [0, 1].

(X, d) is called a length space if for all x, y ∈ X, d(x, y) = inf L(c), where the inf is taken
over all continuous paths from x to y. The curve c is called rectifiable if L(c) is finite.

Spaces of curvature bounded from above (resp. below) are defined via comparison triangles in
appropriate space forms of constant curvature. We refer the reader to [3] and [4] for details.
A space of non-positive Busemann curvature is a geodesic space such that the metric is locally
convex ([3]). If the metric is even globally convex, the geodesic space is called convex. For
instance each metric space of curvature ≤ 0 has non-positive Busemann curvature and each
geodesic CAT(0)-space is convex (but not vice-verse).

We further need the following two Lemmata:
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Lemma 2. For Φ : Qn −→ [0,∞) the function Ψ : Rn −→ [0,∞) defined via

Ψ
( n∑

i=1

xi ei

)
:= Φ

( n∑

i=1

|xi| ei
)

is a norm on Rn if and only if Φ satisfies the following conditions:
(1) Φ(q) ≥ 0 ∀q ∈ Qn and Φ(q) = 0 ⇔ q = 0,

(2) Φ is monotone, i.e. q ≤ p =⇒ Φ(q) ≤ Φ(p)∀p, q ∈ Qn,

(3) Φ(p+ q) ≤ Φ(p) + Φ(q),

(4) Φ(λq) = λΦ(q) ∀p ∈ Qn, λ ≥ 0.

Proof. =⇒: Let Φ satisfy (1) − (4). Then Ψ ≥ 0, Ψ(x) = 0 ⇐⇒ x = 0 and Ψ(λx) =
|λ|Ψ(x) directly follow from the definition of Ψ. In order to verify the subadditivity, note
that for x = (x1, . . . , xn) and y = (y1, . . . , yn)

Ψ(x + y) = Φ
( n∑

i=1

|xi + yi| ei
)

(2)

≤ Φ
( n∑

i=1

(|xi|+ |yi|) ei
)

(3)

≤ Φ
( n∑

i=1

|xi| ei
)
+ Φ
( n∑

i=1

|yi| ei
)

= Ψ(x) + Ψ(y).

⇐=: Assume now that Ψ is a norm. Then Φ clearly satisfies (1), (3), (4). To prove (2) it
is enough to show that Φ(p + λei) ≥ Φ(p) for any unit vector ei and λ ≥ 0. Assume that
Φ(p+ λei) < Φ(p). Write p = (p1, . . . , pn) ∈ Qn, let q = (p1, . . . , pi−1,−pi− λ, pi+1, . . . , pn) ∈
Rn. Then Ψ(q) = Ψ(p + λei) < Ψ(p) but p is on the segment between q and p + λei. This
contradicts the subadditivity of Ψ. 2

Lemma 3. Let Φ : Qn −→ [0,∞) satisfy (1)− (4) as in Lemma 2. Then Ψ as in Lemma 2
is induced by a scalar product gΨ on Rn if and only if Φ satisfies the property

(5) Φ2
( n∑

i=1

λi ei

)
=

n∑

i=1

Φ2(λi ei) ∀λi > 0.

In this case the set {e1, . . . , en} is an orthogonal system of gΨ.

Proof. From Lemma 2 we know that Ψ is a norm if and only if conditions (1)−(4) hold. Now
we show that Ψ satisfies the parallelogram equation if and only if condition (5) also holds:

=⇒: Suppose that Φ satisfies condition (5). Then for x = (x1, . . . , xn) and y = (y1, . . . , yn)
the parallelogram equation is equivalent to

n∑

i=1

[
|xi + yi|

2 + |xi − yi|
2 − 2 [|xi|

2 + |yi|
2]
]
Φ2(ei) = 0,
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which holds trivially.

⇐=: Now suppose that the parallelogram equation holds. For x = (x1, . . . , xn−1, 0) and
y = (0, . . . , 0, yn) it takes the form

Φ2
( n−1∑

i=1

|xi| ei + |yn| en
)
= Φ2

( n−1∑

i=1

|xi| ei
)
+ Φ2

(
|yn| en

)
.

