An Explicit Computation of "bar" Homology Groups of a Non-unital Ring

Aderemi O. Kuku Guoping Tang
Mathematics Section, ICTP
Trieste, Italy
e-mail: kuku@ictp.trieste.it
Department of Applied Mathematics, Northwestern Polytechnical University
Xi'an, Shaanxi, 710072, P.R. China
e-mail: tanggp@nwpu.edu.cn

MSC 2000: 18G15, 18G60
Keywords: "bar" homology groups, Tor-groups

0 . Introduction

Let R be the ring of integers in a number field F, Λ an R-order in a semi-simple F-algebra Σ, and Γ a maximal R-order in Σ containing Λ. Then there exists $s \in \mathbb{Z}, s>0$, such that $s \Gamma \subseteq \Lambda$, and so $s \Gamma$ is a 2 -sided ideal in both Λ and Γ. Put $\underline{q}=s \Gamma$. Then we have a Cartesian square

If the relative K-groups $K_{n}(\Lambda, \underline{q})$ and $K_{n}(\Gamma, \underline{q})$ coincide (see below), then one can get for all $n \in \mathbb{Z}$ the long exact Mayer-Vietoris sequence

$$
\cdots \rightarrow K_{n+1}(\Gamma / \underline{q}) \rightarrow K_{n}(\Lambda) \rightarrow K_{n}(\Lambda / \underline{q}) \oplus K_{n}(\Gamma) \rightarrow K_{n}(\Gamma / \underline{q}) \rightarrow K_{n-1}(\Lambda) \rightarrow \cdots
$$

This paper was inspired by a desire to understand the relative groups $K_{n}(s \Gamma):=K_{n}(\widetilde{s \Gamma}, s \Gamma)$ (see below) where $\widetilde{s \Gamma}$ is the ring obtained from $s \Gamma$ by adjoining a unit to $s \Gamma$. Since the

0138-4821/93 \$ 2.50 © 2003 Heldermann Verlag
additive group of $s \Gamma$ is free as a \mathbb{Z}-module, we are led to compute explicitly $\operatorname{Tor}_{n}^{\widetilde{s A}}(\mathbb{Z}, \mathbb{Z})$ and hence the so-called bar homology groups $H B_{n}(s A)$ (see Theorem 1) in the general setting of A being a ring with identity such that the additive group of the ideal $s A$ of A is a free \mathbb{Z}-module. We now explain the mathematical context of our result.

If Λ is a ring with identity, let $K_{n}(\Lambda)$ be the Quillen K-groups $\pi_{n}\left(B G L(\Lambda)^{+}\right)$(cf. [1]). If I is an 2 -sided ideal of Λ, the relative K-group $K_{n}(\Lambda, I)$ are defined for all $n \geq 1$ as the homotopy groups $\pi_{n}(F(\Lambda, I))$ of the homotopy fibre $F(\Lambda, I)$ of the morphism $B G L(\Lambda)^{+} \rightarrow$ $B \overline{G L}(\Lambda / I)^{+}$where $\overline{G L}(\Lambda / I)$ is the image of $G L(\Lambda)$ under the canonical map $G L(\Lambda) \rightarrow$ $G L(\Lambda / I)$. The fibration $F(\Lambda, I) \rightarrow B G L(\Lambda)^{+} \rightarrow B \overline{G L}(\Lambda / I)^{+}$then yields a long exact sequence

$$
\cdots \rightarrow K_{n}(\Lambda, I) \rightarrow K_{n}(\Lambda) \rightarrow K_{n}(\Lambda / I) \rightarrow K_{n-1}(\Lambda, I) \rightarrow K_{n-1}(\Lambda) \rightarrow K_{n-1}(\Lambda / I) \rightarrow \cdots .
$$

If B is any ring without unit, and \tilde{B} is the ring with unit obtained by formally adjoining a unit to B, i.e., $\tilde{B}=$ the set of all $(b, s) \in B \times \mathbb{Z}$ with multiplication defined by $(b, s)\left(b^{\prime}, s^{\prime}\right)=$ $\left(b b^{\prime}+s b^{\prime}+s^{\prime} b, s s^{\prime}\right)$. Define $K_{n}(B)$ as $K_{n}(\widetilde{B}, B)$. If Λ is an arbitrary ring with identity containing B as 2 -sided ideal, then B is said to satisfy excision for K_{n} if the canonical map

$$
K_{n}(B):=K_{n}(\widetilde{B}, B) \rightarrow K_{n}(\Lambda, B)
$$

is an isomorphism for any ring Λ containing B.
In [3] A. A. Suslin proves that a ring B satisfies excision for K_{n}-theory for $n \leq r$ if and only if

$$
\operatorname{Tor}_{1}^{\tilde{B}}(\mathbb{Z}, \mathbb{Z})=\ldots=\operatorname{Tor}_{r}^{\tilde{B}}(\mathbb{Z}, \mathbb{Z})=0
$$

