An Analogue of the Krein-Milman Theorem for Star-Shaped Sets

Dedicated to Professor Bernd Silbermann on the occasion of his 60th birthday

Horst Martini Walter Wenzel
Faculty of Mathematics
University of Technology Chemnitz
D-09107 Chemnitz, Germany

Abstract

Motivated by typical questions from computational geometry (visibility and art gallery problems) and combinatorial geometry (illumination problems) we present an analogue of the Krein-Milman theorem for the class of star-shaped sets. If $S \subseteq \mathbb{R}^{n}$ is compact and star-shaped, we consider a fixed, nonempty, compact, and convex subset K of the convex kernel $K_{0}=\operatorname{ck}(S)$ of S, for instance $K=K_{0}$ itself. A point $q_{0} \in S \backslash K$ will be called an extreme point of S modulo K, if for all $p \in S \backslash\left(K \cup\left\{q_{0}\right\}\right)$ the convex closure of $K \cup\{p\}$ does not contain q_{0}. We study a closure operator $\sigma: \mathcal{P}\left(\mathbb{R}^{n} \backslash K\right) \longrightarrow \mathcal{P}\left(\mathbb{R}^{n} \backslash K\right)$ induced by visibility problems and prove that $\sigma\left(S_{0}\right)=S \backslash K$, where S_{0} denotes the set of extreme points of S modulo K. MSC 2000: 52A30 (primary); 06A15, 52-01, 52A20, 52A43 (secondary) Keywords: convex sets, star-shaped sets, closure operators, Krein-Milman theorem, visibility problems, illumination problems, watchman route problem, d-dimensional volume

1. Introduction

The motivation for this paper is twofold. On the one hand, a compact, star-shaped set S might be interpreted as an art gallery in the spirit of [13], where one can ask for minimally sufficient subsets of the boundary of S to control the whole set S in the sense of suitable
visibility notions, see also [9]. From this point of view, our results are strongly related to the watchman route problem from computational geometry, see Section 7 of [20]. On the other hand, the problem of illuminating a convex body K from outside is well known in combinatorial geometry, cf. Chapters VI and VII of [1], and [9]. Identifying K with the convex kernel $\operatorname{ck}(S)$ of S, one can ask for optimal configurations of light sources (restricted to the boundary of S) to illuminate the whole boundary of $\operatorname{ck}(S)$. Having these two viewpoints in mind, we were able to find an analogue of the Krein-Milman theorem for star-shaped sets.

Convex sets play an important role in many branches of mathematics and its applications, in particular in geometry, integration theory, and mathematical optimization. Star-shaped sets are more general; e.g., they are also important in integration theory. A special field of research, in which convex and star-shaped sets are studied in common, is that of visibility problems. As introduced in [3], for a nonempty set $S \subset \mathbb{R}^{n}$ the convex kernel $\operatorname{ck}(S)$ consists, by definition, of all those points $x \in S$ such that for every $z \in S$ the line segment $\overline{z x}$ is contained in S. By definition, S is star-shaped if $\operatorname{ck}(S) \neq \emptyset$ and, by the way, S is convex if and only if $\operatorname{ck}(S)=S$. Star-shaped sets have been examined in connection with visibility problems, in particular in several papers by F. A. Toranzos. Consider for example a compact set $S \subset \mathbb{R}^{n}$ such that the interior int S of S is connected and S equals the closure of int S. An element $z \in S$ sees x via S if the line segment $\overline{z x}$ is contained in S. In the literature, the set $\operatorname{st}(x, S)$ is, by definition, the set of all $z \in S$ which see x via S. An element $x \in S$ is called a peak of S if there exists some neighbourhood U of x such that for all $x^{\prime} \in S \cap U$ one has $\operatorname{st}\left(x^{\prime}, S\right) \subseteq \operatorname{st}(x, S)$. Then it is proved in [19] that $\operatorname{ck}(S)$ equals the set of peaks of S. For other characterizations of $\operatorname{ck}(S)$ see also [6], [2], [17], and [4]; related characterization theorems were given by [15], [16], [2], [5], [8], [11], and [18].

