On Pseudosymmetric Para-Kählerian Manifolds

Dorota Łuczyszyn

Institute of Mathematics, Wrocław University of Technology Wybrzeże Wyspiańskiego 27, PL-50–370 Wrocław, Poland

Abstract. In the present paper, we consider para-Kählerian manifolds satisfying various curvature conditions of the pseudosymmetric type. Let (M, J, g) be a para-Kählerian manifold. We prove the following theorems: The Ricci-pseudosymmetry of (M, J, g) reduces to the Ricci-semisymmetry. The pseudosymmetry as well as the Bochner-pseudosymmetry and the paraholomorphic projective-pseudosymmetry of the manifold (M, J, g) always reduces to the semisymmetry in dimensions > 4. The paraholomorphic projective-pseudosymmetry reduces to the pseudosymmetry in dimension 4. Moreover, we establish new examples of para-Kählerian manifolds being Ricci-semisymmetric (in dimensions ≥ 6) as well as pseudosymmetric (in dimension 4) or Bochner-pseudosymmetric (in dimension 4). We have given examples of semisymmetric para-Kählerian manifolds in [7] and [8].

1. Preliminaries

By a para-Kählerian manifold we mean a triple (M, J, g), where M is a connected differentiable manifold of dimension n = 2m, J is a (1, 1)-tensor field and g is a pseudo-Riemannian metric on M satisfying the conditions

$$J^2 = I, \qquad g(JX, JY) = -g(X, Y), \qquad \nabla J = 0,$$

for any $X, Y \in \mathfrak{X}(M)$, where $\mathfrak{X}(M)$ is Lie algebra of vector fields on M, ∇ is the Levi-Civita connection of g and I is the identity tensor field.

0138-4821/93 \$ 2.50 © 2003 Heldermann Verlag

Let (M, J, g) be a para-Kählerian manifold. By R(X, Y) we denote its curvature operator, $R(X, Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$. The Riemann-Christoffel curvature tensor R, the Ricci curvature tensor S and the scalar curvature r are defined by

$$R(X, Y, Z, W) = g(R(X, Y)Z, W),$$

$$S(X, Y) = \operatorname{Tr} \{ Z \mapsto R(Z, X)Y \},$$

$$r = \operatorname{Tr}_{a} S.$$

Let \widetilde{S} be the Ricci operator given by $S(X,Y) = g(\widetilde{S}X,Y)$. For these tensor fields, the following identities are satisfied

$$R(JX, JY) = -R(X, Y), \quad R(JX, Y) = -R(X, JY),$$

$$S(JX, Y) = -S(JY, X), \quad S(JX, JY) = -S(X, Y),$$

$$Tr \{ Z \mapsto R(X, Y)JZ \} = -2S(X, JY),$$

$$Tr \{ Z \mapsto R(JZ, X)Y \} = S(X, JY).$$
(1)

Next, for a symmetric (0, 2)-tensor field A on M and $X, Y \in \mathfrak{X}(M)$, we define the endomorphism $X \wedge_A Y$ of $\mathfrak{X}(M)$ by

$$(X \wedge_A Y)Z = A(Y,Z)X - A(X,Z)Y, \quad Z \in \mathfrak{X}(M).$$

In the case when A = g, we shall write \wedge instead of \wedge_g . The Bochner curvature tensor B is defined by [1], [8]

$$B(X,Y) = R(X,Y) - \frac{1}{n+4} (X \wedge (\widetilde{S}Y) + (\widetilde{S}X) \wedge Y - (JX) \wedge (\widetilde{S}JY) - (\widetilde{S}JX) \wedge (JY) + 2g(JX,Y)\widetilde{S}J + 2g(\widetilde{S}JX,Y)J) + \frac{r}{(n+4)(n+2)} (X \wedge Y - (JX) \wedge (JY) + 2g(JX,Y)J).$$

Recall that the Bochner curvature (0, 4)-tensor, B(X, Y, Z, W) = g(B(X, Y)Z, W), has the same algebraic properties as the usual curvature tensor. Moreover, for this tensor, we have

$$B(JX, JY) = -B(X, Y),$$

Tr { $Z \mapsto B(Z, X)Y$ } = 0, Tr { $Z \mapsto B(JZ, X)Y$ } = 0. (2)