It thus becomes important to compute $\operatorname{Tor}_{n}^{\tilde{S}}(\mathbb{Z}, \mathbb{Z})$.
Now, let $B_{*}(\Lambda)$ be the complex

$$
B_{*}(\Lambda): \quad \cdots \rightarrow \Lambda^{\otimes^{n}} \xrightarrow{d_{n}} \Lambda^{\otimes^{n-1}} \cdots \rightarrow \Lambda^{\otimes^{2}} \xrightarrow{d_{1}} \Lambda
$$

where the differentials d_{n} are defined by

$$
d_{n}\left(a_{1} \otimes \cdots \otimes a_{n}\right)=\sum_{i=1}^{n-1}(-1)^{i-1}\left(a_{1} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n}\right) .
$$

Let $H B_{n}(\Lambda)$ be the n-th homology group of $B_{*}(\Lambda)$ (cf. [2] P. 12). In [3] A. A. Suslin also proves that for any ring Λ (maybe without identity) and for any $n>0$, there is the canonical homomorphism $\operatorname{Tor}_{n}^{\tilde{\Lambda}}(\mathbb{Z}, \mathbb{Z}) \rightarrow H B_{n}(\Lambda)$, which is an isomorphism for all n if the additive group of the ring Λ is torsion-free. This explains the motivation for our study in this paper.

1. Main Result

Let A be a ring with identity. Let $s \in \mathbb{Z}, s>0$. Then $s A$ is an ideal of A. From now on, we assume that the additive group of $s A$ is a free \mathbb{Z}-module with basis $s x_{i}, i \in I$, where I is a totally ordered index set with the smallest element 1 . We can assume that there is a $\lambda \in \mathbb{Z}$ such that $\lambda s x_{1}=s$. This is because there exist $a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{Z}$ such that
$s=a_{1} s x_{1}+\cdots+a_{m} s x_{m}$ and for the vector $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ there is an invertible $m \times m$ matrix $g \in G L_{m}(\mathbb{Z})$ such that $\left(a_{1}, a_{2}, \ldots, a_{m}\right) g=(\lambda, 0, \ldots, 0)$ for some $\lambda \in \mathbb{Z}$. Thus $g^{-1}\left(s x_{1}, 0, \ldots, 0\right)^{t}, g^{-1}\left(0, s x_{2}, \ldots, 0\right)^{t}, \ldots, g^{-1}\left(0,0, \ldots, s x_{m}\right)^{t}$ as well as $s x_{i}, i \in I, i>m$, constitute the required basis. We want to calculate the groups $\operatorname{Tor}_{n}^{\widetilde{s A}}(\mathbb{Z}, \mathbb{Z})$ for such a ring A and any n.

For any positive integer n, denote the cartesian product of n copies of I by I^{n}. We define a partition of I^{n} as $I^{n}=I_{1}^{n} \bigcup I_{2}^{n} \bigcup I_{3}^{n}$ by induction as follows:

$$
\begin{gathered}
I_{1}^{1}=\emptyset, \quad I_{2}^{1}=I, \quad I_{3}^{1}=\emptyset ; \\
I_{1}^{2}=\left\{\left(1, \alpha_{2}\right) \in I^{2} \mid \alpha_{2} \in I_{2}^{1} \cup I_{3}^{1}\right\}, \quad I_{2}^{2}=\emptyset, \quad I_{3}^{2}=I^{2} \backslash\left(I_{1}^{2} \cup I_{2}^{2}\right) ; \\
\vdots \\
I_{1}^{n}=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-2}, 1, \alpha_{n}\right) \in I^{n} \mid\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-2}, \alpha_{n}\right) \in I_{2}^{n-1} \cup I_{3}^{n-1}\right\}, \\
I_{2}^{n}=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n} \in I^{n} \mid\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right) \in I_{1}^{n-1}\right\},\right. \\
I_{3}^{n}=I^{n} \backslash\left(I_{1}^{n} \bigcup I_{2}^{n}\right) .
\end{gathered}
$$

One could easily check that $I_{1}^{n}, I_{2}^{n}, I_{3}^{n}$ are pairwise disjoint.
Lemma 1. For any α_{n} and α_{n}^{\prime} in I both elements $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}\right)$ and $\left(\alpha_{1}, \alpha_{2}, \ldots\right.$, $\left.\alpha_{n-1}, \alpha_{n}^{\prime}\right)$ in I^{n} are in the same partition of I^{n}.

