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Abstract. Corner cut polytopes (or staircase polytopes) were first defined by
Shmuel Onn and Bernd Sturmfels in a computational commutative algebra context.
They owe their name to the fact that their vertices are in one-to-one correspondence
with certain partitions of natural numbers, so called corner cuts.
In this paper, we discuss some structural, nonetheless esthetic aspects of corner
cut polytopes. In the 2-dimensional case, we draw a connection between a natural
linear order on the vertices and a classical partial order on partitions. Furthermore,
we explore the relationship between corner cuts and the face structure of corner
cut polytopes.

1. Introduction

A corner cut of n in dimension d is a finite subset λ ⊂ Nd0, |λ| = n, that can be separated
from its complement by an affine hyperplane disjoint from Nd0. For such a corner cut, define
pλ :=

∑
λi∈λ
λi. The convex hull of all points pλ for λ a corner cut of n in dimension d is

called the corner cut polytope or staircase polytope. In our paper, we analyse the geometric
structure of corner cut polytopes.
Corner cuts and corner cut polytopes were first defined by S. Onn and B. Sturmfels

[3]. Their work was motivated in a computational commutative algebra context. They
show that the corner cuts of n in dimension d are in one-to-one correspondence with the
Gröbner bases of a certain ideal in the polynomial ring K[x1, . . . , xd], K an infinite field.
This correspondence follows from the fact, that the vertices of the corner cut polyhedron
P dn := conv

{∑
λi∈λ
λi|λ ⊂ Nd0, |λ| = n

}
are exactly the vertices of the corner cut polytope.

For more details, see [3] and for the more general k-set polytopes see also [2].
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There is various work on the number of corner cuts, which is equal to the numbers of
vertices of corner cut polytopes. Onn and Sturmfels give an upper bound for the number of
corner cuts for fixed dimension d in [3]. In [7] a lower and an upper bound are given, and for
dimension 2 it is known (see [1]) that the number of corner cuts of n is equal to Θ(n log n).
The focus of our paper is the geometric structure of corner cut polytopes. In Section 2

we recall basic definitions, mostly following [3].
In Section 3 we concentrate on 2-dimensional corner cut polytopes. We prove that the

dominance order (see [6, p.288]), a classical partial order on 2-dimensional staircases, i.e.
number partitions, is linear on the subset of corner cuts. This linear order coincides with the
edge structure of the corner cut polytopes.
In Section 4 we characterize corner cut polytopes in arbitrary dimension which are

pointed, i.e., which have a vertex on the diagonal x1 = x2 = · · · = xd.
In Section 5, we describe the one-skeleton of corner cut polytopes. Subsection 5.1 contains

an alternative description of edges in dimension 2 corner cut polytopes in order to simplify
the discussion for higher dimensional cases. This description also leads to a characterization
of cover relations in the dominance order restricted to corner cuts: we show that with respect
to the dominance order, there is a corner cut between two corner cuts λ and µ, if and only
if the symmetric difference of λ and µ (λ⊕ µ) lies on a line.
In Subsection 5.2 we give a necessary condition for two corner cuts in dimension d to

span an edge of the corner cut polytope.

2. Corner cut polytopes

In this section, we recall the most important definitions and properties. For further informa-
tion see [3].

Definition 2.1. A nonempty finite subset λ of Nd0 with the following property is called a
staircase: if u is in λ and v is componentwise smaller than u, then v lies in λ as well.

Staircases in dimension 2 correspond to number partitions written as Ferrer diagrams, (see
[5, p.29]). Those in dimension 3 correspond to plane partitions. We recall the definition of
plane partitions which is given in [4]:

Definition 2.2. Let π be an array π = {πi,j}i,j≥1, of nonnegative integers πi,j with finite
sum |π| =

∑
πi,j. If π is weakly decreasing in rows and columns, it is called a plane partition

of |π|. Zero entries are omitted in this array.

Definition 2.3. Let λ be a staircase. If there exists an affine hyperplane which separates the
points in λ from those in Nd0 \λ, λ is called a corner cut. The separating hyperplane is called
a separator.

Notation. Let
(Nd0
n

)
cut
, and

(Nd0
n

)
stair
, denote the set of corner cuts and staircases of cardinal-

ity n, respectively, in analogy of
(Nd0
n

)
denoting the set of n-element subsets of Nd0. Let λ be

an element of
(Nd0
n

)
stair
with λ = {v1, v2, . . . , vn}. We write

∑
λ for

∑n
i=1 vi.
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Definition 2.4. The polytope spanned by
∑
λ for λ in

(Nd0
n

)
cut
is called the corner cut polytope

Qdn, i.e.,

Qdn := conv

{∑
λ|λ ∈

(
Nd0
n

)

cut

}
.

Definition 2.5. The corner cut polytope Qdn has one vertex on each of the d coordinate axis.
These vertices define a facet, which we will call the cover of Qdn.

Lemma 2.6. All points
∑
λ for λ in

(Nd0
n

)
cut
are vertices of Qdn.

Proof. Let λ be a corner cut of n. It follows by Definition 2.3, that there exists a w ∈ Rd
and a number a ∈ R with vw < a for all v ∈ λ and vw > a for v ∈ Nd \ λ. Hence,

∑
λ is

the unique minimal argument of the linear function
{∑
µ|µ ∈

(Nd0
n

)
cut

}
→ R,

∑
µ 7→ w

∑
µ;

i.e., w
∑
λ is minimal, and therefore

∑
λ is a vertex of Qdn. 2

Remark. Analogous to the corner cut polytope, we can define the staircase polytope by

Qdn := conv

{∑
µ|µ ∈

(
Nd0
n

)

stair

}
.