The paraholomorphic projective curvature tensor P of (M, J, g) is defined in the following manner [9], [10], [7]

$$P(X,Y) = R(X,Y) - \frac{1}{n+2}(X \wedge_S Y - (JX) \wedge_S (JY) + 2g(\widetilde{S}JX,Y)J).$$

Notice that this tensor has the following properties

$$P(X,Y) = -P(Y,X), \quad \text{Tr} \{ Z \mapsto P(Z,X)Y \} = 0,$$

$$\sum_{i} \varepsilon_{i} P(X,e_{i},e_{i},W) = \frac{1}{n+2} (nS(X,W) - rg(X,W)).$$
(3)

In the above and in the sequel, (e_1, e_2, \ldots, e_n) is an orthonormal frame and ε_i is the indicator of e_i , $\varepsilon_i = g(e_i, e_i) = \pm 1$.

2. Main result

For a (0, k)-tensor $(k \ge 1)$ field T on a pseudo-Riemannian manifold (M, g), we define a (0, k+2)-tensor field $R \cdot T$ by the condition

$$(R \cdot T)(U, V, X_1, \dots, X_k) = -\sum_{s=1}^k T(X_1, \dots, R(U, V)X_s, \dots, X_k).$$
(4)

A pseudo-Riemannian manifold (M, g) is called: semisymmetric if $R \cdot R = 0$; Ricci-semisymmetric if $R \cdot S = 0$ (see [2], [6], [11]).

To formulate the notions of various pseudosymmetry type curvature conditions, we define also a (0, k + 2)-tensor $(k \ge 1)$ field Q(g, T)

$$Q(g,T)(U,V,X_1,\ldots,X_k) = -\sum_{s=1}^k T(X_1,\ldots,(U \wedge V)X_s,\ldots,X_k).$$
 (5)

A pseudo-Riemannian manifold (M, g) is said to be Ricci-pseudosymmetric [6] if there exists a function $L_S: M \to \mathbb{R}$ such that

$$R \cdot S = L_S Q(g, S).$$

Clearly, every Ricci-semisymmetric manifold is also Ricci-pseudosymmetric. The converse is not true in general [6]. However, we shall prove that the Ricci-pseudosymmetry reduces to the Ricci-semisymmetry in the class of para-Kählerian metrics.

Theorem 1. Every Ricci-pseudosymmetric para-Kählerian manifold is Ricci-semisymmetric.

Proof. Assume that a para-Kählerian manifold (M, J, g) satisfies the condition

$$(R \cdot S)(U, V, X, Y) = L_S Q(g, S)(U, V, X, Y).$$

$$(6)$$

Note that in virtue of (1) and (4), we have

$$(R \cdot S)(JU, JV, X, Y) = -(R \cdot S)(U, V, X, Y).$$

Thus by (6), we have

$$L_SQ(g,S)(U,V,X,Y) = -L_SQ(g,S)(JU,JV,X,Y).$$

Suppose that L_S is non-zero at a certain point $p \in M$. Then the above equality gives

$$Q(g,S)(U,V,X,Y) = -Q(g,S)(JU,JV,X,Y),$$

or in view of (5)

$$\begin{split} S(U,Y)g(V,X) &- S(V,Y)g(U,X) + S(U,X)g(V,Y) \\ &- S(V,X)g(U,Y) = -S(Y,JU)g(X,JV) + S(Y,JV)g(X,JU) \\ &- S(X,JU)g(Y,JV) + S(X,JV)g(Y,JU). \end{split}$$

This, by contraction with respect to V, X and applying of (1), we find

$$S(Y,U) = \frac{r}{n}g(Y,U),$$

that is, the manifold is Einstein. This gives $R \cdot S = 0$, which completes the proof.

Now, we give examples of Ricci-semisymmetric para-Kählerian manifolds.