Proof. When $n=1$, it is obviously true. Suppose it is true for $n-1$. If $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}\right) \in$ I_{1}^{n}, then $\alpha_{n-1}=1$ and $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-2}, \alpha_{n}\right) \in I_{2}^{n-1} \cup I_{3}^{n-1}$. By the induction assumption, one has $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-2}, \alpha_{n}^{\prime}\right) \in I_{2}^{n-1} \cup I_{3}^{n-1}$ and therefore $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-2}, \alpha_{n-1}, \alpha_{n}^{\prime}\right) \in I_{1}^{n}$. If $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}\right) \in I_{2}^{n}$, then $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right) \in I_{1}^{n-1}$, thus $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}^{\prime}\right) \in$ I_{2}^{n} by the definition of I_{2}^{n}. If $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}\right) \in I_{3}^{n}$, then $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}\right) \notin$ $I_{1}^{n} \bigcup I_{2}^{n}$. By the results we have proved above one gets $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}^{\prime}\right) \notin I_{1}^{n} \bigcup I_{2}^{n}$, so $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}^{\prime}\right) \in I_{3}^{n}$.

To simplify notations for $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in I^{n}$ and $i \leq n(n \geq 2)$ we denote $\left(\alpha_{1}, \ldots\right.$, $\left.\alpha_{i-1}, \alpha_{i+1} \ldots, \alpha_{n}\right)$ by $\alpha[\hat{i}]$ and $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, 1\right)$ by $\alpha(1)$. By Lemma 1 both α and $\alpha(1)$ are in the same partition of I^{n}. For any element $\alpha \in I^{n}$ pick a symbol e_{α} and make a right free $\widehat{s A}$-module with basis $e_{\alpha}, \alpha \in I^{n}$, which enable us to calculate $\operatorname{Tor}_{n}^{\widetilde{s A}}(\mathbb{Z}, \mathbb{Z})$.

Lemma 2. There is a free chain complex of the $\widetilde{s A}$-module \mathbb{Z},

$$
\cdots \xrightarrow{d_{n+1}} \oplus_{\alpha \in I^{n}} e_{\alpha} \widetilde{s A} \xrightarrow{d_{n}} \oplus_{\alpha \in I^{n-1}} e_{\alpha} \widetilde{s A} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_{2}} \oplus_{\alpha \in I} e_{\alpha} \widetilde{s A} \xrightarrow{d_{1}} \widetilde{s A} \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0
$$

where ϵ is the augmentation map defined by $\epsilon(x, m)=m$ and d_{1} is defined by $d_{1}\left(e_{\alpha}\right)=\left(s x_{\alpha}, 0\right)$ for any $\alpha \in I$ and when $n \geq 2 d_{n}$ is defined by

$$
d_{n}\left(e_{\alpha}\right)= \begin{cases}e_{\alpha[n-1]}(-s, s), & \text { if } \alpha \in I_{1}^{n}, \\ e_{\alpha[\hat{n}]}\left(s x_{\alpha_{n}}, 0\right), & \text { if } \alpha \in I_{2}^{n}, \\ e_{\alpha[\hat{n}]}\left(s x_{\alpha_{n}}, 0\right)-e_{\alpha[\hat{n}](1)}\left(\lambda s x_{\alpha_{n-1}} x_{\alpha_{n}}, 0\right), & \text { if } \alpha \in I_{3}^{n} .\end{cases}
$$

Proof. It is easy to see that $\epsilon d_{1}=0$. For $n \geq 2$ and $\alpha \in I^{n}$ set $y_{\alpha}=d_{n-1} d_{n}\left(e_{\alpha}\right)$. It is sufficient to prove that $y_{\alpha}=0$.

If $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in I_{1}^{n}$, then by the definition of I_{1}^{n} we have $\alpha_{n-1}=1$ and $\alpha[\widehat{n-1}] \in$ $I_{2}^{n-1} \cup I_{3}^{n-1}$. Thus

$$
y_{\alpha}=d_{n-1}\left(e_{\alpha \mid \widehat{n-1]}}(-s, s)\right) .
$$

Note that $(\alpha[\widehat{n-1}])[\widehat{n-1}]=\alpha[\hat{n}][\widehat{n-1}]$. When $\alpha[\widehat{n-1}] \in I_{2}^{n-1}$, then

$$
y_{\alpha}=e_{\alpha[\hat{n}] \mid \widehat{n-1}]}\left(s x_{\alpha_{n}}, 0\right)(-s, s)=0 .
$$