The same computation for x = (x1, . . . , xn−2, 0, 0), y = (0, . . . , 0, yn−1, 0) and so on finally
yields condition (5). 2

From Lemmata 2 and 3 we easily conclude the following propositions:

Proposition 1. Let (Vi, || · ||i), i = 1, . . . , k be normed vector spaces and Φ : Qn −→ [0,∞)
be a function. Define the function || · ||Φ : V = V1 × · · · × Vk −→ [0,∞) through

∣∣∣
∣∣∣(v1, . . . , vk)

∣∣∣
∣∣∣
Φ
:= Φ

( k∑

i=1

||vi||i ei
)
.

Then (V, || · ||Φ) is a normed vector space for all possible choices of normed vector spaces
(Vi, || · ||i) if and only if Ψ as defined in Lemma 2 is a norm.

and

Proposition 2. Let (Vi, || · ||i), i = 1, . . . , k, be normed vector spaces the norms of which are
induced by scalar products < ·, · >i on Vi and Φ : Qn −→ [0,∞) be a function.
Then the norm || · ||Φ on V = V1× · · ·×Vk as in Proposition 1 is induced by a scalar product
< ·, · >Φ for all choices of vector spaces Vi with scalar products < ·, · >i, if and only if the
norm Ψ as defined in Lemma 2 is induced by a scalar product gΨ on Rn.
Thus for two vectors v = (v1, . . . , vk), w = (w1, . . . , wk) ∈ v one always has

< v,w >Φ =
k∑

i=1

Φ2(ei) < vi, wi > ,

which is the usual Euclidean product up to a scale of the scalar products on the factors.

Note that the degree to which {e1, . . . , en} fails to be an orthonormal basis of gΨ is the degree
to that < ·, · >Φ differs from the standard scalar product of Euclidean products.

Outline of the proofs of Propositions 1 and 2. The “if parts” are obvious consequences of
the Lemmata 2 and 3. For the only if part one considers special settings in which all of the
factors are the reals with the standard norm (scalar product, respectively). While conditions
(1) and (4) from Lemma 2 hold trivially, the conditions (2) and (3) now easily follow by
simple constructions in R. Finally, for Theorem 2, condition (5) follows just as in Lemma 3.

We are now able to give the
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Proof of Theorem 1. =⇒: For the “only if” part we will restrict our attention to appro-
priately chosen factors (Xi, di). Of course we do so by assuming that all the factors are the
reals with the standard metric: (Xi, di) = (R, de), i = 1, . . . , k.
Similar as in Lemma 1 we see that Φ satisfies (A) = (1) and (B) which implies the subaddi-
tivity of Φ.

We first show that in all the cases i) - v) Φ must be induced by a norm. To start with, let
us show that Φ has to be continuous. Suppose it is not. By subadditivity, one easily gets
that the restriction of Φ to one of the coordinate lines (say the first one) is discontinuous at
0. Then any two points with different projections on X1 can not be joined by a continuous
curve in the product space, which therefore can not be a length space.
That Φ is induced by a norm now follows immediately from Theorem 6 in [2], which

implies that any homogeneous length metric on Rn that induces the same topology as the
standard metric must come from a norm.

v) now follows from the fact that a normed vector space has a lower or upper curvature
bound if and only if it is Euclidean. Thus, due to Proposition 2, Φ must be induced by a
scalar product.
In order to complete the proof in the cases iii) and iv) it suffices to remark that if Φ

does not admit a strictly convex unit ball, then the product space is generally not uniquely
geodesic. This can be seen for instance in the case (Rn,Ψ).
⇐=: Let now Φ be induced by a norm. Note that from Lemma 2 it follows immediately
that Φ satisfies the conditions (1) − (4) of Lemma 2. In order to show that for any choices
of length (geodesic) spaces X1, . . . , Xk the product (X, dΦ) is a length (geodesic) space we
prove the following

Lemma 4. Let (Xi, di) be metric spaces and ci : [0, 1] −→ Xi be continuous curves pa-
rameterized by arclength connecting pi ∈ Xi with qi ∈ Xi, i = 1, . . . , k. Denote by li the
(Xi, di)-length of ci and suppose that Φ satisfies conditions (1)− (4). Then the (X, dΦ)-length
of the product curve c = (c1, . . . , ck) : [0, 1] −→ X is L(c) = Φ(l1, . . . , lk).
Furthermore c is also parameterized by arclength.