In the present paper we start from some slightly modified visibility problem. We are interested to analyse the points $z \in S \backslash \operatorname{ck}(S)$ which "see many points in front of $\operatorname{ck}(S)$ ". For a compact and star-shaped set S and a nonempty compact and convex subset K of $K_{0}:=\operatorname{ck}(S)$, we study the operator $\sigma=\sigma_{K}: \mathcal{P}\left(\mathbb{R}^{n} \backslash K\right) \longrightarrow \mathcal{P}\left(\mathbb{R}^{n} \backslash K\right)$ such that for $A \subseteq \mathbb{R}^{n} \backslash K$ the set $\sigma(A)$ consists of A as well as all those points $x \in \mathbb{R}^{n} \backslash(A \cup K)$ such that there exists some $z \in A$ with $\overline{z x} \cap K=\emptyset$, but the ray with initial point z passing through x meets K. Thus, if $A \subseteq S \backslash K$, then $\sigma(A) \backslash A$ consists of those points of $S \backslash(A \cup K)$ which lie on some line segment $\overline{z x}$ with $z \in A, x \in K$. This means in particular that z sees x via S.

A point $q_{0} \in S \backslash K$ will be called an extreme point of S modulo K, if $q_{0} \notin \operatorname{conv}(K \cup\{p\})$ holds for all $p \in S \backslash\left(K \cup\left\{q_{0}\right\}\right)$ or, equivalently (cf. Lemma 2.4), if $q_{0} \notin \sigma(\{p\})$ holds for all such p.

The main result of our paper (see Theorem 2.7 below) states that the set S_{0} of extreme points of S modulo K satisfies

$$
K \cup \sigma\left(S_{0}\right)=S
$$

This just constitutes an analogue of the so-called Krein-Milman Theorem (cf. [7], but for Minkowski's earlier formulation [12, § 12]; a wider discussion is given in [14, § 1.4]) which states that every compact, convex subset of \mathbb{R}^{n} is the convex hull of its extreme points.

It is easily seen that for convex $K \subseteq \mathbb{R}^{n}$ and $A \subseteq \mathbb{R}^{n} \backslash K$ the set $K \cup \sigma_{K}(A)$ is always star-shaped, cf. Proposition 2.3. Thus it turns out that a compact set $S \subseteq \mathbb{R}^{n}$ is star-shaped if and only if there exists some nonempty compact and convex subset K of \mathbb{R}^{n} as well as some $A \subseteq S \backslash K$ with $S=K \cup \sigma_{K}(A)$, see Theorem 2.8. It should be noticed that in [10] we
have already proved the following similar characterization of convex sets: If K is compact and $\mathbb{R}^{n} \backslash K$ is connected, then K is convex if and only if $\sigma_{K}=\sigma$ is a closure operator.

The fact that σ_{K} is a closure operator for convex K is used repeatedly in the present paper; therefore we recall the short proof of this part of our previous characterization to make the paper self-contained, see Theorem 2.1.

2. Results and proofs

In what follows, assume $n \geq 1$. For two points $a, b \in \mathbb{R}^{n}$ with $a \neq b$ let

$$
\begin{equation*}
\overline{a b}:=\{a+\lambda \cdot(b-a) \mid 0 \leq \lambda \leq 1\} \tag{2.1}
\end{equation*}
$$

denote the closed line segment between a and b, while

$$
\begin{equation*}
s(a, b):=\{a+\lambda \cdot(b-a) \mid \lambda \geq 0\} \tag{2.2}
\end{equation*}
$$

means the ray with initial point a passing through b.
For $K \subseteq \mathbb{R}^{n}$ and $E:=\mathbb{R}^{n} \backslash K$, define the operator $\sigma_{K}: \mathcal{P}(E) \longrightarrow \mathcal{P}(E)$ by

$$
\sigma_{K}(A):=A \cup\left\{b \in E \backslash A \left\lvert\, \begin{array}{l}
\text { there exists some } a \in A \text { with } \tag{2.3}\\
\overline{a b} \cap K=\emptyset, \text { buts }(a, b) \cap K \neq \emptyset
\end{array}\right.\right\} .
$$

Thus $\sigma_{K}(A) \backslash A$ consists of those points of $E \backslash A$ which "may be seen from A against K ". We have the following basic result, cf. also [10].