When $\alpha[\widehat{n-1}] \in I_{3}^{n-1}$, then

$$
y_{\alpha}=\left[e_{\alpha[\hat{n}] \mid \widehat{n-1}]}\left(s x_{\alpha_{n}}, 0\right)-e_{\alpha[\hat{n}] \widehat{n-1}](1)}\left(\lambda s x_{\alpha_{n-2}} x_{\alpha_{n}}, 0\right)\right](-s, s)=0 .
$$

If $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in I_{2}^{n}$, then $\alpha[\hat{n}]=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right) \in I_{1}^{n-1}$, so $I_{1}^{n-1} \neq \emptyset$ and this implies that $n \geq 3$ since $I_{1}^{1}=\emptyset$, thus

$$
y_{\alpha}=d_{n-1}\left(e_{\alpha[\hat{n}]}\left(s x_{\alpha_{n}}, 0\right)\right)=e_{\alpha[\hat{n}] \mid n-2]}(-s, s)\left(s x_{\alpha_{n}}, 0\right)=0 .
$$

Suppose now that $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}\right) \in I_{3}^{n}$, then $\alpha[\hat{n}] \notin I_{1}^{n-1}$, so $\alpha[\hat{n}] \in I_{2}^{n-1}$ or $\alpha[\hat{n}] \in I_{3}^{n-1}$. Thus

$$
y_{\alpha}=d_{n-1}\left(e_{\alpha[\hat{n}]}\left(s x_{\alpha_{n}}, 0\right)-e_{\alpha[\hat{n}](1)}\left(\lambda s x_{\alpha_{n-1}} x_{\alpha_{n}}, 0\right)\right) .
$$

When $\alpha[\hat{n}] \in I_{2}^{n-1}$, by Lemma $1 \alpha[\hat{n}](1) \in I_{2}^{n-1}$, too. Thus

$$
y_{\alpha}=e_{\alpha[\hat{n} \mid \widehat{n-1}]}\left(s x_{\alpha_{n-1}}, 0\right)\left(s x_{\alpha_{n}}, 0\right)-e_{\alpha[\hat{n} \mid \widehat{n-1}]}\left(s x_{1}, 0\right)\left(\lambda s x_{\alpha_{n-1}} x_{\alpha_{n}}, 0\right)=0
$$

since $\lambda s x_{1}=s$.
When $\alpha[\hat{n}]=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right) \in I_{3}^{n-1}$, by Lemma $1 \alpha[\hat{n}](1) \in I_{3}^{n-1}$, too. In this case

$$
\begin{aligned}
& y_{\alpha}=\left[e_{\alpha[\hat{n}| | \widehat{n-1]}}\left(s x_{\alpha_{n-1}}, 0\right)-e_{\alpha[\hat{n}] \mid \widehat{n-1]}](1)}\left(\lambda s x_{\alpha_{n-2}} x_{\alpha_{n-1}}, 0\right)\right]\left(s x_{\alpha_{n}}, 0\right) \\
& -\left[e_{\alpha[\hat{n}] \mid n-1]}\left(s x_{1}, 0\right)-e_{\alpha[\hat{n}] \mid n-1] \mid(1)}\left(\lambda s x_{\alpha_{n-2}} x_{1}, 0\right)\right]\left(\lambda s x_{\alpha_{n-1}} x_{\alpha_{n}}, 0\right)=0
\end{aligned}
$$

since $\lambda s x_{1}=s$. Thus we have finished the proof of Lemma 2 .
Lemma 3. The chain complex in Lemma 2 is acyclic, and so, one gets a free resolution of the $\widehat{s A}$-module \mathbb{Z}.

Proof. Since $d_{1}\left(e_{\alpha}\right)=\left(s x_{\alpha}, 0\right)$ for any $\alpha \in I$ and $s A$ is generated by $s x_{\alpha}, \alpha \in I$, it follows that $\operatorname{ker}(\epsilon)=\operatorname{Im}\left(d_{1}\right)$. Next we prove that $\operatorname{ker}\left(d_{n}\right)=\operatorname{Im}\left(d_{n+1}\right)$.