Example 1. Let (x_i) be the Cartesian coordinates in \mathbb{R}^6 and $\partial_i = \partial/\partial x^i$. Define a pseudo-Riemannian metric g by

$$[g(\partial_i, \partial_j)] = \begin{bmatrix} x_6 + x_3^2 & 0 & 1 & 0 & 0 & 0 \\ 0 & x_5 + x_4^2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

and a (1, 1)-tensor field J by

$$J\partial_1 = -\partial_1 + (x_6 + x_3^2)\partial_3, \quad J\partial_2 = \partial_2 - (x_5 + x_4^2)\partial_4, J\partial_3 = \partial_3, \quad J\partial_4 = -\partial_4, \quad J\partial_5 = -\partial_5, \quad J\partial_6 = \partial_6.$$

It is a straightforward verification that (J, g) is a para-Kählerian structure on \mathbb{R}^6 wich is Riccisemisymmetric and non-semisymmetric (e.g., the component $(R \cdot R)_{131212} = -1/2 \neq 0$). To get Ricci-semisymmetric non-semisymmetric manifolds in dimensions n = 6 + 2p, $p \ge 1$, it is sufficient to take the product of the para-Kählerian manifold (\mathbb{R}^6, J, g) and the standard para-Kählerian flat space $(\mathbb{R}^{2p}, J_0, g_0)$.

A pseudo-Riemannian manifold (M, g) is said to be pseudosymmetric [6] if there exists a function $L_R: M \to \mathbb{R}$ such that

$$R \cdot R = L_R Q(g, R). \tag{7}$$

Clearly, every semisymmetric manifold is also pseudosymmetric. The converse is not true in general [6].

Theorem 2. Let (M, J, g) be a pseudosymmetric para-Kählerian manifold.

- (a) If dim M = 4, then (M, J, g) is Ricci flat.
- (b) If dim M > 4, then (M, J, g) is semisymmetric.

Proof. Assume that the condition (7) is satisfied everywhere on M. Now, in the same way as in the proof of Theorem 1, we have

$$L_R Q(g, R)(U, V, X, Y, Z, W) = -L_R Q(g, R)(JU, JV, X, Y, Z, W).$$
(8)

Suppose that the function L_R is non-zero at a point $p \in M$. Therefore, (8) takes the form

$$Q(g,R)(U,V,X,Y,Z,W) = -Q(g,R)(JU,JV,X,Y,Z,W).$$

Contracting, the last relation with respect to X, V, we obtain

$$\sum_{i} \epsilon_i Q(g, R)(U, e_i, e_i, Y, Z, W) = -\sum_{i} \epsilon_i Q(g, R)(JU, Je_i, e_i, Y, Z, W)$$

which, with the help (5), can be rewritten in the following form

$$nR(U, Y, Z, W) - R(U, Y, Z, W) + R(Y, U, Z, W) + R(Z, Y, U, W) + R(W, Y, Z, U) + g(U, Z)S(Y, W) - g(U, W)S(Y, Z) = + R(U, Y, Z, W) - R(Y, U, Z, W) - R(JU, W, Y, JZ) + R(JU, Z, Y, JW) + 2g(Y, JU)S(Z, JW) - g(Z, JU)S(W, JY) + g(W, JU)S(Z, JY).$$

Hence, using (1) and the first Bianchi identity, we get

$$(n-4)R(U,Y,Z,W) - 2g(Y,JU)S(Z,JW) + g(Z,JU)S(W,JY)$$
(9)
-g(W,JU)S(Z,JY) + g(U,Z)S(Y,W) - g(U,W)S(Y,Z) = 0.

(a) Let n = 4. Substituting JY instead of Y in (9), contracting the obtained relation with respect to Y, U and using (1), we find S = 0.

(b) Let n > 4. Contracting (9) with respect to Y, Z, we find

$$S(U,W) = \frac{r}{n}g(U,W)$$

This implies $R \cdot S = 0$. Using this fact in (9), we obtain $R \cdot R = 0$.

Examples of semisymmetric para-Kählerian manifolds can be found in [7] and [8]. Below, we give an example of a 4-dimensional pseudosymmetric para-Kählerian manifold which is non-semisymmetric.

Example 2. Let U be the open subset of \mathbb{R}^4 consisting of points at which $x_1 > 0$. Define a pseudo-Riemannian metric g by

$$[g(\partial_i, \partial_j)] = \begin{bmatrix} -2x_1 & 0 & 0 & 0\\ 0 & 2x_1 & 0 & 0\\ 0 & 0 & 2x_1^{-1} & -x_2x_1^{-1}\\ 0 & 0 & -x_2x_1^{-1} & 2x_2^2x_1^{-1} - 2x_1 \end{bmatrix}$$

and a (1, 1)-tensor field J by

$$J\partial_{1} = \partial_{2}, \quad J\partial_{2} = \partial_{1}, \quad J\partial_{3} = -x_{2}x_{1}^{-1}\partial_{3} - (2x_{1})^{-1}\partial_{4}, J\partial_{4} = (2x_{2}^{2}x_{1}^{-1} - 2x_{1})\partial_{3} + x_{2}x_{1}^{-1}\partial_{4}.$$

One verifies that (J, g) is para-Kählerian structure on U. Moreover, it can be checked that the structure is non-semisymmetric and pseudosymmetric with $L_R = (2x_1^3)^{-1}$.