Proof. Note that the (Xi, di)-length L(ci) of ci is given through

li = L(ci) = lim
N−→∞

N∑

j=1

di

(
ci(
j − 1

N
), ci(

j

N
)
)
,

where di(ci(
j−1
N
), ci(

j
N
)) ≤ li

N
.

For the (X, dΦ)-length L(c) of c one has

L(c) = lim
N−→∞

N∑

j=1

dΦ

(
c(
j − 1

N
), c(
j

N
)
)

= lim
N−→∞

N∑

j=1

Φ
(
d1

(
c1(
j − 1

N
), c1(

j

N
)
)
, . . . , dk

(
ck(
j − 1

N
), ck(

j

N
)
))
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(2)

≤ lim
N−→∞

N∑

j=1

Φ
( l1
N
, . . . ,

lk

N

)

(4)
= lim

N−→∞

N∑

j=1

1

N
Φ(l1, . . . , lk)

= Φ(l1, . . . , lk).

On the other hand the continuity and subadditivity of Φ yield:

L(c) = lim
N−→∞

N∑

j=1

dΦ

(
c(
j − 1

N
), c(
j

N
)
)

= lim
N−→∞

N∑

j=1

Φ
(
d1

(
c1(
j − 1

N
), c1(

j

N
)
)
, . . . , dk

(
ck(
j − 1

N
), ck(

j

N
)
))

(3)

≥ lim
N−→∞

Φ
( N∑

j=1

d1

(
c1(
j − 1

N
), c1(

j

N
)
)
, . . . ,

N∑

j=1

dk

(
ck(
j − 1

N
), ck(

j

N
)
))

= Φ(l1, . . . , lk),

where the last equality is due to the continuity of Φ. 2

Let now (Xi, di), i = 1, . . . , k, be length spaces. Then the distance of any two points pi, qi ∈ Xi
may be approximated arbitrarily well by the lengths of continuous curves in (Xi, di) joining
pi and qi. Thus (X, dΦ) turns out to be a length space itself, due to the definition of dΦ, the
validity of Lemma 4 and the continuity of Φ.
This completes the proof in the cases i) and ii).

v) now just follows from Proposition 2 and the fact that stretching the factor metrics di by
Φ(ei) and then taking the standard product yields as product a space with an upper (resp.
lower) curvature bound. This last fact can be seen by an easy comparison argument using
the fact that the Euclidean product of two constant curvature space forms has upper and
lower curvature bounds. See also [3], II 1.16. and [4].

The local convexity of the distance function in iv) is obvious. In order to finish the proof in
the cases iii) and iv) we have to show that the product is uniquely geodesic again and we
might as well only consider the product of two factors in order to avoid unneccesary index
complications:
Let therefore (x1, x2), (y1, y2) ∈ X, set D := dΦ((x1, x2), (y1, y2)) and let c = (c1, c2) :
[0, D]−→X be a geodesic inX joining (x1, x2) to (y1, y2). Set v1 :=(d1(x1, c1(t)), d2(x2, c2(t)))
∈ Q2, v2 := (d1(y1, c1(t)), d2(y2, c2(t))) ∈ Q2 for t ∈ [0, D] and v := (d1(x1, y1), d2(x2, y2)) ∈
Q2. By the triangle inequality in each component, we have v1 + v2 ≥ v. With (c1, c2) being
a geodesic and by subadditivity, we must have

Φ(v1) + Φ(v2) = Φ(v) ≤ Φ(v1 + v2) ≤ Φ(v1) + Φ(v2).