By the definition of d_{n} one gets

$$
\begin{gathered}
e_{\alpha}(-s, s) \in \operatorname{ker}\left(d_{n}\right), \quad \text { for any } \alpha \in I_{2}^{n} \bigcup I_{3}^{n}, \\
e_{\alpha}\left(s x_{j}, 0\right) \in \operatorname{ker}\left(d_{n}\right), \quad \text { for any } \alpha \in I_{1}^{n} \text { and any } j \in I, \\
e_{\alpha}\left(s x_{j}, 0\right)-e_{\alpha(1)}\left(\lambda s x_{\alpha_{n}} x_{j}, 0\right) \in \operatorname{ker}\left(d_{n}\right), \quad \text { for any } \alpha \in I_{2}^{n} \bigcup I_{3}^{n} \text { and any } j \in I .
\end{gathered}
$$

Let B_{n} denote the submodule of $\oplus_{\alpha \in I^{n}} e_{\alpha} \widetilde{s A}$ generated by

$$
\begin{array}{cl}
e_{\alpha}(-s, s), & \alpha \in I_{2}^{n} \bigcup I_{3}^{n}, \\
e_{\alpha}\left(s x_{j}, 0\right), & \alpha \in I_{1}^{n}, j \in I, \\
e_{\alpha}\left(s x_{j}, 0\right)-e_{\alpha(1)}\left(\lambda s x_{\alpha_{n}} x_{j}, 0\right), & \alpha \in I_{2}^{n} \bigcup I_{3}^{n}, j \in I .
\end{array}
$$

Then $B_{n} \subseteq \operatorname{ker}\left(d_{n}\right)$ since all of its generators are in $\operatorname{ker}\left(d_{n}\right)$.
We now prove that each generator of B_{n} is in $\operatorname{Im}\left(d_{n+1}\right)$. Suppose that

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}\right) \in I_{2}^{n} \bigcup I_{3}^{n}
$$

Then by the definition of I_{1}^{n+1} we have

$$
\alpha^{\prime}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, 1, \alpha_{n}\right) \in I_{1}^{n+1}
$$

Thus $e_{\alpha}(-s, s), \alpha \in I_{2}^{n} \bigcup I_{3}^{n}$, is the image of $e_{\alpha^{\prime}}$ under d_{n+1}. Suppose that

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}\right) \in I_{1}^{n}
$$

then for any $j \in I$,

$$
\beta=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}, j\right) \in I_{2}^{n+1}
$$

so $e_{\alpha}\left(s x_{j}, 0\right), \alpha \in I_{1}^{n}$, is the image of e_{β} under d_{n+1}. Suppose that

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}\right) \in I_{2}^{n} \bigcup I_{3}^{n}
$$

When $\alpha_{n} \neq 1$, then

$$
\beta=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}, j\right) \in I_{3}^{n+1}
$$

and

$$
e_{\alpha}\left(s x_{j}, 0\right)-e_{\alpha(1)}\left(\lambda s x_{\alpha_{n}} x_{j}, 0\right)
$$

is the image of e_{β} under d_{n+1}. When $\alpha_{n}=1$ then $\alpha=\alpha(1)$ and

$$
e_{\alpha}\left(s x_{j}, 0\right)-e_{\alpha(1)}\left(\lambda s x_{1} x_{j}, 0\right)=0
$$

since $\lambda s x_{1}=s$ and it is the image of 0 under d_{n+1}. So $B_{n} \subseteq \operatorname{Im}\left(d_{n+1}\right)$. Hence, to finish the proof of Lemma 3 it is sufficient to prove that $\operatorname{ker}\left(d_{n}\right) \subseteq B_{n}$.

Any element $x \in \oplus_{\alpha \in I^{n}} e_{\alpha} \widetilde{s A}$ can be expressed as a sum

$$
x=\sum_{\alpha \in I_{1}^{n}} e_{\alpha}\left(u_{\alpha}, k_{\alpha}\right)+\sum_{\alpha \in I_{2}^{n} \cup I_{3}^{n}} e_{\alpha}\left(u_{\alpha}, k_{\alpha}\right)
$$

where $k_{\alpha} \in \mathbb{Z}$ and $u_{\alpha} \in s A$. Since the additive group of $s A$ is free with basis $s x_{j}, j \in I$ it follows that $\sum_{\alpha \in I_{1}^{n}} e_{\alpha}\left(u_{\alpha}, 0\right) \in B_{n}$ by definition of B_{n}. For any $\alpha \in I_{2}^{n} \bigcup I_{3}^{n}$ let $k_{\alpha}=s h_{\alpha}+l_{\alpha}$ where $0 \leq l_{\alpha}<s$. Then