Now, we consider a para-Kählerian manifold, whose Bochner curvature tensor fulfills the condition

$$R \cdot B = L_B Q(g, B)$$

where L_B is a function on M. Such a manifold will be called Bochner-pseudosymmetric. In the special case when $R \cdot B = 0$, the manifold is said to be Bochner-semisymmetric [8].

Theorem 3. Every Bochner-pseudosymmetric para-Kählerian manifold of dimension n > 4 is Bochner-semisymmetric.

Proof. Let (M, J, g) be a para-Kählerian manifold which is Bochner-pseudosymmetric. In the same manner as in the proof of Theorem 1, we find

$$L_BQ(g,B)(U,V,X,Y,Z,W) = -L_BQ(g,B)(JU,JV,X,Y,Z,W).$$

Let L_B be non-zero at $p \in M$. Then we have

$$Q(g,B)(U,V,X,Y,Z,W) = -Q(g,B)(JU,JV,X,Y,Z,W),$$

or in view of (5) with T = B

$$\begin{split} &B(U,Y,Z,W)g(V,X) - B(V,Y,Z,W)g(U,X) + B(X,U,Z,W)g(V,Y) \\ &- B(X,V,Z,W)g(U,Y) + B(X,Y,U,W)g(V,Z) - B(X,Y,V,W)g(U,Z) \\ &+ B(X,Y,Z,U)g(V,W) - B(X,Y,Z,V)g(U,W) \\ &= B(JV,Y,Z,W)g(X,JU) - B(JU,Y,Z,W)g(X,JV) \\ &+ B(X,JV,Z,W)g(Y,JU) - B(X,JU,Z,W)g(Y,JV) + B(X,Y,JV,W)g(Z,JU) \\ &- B(X,Y,JU,W)g(Z,JV) + B(X,Y,Z,JV)g(W,JU) - B(X,Y,Z,JU)g(W,JV). \end{split}$$

Contracting the last identity with respect to X, V and next using (2) and the first Bianchi identity for B, we find

$$(n-4)B(U, Y, Z, W) = 0.$$

This gives immediately B = 0, which completes the proof.

Remark 1. In paper [8], we have shown that for a para-Kählerian manifold, the Bochner semisymmetry always implies the semisymmetry at points where the Bochner tensor does not vanish.

The assertion of Theorem 3 does not hold in dimension 4; see the following example.

Example 3. Let h be a function on \mathbb{R} such that $h \neq 0$ and $h' \neq 0$ at any point. On \mathbb{R}^4 , define a pseudo-Riemannian metric g by

$$[g(\partial_i,\partial_j)] = \left[egin{array}{cccc} -h'(x_1)/2 & 0 & 0 & 0 \ 0 & h(x_1) & 0 & 0 \ 0 & 0 & h'(x_1)/2 & -x_2h'(x_1) \ 0 & 0 & -x_2h'(x_1) & -h(x_1)+2x_2^2h'(x_1) \end{array}
ight]$$

and a (1, 1)-tensor field J by

$$J\partial_1 = \partial_3, \quad J\partial_2 = 2x_2\partial_3 + \partial_4, \quad J\partial_3 = \partial_1, \quad J\partial_4 = \partial_2 - 2x_2\partial_2.$$

Then (J, g) is a para-Kählerian structure which is non-pseudosymmetric and Bochner pseudosymmetric with

$$L_B = \frac{h(x_1)h''(x_1) - h'^2(x_1)}{h^2(x_1)h'(x_1)}.$$

A para-Kählerian manifold (M, J, g) will be called paraholomorphic projective-pseudosymmetric if there exists a function $L_P: M \to \mathbb{R}$ such that

$$R \cdot P = L_P Q(g, P).$$

Theorem 4. Let (M, J, g) be a paraholomorphic projective-pseudosymmetric para-Kählerian manifold.

(a) If dim M = 4, then (M, J, g) is Ricci flat and pseudosymmetric.