Theorem 2.1. Assume that $K \subseteq \mathbb{R}^{n}$ is convex, and put $E=\mathbb{R}^{n} \backslash K$. Then $\sigma_{K}: \mathcal{P}(E) \longrightarrow$ $\mathcal{P}(E)$ is a closure operator; that means:
(H0) For all $A \subseteq E$ one has $A \subseteq \sigma_{K}(A)$.
(H1) For $A \subseteq B \subseteq E$ one has $\sigma_{K}(A) \subseteq \sigma_{K}(B)$.
(H2) For all $A \subseteq E$ one has $\sigma_{K}\left(\sigma_{K}(A)\right)=\sigma_{K}(A)$.
Proof. (H0) is trivial. Regarding (H1) we see that if $A \subseteq B \subseteq E$ and $b \in \sigma_{K}(A) \backslash B$, then there exists some $a \in A$ with $\overline{a b} \cap K=\emptyset$ but $s(a, b) \cap K \neq \emptyset$. Since also $a \in B$, we conclude that $b \in \sigma_{K}(B)$, and (H1) follows.
To verify (H2), assume $A \subseteq E$ and $e_{1} \in \sigma_{K}\left(\sigma_{K}(A)\right)$. We have to show that $e_{1} \in \sigma_{K}(A)$. If $e_{1} \notin \sigma_{K}(A)$, there exists some $e_{2} \in \sigma_{K}(A)$ with $\overline{e_{2} e_{1}} \cap K=\emptyset$ but $s\left(e_{2}, e_{1}\right) \cap K \neq \emptyset$. $e_{1} \notin \sigma_{K}(A)$ implies $e_{2} \notin A$, see Fig. 1. Therefore we have some $e_{3} \in A$ with $\overline{e_{3} e_{2}} \cap K=\emptyset$ but $s\left(e_{3}, e_{2}\right) \cap K \neq \emptyset$. Choose $x_{1} \in s\left(e_{2}, e_{1}\right) \cap K$ and $x_{2} \in s\left(e_{3}, e_{2}\right) \cap K$. Then we get $e_{1} \in \overline{e_{2} x_{1}}$ and $e_{2} \in \overline{e_{3} x_{2}}$ and thus also

$$
e_{1} \in \operatorname{conv}\left\{e_{2}, x_{1}\right\} \subseteq \operatorname{conv}\left\{e_{3}, x_{1}, x_{2}\right\}
$$

Hence there exists some $x_{3} \in \overline{x_{1} x_{2}}$ with $e_{1} \in \overline{e_{3} x_{3}}$. In particular, we have $x_{3} \in s\left(e_{3}, e_{1}\right)$. Since K is convex, we have $x_{3} \in K$ and thus also $s\left(e_{3}, e_{1}\right) \cap K \neq \emptyset$. Moreover, one has $\overline{e_{3} e_{1}} \cap K=\emptyset$, because otherwise there would exist some $x \in K$ with $e_{1} \in \overline{x x_{3}}$. However, this
is not possible, because K is convex and $e_{1} \notin K$. Altogether, we get $e_{1} \in \sigma_{K}\left(\left\{e_{3}\right\}\right) \subseteq \sigma_{K}(A)$, in contradiction to our hypothesis $e_{1} \notin \sigma_{K}(A)$.

Remark. In [10, Theorem 2.9] we proved also the following converse of Theorem 2.1: Assume that $K \subseteq \mathbb{R}^{n}$ is compact and that $E=\mathbb{R}^{n} \backslash K$ is connected. If, in addition, the operator $\sigma_{K}: \mathcal{P}(E) \longrightarrow \mathcal{P}(E)$ is a closure operator, then K is convex.