$$
\sum_{\alpha \in I_{2}^{n} \bigcup I_{3}^{n}} e_{\alpha}\left(u_{\alpha}, k_{\alpha}\right)=\sum_{\alpha \in I_{2}^{n} \cup I_{3}^{n}} e_{\alpha}\left(u_{\alpha}-s h_{\alpha}, 0\right)+\sum_{\alpha \in I_{2}^{n} \cup I_{3}^{n}} e_{\alpha}\left(0, l_{\alpha}\right)+\sum_{\alpha \in I_{2}^{n} \bigcup I_{3}^{n}} e_{\alpha}\left(-s h_{\alpha}, s h_{\alpha}\right)
$$

where $\sum_{\alpha \in I_{2}^{n} \bigcup I_{3}^{n}} e_{\alpha}\left(-s h_{\alpha}, s h_{\alpha}\right) \in B_{n}$. Since $e_{\alpha}\left(s x_{j}, 0\right)-e_{\alpha(1)}\left(\lambda s x_{\alpha_{n}} x_{j}, 0\right) \in B_{n}$ for any $\alpha \in I_{2}^{n} \bigcup I_{3}^{n}$, the sum $\sum_{\alpha \in I_{2}^{n} \cup I_{3}^{n}} e_{\alpha}\left(u_{\alpha}-s h_{\alpha}, 0\right)$ can be expressed as

$$
\sum_{\alpha \in I_{2}^{n} \cup I_{3}^{n}} e_{\alpha}\left(u_{\alpha}-s h_{\alpha}, 0\right)=\sum_{\substack{\alpha \in I_{2}^{n} \cup I_{3}^{n} \\ \alpha_{n}=1}} e_{\alpha}\left(u_{\alpha}^{\prime}, 0\right)+b
$$

where $u_{\alpha}^{\prime} \in s A$ and $b \in B_{n}$. Thus $x \in \oplus_{\alpha \in I^{n}} e_{\alpha} \widetilde{s A}$ it can be expressed as

$$
x=\sum_{\alpha \in I_{1}^{n}} e_{\alpha}\left(0, k_{\alpha}\right)+\sum_{\alpha \in I_{2}^{n} \bigcup I_{3}^{n}} e_{\alpha}\left(0, l_{\alpha}\right)+\sum_{\substack{\alpha \in I_{2}^{n} \cup I_{3}^{n} \\ \alpha_{n}=1}} e_{\alpha}\left(u_{\alpha}^{\prime}, 0\right)+b^{\prime}
$$

where $k_{\alpha} \in \mathbb{Z}$ for $\alpha \in I_{1}^{n}, 0 \leq l_{\alpha}<s$ for $\alpha \in I_{2}^{n} \bigcup I_{3}^{n}, u_{\alpha}^{\prime} \in s A$ for $\alpha \in I_{2}^{n} \bigcup I_{3}^{n}$ with $\alpha_{n}=1$ and $b^{\prime} \in B_{n}$. Thus, if $x \in \operatorname{ker}\left(d_{n}\right)$, then

$$
d_{n}(x)=\sum_{\alpha \in I_{1}^{n}} d_{n}\left(e_{\alpha}\right)\left(0, k_{\alpha}\right)+\sum_{\alpha \in I_{2}^{n} \bigcup I_{3}^{n}} d_{n}\left(e_{\alpha}\right)\left(0, l_{\alpha}\right)+\sum_{\substack{\alpha \in I_{2}^{n} \cup I_{3}^{n} \\ \alpha_{n}=1}} d_{n}\left(e_{\alpha}\right)\left(u_{\alpha}^{\prime}, 0\right)=0 .
$$

Let

$$
\begin{gathered}
y=\sum_{\alpha \in I_{1}^{n}} d_{n}\left(e_{\alpha}\right)\left(0, k_{\alpha}\right), \\
z_{2}=\sum_{\alpha \in I_{2}^{n}} d_{n}\left(e_{\alpha}\right)\left(0, l_{\alpha}\right)+\sum_{\substack{\alpha \in I_{2}^{n} \\
\alpha_{n}=1}} d_{n}\left(e_{\alpha}\right)\left(u_{\alpha}^{\prime}, 0\right),
\end{gathered}
$$

and

$$
z_{3}=\sum_{\alpha \in I_{3}^{n}} d_{n}\left(e_{\alpha}\right)\left(0, l_{\alpha}\right)+\sum_{\substack{\alpha \in I_{3}^{n} \\ \alpha_{n}=1}} d_{n}\left(e_{\alpha}\right)\left(u_{\alpha}^{\prime}, 0\right) .
$$

Since $d_{n}\left(e_{\alpha}\right)=e_{\alpha[n-1]}(-s, s)$ if $\alpha \in I_{1}^{n}$, it follows that

$$
y=\sum_{\alpha \in I_{1}^{n}} e_{\alpha \widehat{n-1]}}\left(-s k_{\alpha}, s k_{\alpha}\right) .
$$