(b) If dim M > 4, then (M, J, g) is semisymmetric.

Proof. If $R \cdot P = 0$ at a certain point of M, then $R \cdot R = 0$ at this point (it was really shown in the paper [7], Theorem 1, since this is a pointwise property). In the sequel, we assume that $R \cdot P \neq 0$ at a point of M. Let G be the contracted tensor P,

$$G(X, W) = \sum_{i} \epsilon_{i} P(X, e_{i}, e_{i}, W).$$

Thus, by (3), we have

$$G(X,W) = \frac{1}{n+2} (nS(X,W) - rg(X,W)).$$
(10)

Since (M, J, g) is paraholomorphic projective-pseudosymmetric, the following formula is fulfilled

$$(R \cdot P)(U, V, X, Y, Z, W) = L_P Q(g, P)(U, V, X, Y, Z, W).$$
(11)

Contracting (11) with respect to Y, Z and using (4) and (5), we obtain

$$(R \cdot G)(U, V, X, W) = L_P Q(g, P)(U, V, X, W).$$

Hence, using (10) and (4), we get

$$(R \cdot S)(U, V, X, W) = L_P Q(g, S)(U, V, X, W).$$

This by Theorem 1 implies $R \cdot S = 0$. Note that L_P is non-zero at p. Then Q(g, S) = 0 at this point. Therefore, in virtue of (3) and (11), we find $R \cdot R = L_P Q(g, R)$. Thus, (M, J, g) is pseudosymmetric. To finish the proof it is sufficient to use Theorem 2.

Final remarks. 1. The notion of the para-Kählerian manifold used in the presented paper is different from that applied in papers [6], [5], where the structure tensor J is an almost complex structure and the metric g is positive definite.

2. The local components of geometric objects (that is, the Levi-Civita connection, the Riemann, Ricci, Bochner and paraholomorphic projective curvature tensors and the scalar curvature) in our examples were calculated with the help of *Mathematica* programs.

Acknowledgment. The author wishes to express her gratitudes to Prof. Zbigniew Olszak for his instant assistance during the preparation of this paper.

References

- Bejan, C. L.: The Bochner curvature tensor on a hyperbolic Kähler manifold. In: Colloquia Mathematica Societatis Jànos Bolyai, 56. Differential Geometry, Eger (Hungary) 1989, 93–99.
- Boeckx, E.; Kowalski, O.; Vanhecke, L.: *Riemannian manifolds of conullity two*. World Scientific Publishing Co., Singapore 1996.
- [3] Cruceanu, V.; Fortuny, P.; Gadea, P. M.: A survey on paracomplex geometry. Rocky Mountain J. Math. 26 (1996), 83–115.
 Zbl 0856.53049
- [4] Cruceanu, V.; Gadea, P. M.; Munoz Masqué, J.: Para-Hermitian and para-Kähler manifolds. Quaderni Inst. Mat. Messina 2 (1995), 1–70.
- [5] Defever, F.; Deszcz, R.; Verstraelen, L.: On semisymmetric para-Kähler manifolds. Acta Math. Hungarica 74 (1997), 7–17.
- [6] Deszcz, R.: On pseudosymmetric spaces. Bull. Soc. Math. Belg. Sér. A 44 (1992), 1–34.
- [7] Luczyszyn, D.: On para-Kählerian manifolds with recurrent paraholomorphic projective curvature. Math. Balkanica 14 (2000), 167–176.
- [8] Luczyszyn, D.: On Bochner semisymmetric para-Kählerian manifolds. Demonstratio Math. 4 (2001), 933–942.
 Zbl pre01717437
- [9] Prvanović, M.: Holomorphically projective transformations in a locally product space. Math. Balkanica N.S. 1 (1971), 195–213.
 Zbl 0221.53062
- [10] Reyes, E.; Montesinos, A.; Gadea, P. M.: Projective torsion and curvature, axiom of planes and free mobility for almost-product manifolds. Ann. Polon. Math. 48 (1988), 307–330.
 Zbl 0678.53029 and Zbl 0678.53030
- [11] Szabó, Z. I.: Structure theorems on Riemannian spaces satisfying R(X, Y)R = 0, I, Local version. J. Diff. Geom. **17** (1982), 531–582; II, Global versions. Geom. Dedicata **19** (1985), 65–108. Zbl 0612.53023

Received July 30, 2001