Figure 1
For a subset $K \subseteq \mathbb{R}^{n}$ and $A \subseteq E=\mathbb{R}^{n} \backslash K$ we put

$$
\begin{equation*}
\tau_{K}(A):=K \cup \sigma_{K}(A) . \tag{2.4}
\end{equation*}
$$

We have the following simple
Lemma 2.2. Assume K is a convex subset of \mathbb{R}^{n} with $K \neq \emptyset$. Then for all $a \in E=\mathbb{R}^{n} \backslash K$ we have

$$
\begin{equation*}
\operatorname{conv}(K \cup\{a\})=K \cup \sigma_{K}(\{a\})=\tau_{K}(\{a\}) . \tag{2.5}
\end{equation*}
$$

Proof. Since K is convex, we obtain

$$
\begin{aligned}
\operatorname{conv}(K \cup\{a\}) & =K \cup\{a\} \cup\{\lambda \cdot a+(1-\lambda) \cdot x \mid x \in K, 0<\lambda<1\} \\
& =K \cup\{a\} \cup\{f \in E \backslash\{a\} \mid f \in \overline{a x} \text { for some } x \in K\} \\
& =K \cup\{a\} \cup\{f \in E \backslash\{a\} \mid s(a, f) \cap K \neq \emptyset \text { and } \overline{a f} \cap K=\emptyset\} \\
& =K \cup \sigma_{K}(\{a\}) .
\end{aligned}
$$

Now we turn over to star-shaped sets. We have the following
Proposition 2.3. Assume K is a convex subset of \mathbb{R}^{n} and $K \neq \emptyset$. Then for every subset $A \subseteq E=\mathbb{R}^{n} \backslash K$, the set $\tau_{K}(A)=K \cup \sigma_{K}(A)$ is star-shaped; more precisely, every point $x \in K$ is a star-centre of $\tau_{K}(A)$.

Proof. Without loss of generality, assume that $A \neq \emptyset$. Suppose $x \in K$ and $y \in K \cup \sigma_{K}(A)$. Then we have $y \in K \cup \sigma_{K}(\{a\})$ for some $a \in A$; thus Lemma 2.2 implies

$$
\overline{x y} \subseteq K \cup \sigma_{K}(\{a\}) \subseteq K \cup \sigma_{K}(A)
$$

as claimed.

In the rest of this paper, we want to prove also some converse of Proposition 2.3.
In what follows, assume that $S \subseteq \mathbb{R}^{n}$ is compact and star-shaped. Moreover, let

$$
\begin{equation*}
K_{0}:=\operatorname{ck}(S):=\{x \in S \mid \overline{x y} \subseteq S \text { for all } y \in S\} \tag{2.6}
\end{equation*}
$$

denote the convex kernel of S. Assume that $K \subseteq K_{0}$ is compact and convex with $K \neq \emptyset$, and put

$$
\begin{equation*}
E:=\mathbb{R}^{n} \backslash K, d:=\operatorname{dim}(\operatorname{aff}(K)) \tag{2.7}
\end{equation*}
$$

where aff means the affine closure. Furthermore, vol $_{m}$ will denote the m-dimensional volume for $m \in \mathbb{N}$. Finally, for $p \in S \backslash K$ put

$$
\begin{gather*}
d(p):=\operatorname{dim}(\operatorname{aff}(K \cup\{p\})) \tag{2.8a}\\
v(p):=\operatorname{vol}_{d(p)}(\operatorname{conv}(K \cup\{p\})) \tag{2.8~b}\\
w(p):=\sup \left\{v(q) \mid q \in S \backslash K, p \in \sigma_{K}(\{q\})\right\}, \tag{2.8c}\\
D(p):=w(p)-v(p) \tag{2.8~d}
\end{gather*}
$$