Since the norm ball associated to Φ is strictly convex, the conditions Φ(v1) + Φ(v2) = Φ(v)
and v ≤ v1 + v2 can only be satisfied if v1 = λ1v, v2 = λ2v with λ1 + λ2 = 1. Since
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Φ(v1) = t,Φ(v) = D, we get λ1 =
t
D
, λ2 = 1 −

t
D
. The spaces X1, X2 are uniquely geodesic

and therefore c1(t), c2(t) are fixed by these equations. Hence there is a unique geodesic (c1, c2)
joining (x1, x2) and (y1, y2). 2

3. Minkowski rank of products

In this section we prove Theorem 2 and Corollary 1. As the proof of Theorem 2 is almost
the same as the one of Theorem 2 of [7] we keep it fairly short.
In [7] we introduced the notions of the Euclidean and the Minkowski rank for arbitrary

metric spaces as follows.

Definition 1. Minkowski- and Euclidean rank for metric spaces:

a) For an arbitrary metric space (X, d) the Minkowski rank is

rankM(X, d) := sup
(V,||·||)

{
dimV

∣∣∣ ∃ isometric map iV : (V, || · ||) −→ (X, d)
}
.

b) The Euclidean rank is defined as

rankE(X, d) := sup
{
n ∈ N

∣∣∣ ∃ isometric map iEn : En −→ (X, d)
}
.

The Minkowski rank was shown to be additive with respect to the standard product of
arbitrary metric spaces, whereas a counterexample to the corresponding additivity of the
Euclidean rank was provided. Since for metric spaces of locally one-side bounded Alexandrov
curvature these two ranks coincide ([9],[7]), the additivity of the Euclidean rank with respect
to the standard product follows for instance for metric spaces of non-positive or non-negative
Alexandrov curvature.

In [8] Kleiner considered another notion of rank which we will refer to as quasi-Euclidean rank
in the following. Recall that given two metric spaces (X, dX), (Y, dY ), a map f : X −→ Y is
called quasi-isometric embedding of X in Y , if there exist λ ≥ 1 and ε > 0 such that for all
x1, x2 ∈ X:

λ−1dX(x1, x2)− ε ≤ dY (f(x1), f(x2)) ≤ λdX(x1, x2) + ε

Definition 2. The quasi-Euclidean rank is defined as

rankqE(X, d) := sup
{
n ∈ N

∣∣∣ ∃ quasi-isometric embedding fEn : En −→ (X, d)
}
.

Scetch of proof of Theorem 2. The analogue of Proposition 2 in [7] is

Proposition 3. Let A denote an affine space on which the normed vector space (V, | · |) acts
simply transitively. Let further (Xi, di), i = 1, . . . , n, be metric spaces, Φ : Q

n −→ [0,∞) be
a function satisfying conditions (1)− (4) such that the norm ball of Ψ is strictly convex and
let ϕ : (A, | · |) −→ (Πni=1Xi, dΦ) be an isometric map. Then there exist pseudonorms || · ||i,
i = 1, . . . , n, on V such that

i) |v| = Φ
( n∑
i=1

||v||i ei
)
∀v ∈ V and
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ii) ϕi : (A, || · ||i) −→ (Xi, di), i = 1, . . . , n are isometric.

Note that from Proposition 3 one achieves the subadditivity of the Minkowski rank, while
the superadditivity just follows by considering the product of two isometric embeddings of
normed vector spaces into the factors.

We define αi : A× V −→ [0,∞), i = 1, . . . , n, via

αi(a, v) := di

(
ϕi(a), ϕi(a+ v)

)
.

Since ϕ is isometric we have

Φ
( n∑

i=1

αi(a, v) ei

)
:= dΦ

(
ϕ(a), ϕ(a+ v)

)
= |v|. (2)

In order to prove Proposition 3, we might as well restrict to the case n = 2 and show that
|| · ||i : V −→ R+, ||v||i := αi(v) ∀v ∈ V , i = 1, 2, are pseudonorms on V . Therefore we
establish the following properties of α:

1) αi(a, v) = αi(a+ v, v), i = 1, 2, ∀a ∈ A, v ∈ V,

2) αi(a, tv) = |t|αi(a, v), i = 1, 2, ∀a ∈ A, v ∈ V, t ∈ R,

3) αi(a, v) = αi(b, v), i = 1, 2, ∀a, b ∈ A, v ∈ V and

4) αi(v + w) ≤ αi(v) + αi(w), i = 1, 2, ∀v, w ∈ V,

where αi(v) := αi(a, v) with a ∈ A arbitrary (compare with 3)). In order to prove 1) we note
that the di’s triangle inequality yields

αi(a, v) + αi(a+ v, v) ≥ αi(a, 2v).