Since $d_{n}\left(e_{\alpha}\right) \in \sum_{\alpha \in I^{n-1}} e_{\alpha}(s A, 0)$ if $\alpha \in I_{2}^{n} \bigcup I_{3}^{n}$, it follows that

$$
z_{2}+z_{3} \in \sum_{\alpha \in I^{n-1}} e_{\alpha}(s A, 0) .
$$

From $y+z_{2}+z_{3}=0$ it follows that $k_{\alpha}=0$. Hence $y=0$ and $z_{2}+z_{3}=0$. If $\alpha \in$ I_{2}^{n} then $\alpha[\hat{n}] \in I_{1}^{n-1}$ and $d_{n}\left(e_{\alpha}\right)=e_{\alpha[\hat{n}]}\left(s x_{\alpha_{n}}, 0\right)$ thus $z_{2} \in \sum_{\alpha \in I_{1}^{n-1}} e_{\alpha}(s A, 0)$. If $\alpha \in I_{3}^{n}$ then $\alpha[\hat{n}] \notin I_{1}^{n-1}$, by Lemma $1 \alpha[\hat{n}](1) \notin I_{1}^{n-1}$ also. By the definition we have $d_{n}\left(e_{\alpha}\right)=$ $e_{\alpha[\hat{n}]}\left(s x_{\alpha_{n}}, 0\right)-e_{\alpha[\hat{n}](1)}\left(\lambda s x_{\alpha_{n-1}} x_{\alpha_{n}}, 0\right)$ thus $z_{3} \in \sum_{\alpha \notin I_{1}^{n-1}} e_{\alpha}(s A, 0)$. From $z_{2}+z_{3}=0$ it follows that $z_{2}=0$ and $z_{3}=0$. From $z_{2}=0$ it follows that

$$
\sum_{\alpha \in I_{2}^{n}} e_{\alpha[\hat{n}]}\left(l_{\alpha} s x_{\alpha_{n}}, 0\right)+\sum_{\substack{\alpha \in I_{2}^{n} \\ \alpha_{n}=1}} e_{\alpha[\hat{n}]}\left(s x_{1} u_{\alpha}^{\prime}, 0\right)=0 .
$$

Since $s x_{1} u_{\alpha}^{\prime} \in s^{2} A$ and $s A$ is a free \mathbb{Z}-module with basis $s x_{i}, i \in I$ and $0 \leq l_{\alpha}<s$ it follows that $l_{\alpha}=0, \alpha \in I_{2}^{n}$. Hence

$$
\sum_{\substack{\alpha \in I_{2}^{n} \\ \alpha_{n}=1}} e_{\alpha[\hat{n}]}\left(s x_{1} u_{\alpha}^{\prime}, 0\right)=0 .
$$

However there is an injection from set $\left\{\alpha \in I_{2}^{n} \mid \alpha_{n}=1\right\}$ to $\left\{\alpha[\hat{n}] \mid \alpha \in I_{2}^{n}, \alpha_{n}=1\right\}$. Thus $s x_{1} u_{\alpha}^{\prime}=0$ and $s u_{\alpha}^{\prime}=0$ since $\lambda s x_{1}=1$. Furthermore $u_{\alpha}^{\prime}=0$ since $u_{\alpha}^{\prime} \in s A$ and $s A$ is a free \mathbb{Z}-module. Similarly one proves that $l_{\alpha}=0$ for any $\alpha \in I_{3}^{n}$ and $u_{\alpha}^{\prime}=0$ for any $\alpha \in I_{3}^{n}$ with $\alpha_{n}=1$. Thus, $\operatorname{ker}\left(d_{n}\right) \subseteq B_{n}$. So $\operatorname{ker}\left(d_{n}\right)=\operatorname{Im}\left(d_{n+1}\right)$.