Clearly, one has $d(p) \in\{d, d+1\}$ and $v(p) \leq w(p)$ for all $p \in S \backslash K$. Note that $p \in \sigma_{K}(\{q\})$ implies $d(p)=d(q)$ whenever $p, q \in S \backslash K . D(p)$ will be called the defect of p. We have

Lemma 2.4. For $q_{0} \in S \backslash K$, the following statements are equivalent:
(i) For all $x \in K$ and all $p \in S \backslash\left(K \cup\left\{q_{0}\right\}\right)$ one has $q_{0} \notin \overline{x p}$.
(ii) For all $p \in S \backslash\left(K \cup\left\{q_{0}\right\}\right)$ one has $q_{0} \notin \operatorname{conv}(K \cup\{p\})$.
(iii) For all $p \in S \backslash\left(K \cup\left\{q_{0}\right\}\right)$ one has $q_{0} \notin \sigma_{K}(\{p\})$.
(iv) $D\left(q_{0}\right)=0$.

Proof. The equivalence of (i) and (ii) is clear, because K is convex. Moreover, (ii) and (iii) are equivalent by Lemma 2.2.
(iii) \Rightarrow (iv) follows directly from (2.8 c) and (2.8 d).
(iv) \Rightarrow (iii): Assume there exists some $p \in S \backslash\left(K \cup\left\{q_{0}\right\}\right)$ with $q_{0} \in \sigma_{K}(\{p\})$. Then we have $\sigma_{K}\left(\left\{q_{0}\right\}\right) \subseteq \sigma_{K}(\{p\})$, because σ_{K} is a closure operator by Theorem 2.1. Moreover, one has $p \notin \sigma_{K}\left(\left\{q_{0}\right\}\right)$, because otherwise there would exist $x_{1}, x_{2} \in K$ with $\left\{p, q_{0}\right\} \subseteq \overline{x_{1} x_{2}} \subseteq K$. Thus, by Lemma 2.2 the compact sets conv $\left(K \cup\left\{q_{0}\right\}\right)$ and conv $(K \cup\{p\})$ satisfy conv $\left(K \cup\left\{q_{0}\right\}\right) \nsubseteq \operatorname{conv}(K \cup\{p\})$. However, this means $v\left(q_{0}\right)<v(p) \leq w\left(q_{0}\right)$ and thus $D\left(q_{0}\right)>0$, in contradiction to (iv).

Definition 2.5. A point $q_{0} \in S \backslash K$ is called an extreme point of S modulo K, if the four equivalent conditions of Lemma 2.4 are satisfied.

Let S_{0} denote the set of extreme points of S modulo K. We want to show that S_{0} is the uniquely determined minimal subset of S with $\tau_{K}\left(S_{0}\right)=S$. First we prove the following statement (see also [21, Theorem 6.2.17]).

Lemma 2.6. The maps v_{1} : aff $(K) \cap S \longrightarrow \mathbb{R}$ and $v_{2}: S \longrightarrow \mathbb{R}$ defined by

$$
\begin{align*}
& v_{1}(p):=\operatorname{vol}_{d}(\operatorname{conv}(K \cup\{p\})), \tag{2.9a}\\
& v_{2}(p):=\operatorname{vol}_{d+1}(\operatorname{conv}(K \cup\{p\})) \tag{2.9b}
\end{align*}
$$

are continuous.
Proof. For $p \in S$ one has

$$
\begin{equation*}
v_{2}(p)=\frac{1}{d+1} \cdot \operatorname{vol}_{d}(\operatorname{conv}(K)) \cdot d(p, \operatorname{aff}(K)) \tag{2.10}
\end{equation*}
$$

where $d(p$, aff $(K))$ means the distance from p to the affine subspace aff (K) of \mathbb{R}^{n}.
(The equality (2.10) holds also in case $\operatorname{aff}(K)=\mathbb{R}^{n}$; then one has $v_{2} \equiv 0$.) Thus v_{2} is continuous. In case of v_{1}, it suffices to prove:

For every $\varepsilon>0$ there exists some $\delta>0$ such that for all $p_{1}, p_{2} \in$ aff $(K) \cap S$ with $\left\|p_{1}-p_{2}\right\|<\delta$ one has $\left|v_{1}\left(p_{1}\right)-v_{1}\left(p_{2}\right)\right|<\varepsilon$.
Here and in the sequel, $\|\cdot\|$ means the Euclidean norm. Moreover, for $x_{0} \in \mathbb{R}^{n}$ and $r>0$, we put

$$
B\left(x_{0}, r\right):=\left\{x \in \mathbb{R}^{n} \mid\left\|x-x_{0}\right\|<r\right\} .
$$

Without loss of generality, we may assume that 0 lies in the relative interior of K; that means $\operatorname{aff}(K)$ is a linear subspace of \mathbb{R}^{n}, and for some $r_{0}>0$ one has

$$
\begin{equation*}
B\left(0, r_{0}\right) \cap \operatorname{aff}(K) \subseteq K \tag{2.11}
\end{equation*}
$$

Choose some $\xi>0$ such that for the compact set $S^{\prime}:=\operatorname{aff}(K) \cap S$ we have

$$
\begin{equation*}
\operatorname{vol}_{d}\left((1+\xi) \cdot S^{\prime}\right)-\operatorname{vol}_{d}\left(S^{\prime}\right)=\left((1+\xi)^{d}-1\right) \cdot \operatorname{vol}_{d}\left(S^{\prime}\right)<\varepsilon \tag{2.12}
\end{equation*}
$$

Finally, put $\delta:=\xi \cdot r_{0}$. Then for $p_{1}, p_{2} \in S^{\prime}$ with $\left\|p_{1}-p_{2}\right\|<\delta$ we have

$$
\frac{1}{1+\xi} \cdot p_{2}=\frac{1}{1+\xi} \cdot p_{1}+\frac{\xi}{1+\xi} \cdot\left(\frac{1}{\xi} \cdot\left(p_{2}-p_{1}\right)\right)
$$

as well as

$$
\left\|\frac{1}{\xi} \cdot\left(p_{2}-p_{1}\right)\right\|<\frac{\delta}{\xi}=r_{0}
$$

and thus $\frac{1}{1+\xi} \cdot p_{2} \in \operatorname{conv}\left(K \cup\left\{p_{1}\right\}\right)$ by (2.11). (See also Figure 2 in case $d=2$.) Therefore, we get $p_{2} \in(1+\xi) \cdot \operatorname{conv}\left(K \cup\left\{p_{1}\right\}\right)$ and thus

$$
\begin{aligned}
v_{1}\left(p_{2}\right)-v_{1}\left(p_{1}\right) & \leq \operatorname{vol}_{d}\left(\operatorname{conv}\left(K \cup\left\{p_{1}, p_{2}\right\}\right)\right)-\operatorname{vol}_{d}\left(\operatorname{conv}\left(K \cup\left\{p_{1}\right\}\right)\right) \\
& \leq \operatorname{vol}_{d}\left((1+\xi) \cdot \operatorname{conv}\left(K \cup\left\{p_{1}\right\}\right)\right)-\operatorname{vol}_{d}\left(\operatorname{conv}\left(K \cup\left\{p_{1}\right\}\right)\right) \\
& \leq\left((1+\xi)^{d}-1\right) \cdot \operatorname{vol}_{d}\left(S^{\prime}\right) \\
& <\varepsilon
\end{aligned}
$$

by (2.12). By exchanging the roles of p_{1} and p_{2}, we get also $v_{1}\left(p_{1}\right)-v_{1}\left(p_{2}\right)<\varepsilon$ as claimed.