Therefore the monotonicity of Φ gives

Φ
( n∑

i=1

[αi(a, v) + αi(a+ v, v)] ei

)
≥ Φ

( n∑

i=1

αi(a, 2v) ei

)
= |2v| = 2 |v|. (3)

Set x :=
∑n
i=1 αi(a, v)ei and y :=

∑n
i=1 αi(a + v, v)ei and note that with equations (2) and

(3) one has
Φ(x) = |v| = Φ(y) and Φ(x+ y) = 2 |v|

and hence
Φ(x+ y) = Φ(x) + Φ(y) = 2Φ(x) = 2Φ(y).

From this it follows with the strict convexity of Φ that

x = y ⇐⇒ αi(a, v) = αi(a+ v, v) ∀i = 1, . . . , n,
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which proves 1).
In order to prove 2) we note that the di’s triangle inequality yields for all n ∈ N

αi(a, nv) ≤
n−1∑

k=0

αi(a+ kv, v) = nαi(a, v),

where the last equation follows from 1) by induction. Thus we find ∀n ∈ N, v ∈ V, a ∈ A:

n2||v||2 = Φ
(
α1(a, nv), α2(a, nv)

)
≤ n2Φ

(
α1(a, v), α2(a, v)

)
= n2||v||2

and therefore
αi(a, nv) = nαi(a, v), i = 1, 2, ∀n ∈ N, v ∈ V, a ∈ A.

The claim now follows by the usual extension to n ∈ Q and finally to n ∈ R.
In order to prove 3) we observe that for n ∈ N we have

∣∣∣αi(a, nv) − αi(b, nv)
∣∣∣ =

∣∣∣di
(
ϕi(a), ϕ(a+ nv)

)
− di
(
ϕi(b), ϕ(b+ nv)

)∣∣∣

≤ di

(
ϕi(a), ϕi(b)

)
+ di

(
ϕi(a+ nv), ϕi(b+ nv)

)

≤ d
(
ϕ(a), ϕ(b)

)
+ d
(
ϕ(a+ nv), ϕ(b+ nv)

)

= 2||b− a||, i = 1, 2,

and therefore

αi(a, v) = lim
n−→∞

1

n
αi(a, nv) = lim

n−→∞

1

n
αi(b, nv) = αi(b, v), i = 1, 2.

Finally 4) follows from

αi(v + w) = αi(a, v + w) ≤ αi(a, v) + αi(a+ v, w) = αi(v) + αi(w),

where the inequality follows by the di’s triangle inequality and the last equation is due to 3).

The following example shows that the strict convexity of Φ, assumed in Theorem 2, is a
necessary condition. Take the interval R+ := [0,∞) with the metric induced from R. By
simple geometric arguments, rankM(R+) = 0. However, with Φ(x1, x2) := x1 + x2, the Φ-
product of two copies of R+ admits the geodesic line c(t) = (−t, 0) if t ≤ 0, c(t) = (0, t) if
t ≥ 0.

Proof of Corollary 1. It is evident that the product of locally compact, convex metric spaces
with cocompactly acting isometry group also satisfies these conditions. From Theorem D
of [8] it follows that under these conditions the quasi-Euclidean and the Minkowski rank
coincide. Thus the validity of Corollary 1 is a consequence of Theorem 2. 2

Remark. In general, the quasi-Euclidean rank is not additive with respect to the standard
product of metric spaces. Just consider the above example of two copies of R+ with the
standard product. The geodesic defined above is trivially a quasi-geodesic.
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