Theorem 1. Let $s \in \mathbb{Z}$ and $s>0$. Assume that A is a ring with identity and the additive group of $s A$ is a free \mathbb{Z}-module with basis sx$x_{i}, i \in I$, where I is a totally ordered set. Then

$$
\operatorname{Tor}_{n}^{\widetilde{s A}}(\mathbb{Z}, \mathbb{Z})=(\mathbb{Z} / s \mathbb{Z})^{\mid I_{2}^{n}} \cup I_{3}^{n} \mid
$$

Hence, $H B_{n}(s A)=(\mathbb{Z} / s \mathbb{Z})^{\left|I_{2}^{n} \bigcup I_{3}^{n}\right|}$.
Proof. By tensoring the exact sequence in Lemma 3 with \mathbb{Z} we get a complex

$$
\begin{aligned}
& \cdots \xrightarrow{d_{n+1} \otimes 1} \oplus_{\alpha \in I^{n}} e_{\alpha} \widetilde{s A} \otimes_{\widetilde{s A}} \mathbb{Z} \xrightarrow{d_{n} \otimes 1} \oplus_{\alpha \in I^{n-1}} e_{\alpha} \widetilde{s A} \otimes_{\widetilde{s A}} \mathbb{Z} \xrightarrow{d_{n-1} \otimes 1} \cdots \\
& \xrightarrow{d_{2} \otimes 1} \oplus_{\alpha \in I} e_{\alpha} \widetilde{s A} \otimes_{\widetilde{s A}} \mathbb{Z} \xrightarrow{d_{1} \otimes 1} \widetilde{s A} \otimes_{\widetilde{s A}} \mathbb{Z}
\end{aligned}
$$

We have

$$
\oplus_{\alpha \in I^{n}} e_{\alpha} \widetilde{s A} \otimes_{\widetilde{s A}} \mathbb{Z}=\oplus_{\alpha \in I^{n}} e_{\alpha} \otimes_{\mathbb{Z}} \mathbb{Z}
$$

It is easy to see that if $\alpha \in I_{2}^{n} \bigcup I_{3}^{n}$, then $\left(d_{n} \otimes 1\right)\left(e_{\alpha} \otimes 1\right)=0$, thus

$$
\oplus_{\alpha \in I_{2}^{n} \cup I_{3}^{n}} e_{\alpha} \otimes_{\mathbb{Z}} \mathbb{Z} \subseteq \operatorname{ker}\left(d_{n} \otimes 1\right)
$$

There is a bijection between I_{1}^{n} and $I_{2}^{n-1} \bigcup I_{3}^{n-1}$ defined by $\alpha \mapsto \alpha[\widehat{n-1}]$, so we have that if

$$
\left(d_{n} \otimes 1\right)\left(\sum_{\alpha \in I_{1}^{n}} e_{\alpha} \otimes k_{\alpha}\right)=\sum_{\alpha[\widehat{n-1}] \in I_{2}^{n-1} \cup I_{3}^{n-1}} e_{\alpha[\mid n-1]} \otimes s k_{\alpha}=0
$$

then $k_{\alpha}=0$. So

$$
\operatorname{ker}\left(d_{n} \otimes 1\right)=\oplus_{\alpha \in I_{2}^{n} \cup I_{3}^{n} e_{\alpha} \otimes_{\mathbb{Z}} \mathbb{Z}}
$$

$$
\begin{aligned}
& \operatorname{Im}\left(d_{n+1} \otimes 1\right)=\left(d_{n+1} \otimes 1\right)\left(\oplus_{\alpha \in I_{1}^{n+1}} e_{\alpha} \otimes_{\mathbb{Z}} \mathbb{Z}\right) \\
& \quad=\oplus_{\alpha \in I_{1}^{n+1}} e_{\alpha[\hat{n}]} \otimes s \mathbb{Z}=\oplus_{\alpha \in I_{2}^{n}} \bigcup_{3}^{n} e_{\alpha} \otimes s \mathbb{Z}
\end{aligned}
$$

Hence

$$
\operatorname{Tor}_{n}^{\widetilde{s A}}(\mathbb{Z}, \mathbb{Z})=\operatorname{ker}\left(d_{n} \otimes 1\right) / \operatorname{Im}\left(d_{n+1} \otimes 1\right)=(\mathbb{Z} / s \mathbb{Z})^{\left|I_{2}^{n} \cup I_{3}^{n}\right|}
$$

It follows from the Lemma 1.1 in [3] that $H B_{n}(s A)=(\mathbb{Z} / s \mathbb{Z})^{\left|I_{2}^{n} \cup I_{3}^{n}\right|}$.

References

[1] Charney, R.: A note on excision in K-theory. Algebraic K-theory, number theory, geometry and analysis (Bielefeld 1982), Lecture Notes in Math. 1046, 47-54, Springer, Berlin 1984.

Zbl 0534.18006
[2] Loday, J. L.: Cyclic homology. Grundlehren der Mathematischen Wissenschaften 301, Springer-Verlag, Berlin 1998.

Zbl 0885.18007
[3] Suslin, A. A.: Excision in integral algebraic K-theory. Proc. Steklov Inst. Math. 208 (1995), 255-279.

Zbl 0871.19002

Received September 2, 2001