Figure 2
Now we are able to prove the announced analogue of the well-known Krein-Milman Theorem.
Theorem 2.7. The set S_{0} of extreme points of S modulo K satisfies

$$
\begin{equation*}
\tau_{K}\left(S_{0}\right)=K \cup \sigma_{K}\left(S_{0}\right)=S \tag{2.13}
\end{equation*}
$$

If, moreover, $S^{\prime} \subseteq S \backslash K$ satisfies $\tau_{K}\left(S^{\prime}\right)=S$, then one has $S_{0} \subseteq S^{\prime}$. In other words, $S^{\prime}=S_{0}$ is the uniquely determined minimal subset of $S \backslash K$ satisfying $\tau_{K}\left(S^{\prime}\right)=S$.

Proof. Since $K \subseteq \operatorname{ck}(S)$, we have $\overline{x p} \subseteq S$ for all $x \in K$ and all $p \in S$ and thus $\tau_{K}\left(S_{0}\right) \subseteq S$. If, moreover, $S^{\prime} \subseteq S \backslash K$ satisfies $S_{0} \backslash S^{\prime} \neq \emptyset$, then, by the definitions of S_{0} and σ_{K}, one has $q_{0} \notin \sigma_{K}\left(S^{\prime}\right)$ for all $q_{0} \in S_{0} \backslash S^{\prime}$ and thus $\tau_{K}\left(S^{\prime}\right) \neq S$. It remains to prove that $S \backslash\left(K \cup S_{0}\right) \subseteq$ $\sigma_{K}\left(S_{0}\right)$. Assume $p \in S \backslash\left(K \cup S_{0}\right)$ and, according to (2.8 c), choose some sequence $\left(q_{m}\right)_{m \in \mathbb{N}}$ in $S \backslash K$ with $p \in \sigma_{K}\left(\left\{q_{m}\right\}\right)$ for all $m \in \mathbb{N}$ and $\lim _{m \rightarrow \infty} v\left(q_{m}\right)=w(p)$. Then there exists also some sequence $\left(x_{m}\right)_{m \in \mathbb{N}}$ in K as well as some sequence $\left(\lambda_{m}\right)_{m \in \mathbb{N}}$ in $[0,1]$ with

$$
\begin{equation*}
p=\lambda_{m} \cdot q_{m}+\left(1-\lambda_{m}\right) \cdot x_{m} \text { for all } m \in \mathbb{N} \tag{2.14}
\end{equation*}
$$

Since S and K are compact, we may assume that $\left(q_{m}\right)_{m \in \mathbb{N}}$ and $\left(x_{m}\right)_{m \in \mathbb{N}}$ converge to some $q \in S$ and some $x \in K$, respectively. Since $d(p)=d\left(q_{m}\right)$ holds for all $m \in \mathbb{N}$, Lemma 2.6 implies

$$
\operatorname{vol}_{d(p)}(\operatorname{conv}(K \cup\{q\}))=\lim _{m \rightarrow \infty} v\left(q_{m}\right)=w(p)>v(p)
$$

and thus $q \in S \backslash(K \cup\{p\})$ and $v(q)=w(p)$. Since also $p \neq x$, it follows that $\left(\lambda_{m}\right)_{m \in \mathbb{N}}$ converges, too. So one has $\lambda:=\lim _{m \rightarrow \infty} \lambda_{m} \in(0,1)$. Moreover, (2.14) implies

$$
\begin{equation*}
p=\lambda \cdot q+(1-\lambda) \cdot x \tag{2.15}
\end{equation*}
$$

and thus $p \in \sigma_{K}(\{q\})$. Since σ_{K} is a closure operator, any $q^{\prime} \in S \backslash K$ satisfying $q \in \sigma_{K}\left(\left\{q^{\prime}\right\}\right)$ also fulfils $p \in \sigma_{K}\left(\left\{q^{\prime}\right\}\right)$. Therefore, (2.8 c) yields

$$
w(q) \leq w(p)=v(q) \leq w(q)
$$

This means $D(q)=0$. Thus we get $q \in S_{0}$ and $p \in \sigma_{K}\left(S_{0}\right)$ as claimed.
By summarizing Proposition 2.3 and Theorem 2.7, we get
Theorem 2.8. Assume K is a compact and convex subset of \mathbb{R}^{n} with $K \neq 0$. Then for a compact set $S \subseteq \mathbb{R}^{n}$ with $K \subseteq S$, the following statements are equivalent:
(i) S is a star-shaped set with $K \subseteq c k(S)$.
(ii) Some subset $A \subseteq S \backslash K$ satisfies $S=K \cup \sigma_{K}(A)=\tau_{K}(A)$.

Figure 3
The final figures present two star-shaped sets. In Figure 3, the convex kernel K_{0} is marked, and $q_{1}, q_{2}, q_{3}, q_{4}$ are the extreme points modulo K_{0}. In Figure 4, the convex kernel consists only of $\{x\}$, and the union of the line segments $\overline{a_{1} a_{2}}$ and $\overline{a_{3} a_{4}}$ is the set of extreme points modulo $\{x\}$.

Figure 4

References

[1] Boltyanski, V.; Martini, H.; Soltan, P. S.: Excursions into Combinatorial Geometry. Springer, Berlin 1997.
[2] Breen, M.: A characterization of the kernel of a closed set. Proc. Amer. Math. Soc. 51 (1975), 431-433.

Zbl 0308.52003
[3] Brunn, H.: Über Kerneigebiete. Mathematische Annalen 73 (1913), 436-440.
[4] Cel, J.: Solution of the problem of combinatorial characterization of the dimension of the kernel of a starshaped set. Journal of Geometry 53 (1995), 28-36. Zbl 0831.52003
[5] Goodey, P. R.: A note on starshaped sets. Pacific J. Math. 61 (1975), 151-152.
Zbl 0298.52008
[6] Klee, V.: A theorem on convex kernels. Mathematika 12 (1965), 89-93.
Zbl 0137.41601
[7] Krein, M. G.; Milman, D. P.: On extreme points of regularly convex sets. Studia Math. 9 (1940), 133-138.

Zbl 0063.03360
[8] Martini, H.; Soltan, V.: A characterization of simplices in terms of visibility. Arch. Math. 72 (1999), 461-465.

Zbl 0941.52004
[9] Martini, H.; Soltan, V.: Combinatorial problems on the illumination of convex bodies. Aequationes Math. 57 (1999), 121-152.

Zbl 0937.52006
[10] Martini, H.; Wenzel, W.: A characterization of convex sets via visibility. Aequationes Math., to appear.
[11] McMullen, P.: Sets homothetic to intersections of their translates. Mathematika 25 (1978), 264-269.

Zbl 0399.52005
[12] Minkowski, H.: Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs. Gesammelte Abhandlungen, Band 2, Teubner, Leipzig 1911, pp.131-229.
[13] O'Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, Oxford 1987.

Zbl 0653.52001
[14] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications, Vol. 44, Cambridge University Press, Cambridge 1993.

Zbl 0798.52001
[15] Smitz, C. R.: A characterization of star-shaped sets. Amer. Math. Monthly 75 (1968), 386.
[16] Stavrakas, N.: A note on starshaped sets, (k)-extreme points and the half ray property. Pacific J. Math. 53 (1974), 627-628.

Zbl 0308.52007
[17] Toranzos, F. A.: Critical visibility and outward rays. Journal of Geometry 33 (1988), 155-167.

Zbl 0656.52006
[18] Toranzos, F. A.: Crowns. A unified approach to starshapedness. Rev. Un. Mat. Argentina 40 (1996), 55-68.

Zbl 0886.52006
[19] Toranzos, F. A.; Cunto, A. F.: Local characterization of starshapedness. Geom. Dedicata 66 (1997), 65-67. Zbl 0892.52002
[20] Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational Geometry, Eds. J. R. Sack and J. Urrutia, Elsevier 2000, 975-1031. Zbl 0941.68138
[21] Webster, R.: Convexity. Oxford University Press, Oxford-New York-Tokyo 1994. Zbl 0835.52001

Received September 26, 2001, revised version April 30, 2002