This is the original definition of [3, p.29]. It is shown in [3, p.31], that the two polytopes

are the same, i.e.,
∑
µ is in the interior of the corner cut polytope Qdn for µ ∈

(Nd0
n

)
stair
but

µ /∈
(Nd0
n

)
cut
.

3. A linear order on corner cuts in dimension 2

Although corner cuts in dimension 2 do not seem to retain much of a mystery, we want to
touch on a certain surprising aspect. We show that the dominance order, a standard partial
order on number partitions, is linear on corner cuts.
First of all, we recall the definition of the dominance order, (see [6, p.288]).

Definition 3.1. Given two partitions of n, λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = · · · = λn =
0, and µ1 ≥ µ2 ≥ · · · ≥ µs > µs+1 = · · · = µn = 0, λi, µi denoting block lengths of
partitions, respectively row lengths in Ferrer diagrams. Then, λ � µ by dominance order iff
λ1 + λ2 + · · ·+ λi ≤ µ1 + µ2 + · · ·+ µi holds for all 1 ≤ i ≤ n.

Figure 1 shows the dominance order on partitions of 7, corner cuts depicted in black.

Theorem 3.2. The dominance order is linear on corner cuts, i.e., any two corner cuts are
comparable in the dominance order.

Proof. Let λ and µ be partitions of n, λ a corner cut, µ a staircase that is not comparable
to λ in the dominance order. Our goal is to show that µ can not be a corner cut.
If λ and µ can not be compared, there has to be a smallest index i with λi < µi (or λi > µi,

symmetrically). There is a second index j > i where the sides change and λ1 + λ2 + · · ·+ λj
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Figure 1: Partitions (corner cuts in black) of 7; arrows indicate “�”

gets strictly bigger than µ1 + µ2 + · · · + µj for the first time. For this, λj has to be strictly
bigger than µj. Because both, λ and µ, are partitions of n, λj+1 + · · ·+ λr has to be strictly
smaller than µj+1+ · · ·+µs. (In particular, there has to be at least one more row µj+1 in the
Ferrer diagram of µ.) Therefore, there exists an index k > j, λk < µk with λk possibly equal
to 0. Figure 2 shows λ with its separator and the points of µ described above. It is obvious,
that there is no separator for µ, and therefore µ can not be a corner cut. 2

j

k

i

Figure 2: Corner cuts λ and µ with separating lines

It is easy to see, that the second component of the vertices
∑
λ, λ ∈

(N20
n

)
cut
of corner cut

polytopes as well defines a linear order on the corner cuts. We show that the two orders
coincide.

Theorem 3.3. The reverse dominance order on corner cuts coincides with the order on
vertices of corner cut polytopes by second component.

Proof. Let λ and µ be two corner cuts with λ � µ, λ 6= µ, by dominance order. We have
to show that for the second components (pλ)2 and (pµ)2 of the corresponding vertices of the

corner cut polytope, (pλ)2 > (pµ)2 in the natural linear order on N. Hence,
((N20
n

)
cut
,�
)
→

(R,≥) , λ 7→ (pλ)2 = (
∑
λ)2 is an order preserving bijection, which completes our proof.
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By definition of the dominance order:

(pλ)2 = λ2 + 2λ3 + · · ·+ (n− 1)λn
= (λ2 + λ3 + · · ·+ λn) + (λ3 + · · ·+ λn) + · · ·+ (λn)

> (µ2 + µ3 + · · ·+ µn) + (µ3 + · · ·+ µn) + · · ·+ (µn)

= µ2 + 2µ3 + · · ·+ (n− 1)µn
= (pµ)2. 2

Remark. The edges of a corner cut polytope in dimension 2 can be read from the Ferrer
diagrams of its vertices.
Also, there is a criterion for deciding if there is a corner cut between two others with

respect to the dominance order, see Corollary 5.5.

4. Pointed corner cut polytopes

In this section, we characterize corner cut polytopes Qdn which have a (unique) vertex on the
diagonal x1 = x2 = · · · = xd.

Definition 4.1. For a fixed k ∈ N, the hyperplane
∑d
i=1 xi = k is called a layer Lk of Q

d
n, if

there is at least one vertex of Qdn coincident with this plane.

There is a natural linear order on these layers:

Definition 4.2. For Lk1 , Lk2 layers of Q
d
n, define: Lk1 < Lk2, iff k1 < k2. Thus, the minimal

layer is the layer with the smallest distance to the origin. We call the face on this minimal
layer the central face.

An interesting question is, whether a polytope has one or more vertices on the central face.

Definition 4.3. If a corner cut polytope has only one vertex on its central face, we call the
polytope pointed.

First we characterise pointed 2-polytopes.

Definition 4.4. A corner cut λ in dimension 2 is called symmetric, if the Ferrer diagram
and its transpose are identical.

Lemma 4.5. Given a corner cut λ in dimension 2. Then,
∑
λ is a point on the diagonal if

and only if λ is symmetric.
In particular, each Q2n can have at most one vertex on the diagonal, depending on n.

Proof. The “if-part”, stating that
∑
λ has equal components if λ is symmetric, needs no

proof. We show the “only-if-part”: If λ is a non-symmetric corner cut, its transpose (λ? 6= λ)
is a corner cut as well. Hence, we have two different vertices on the same layer which are
symmetric with respect to the diagonal. In particular, none of them lies on the diagonal. 2
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Lemma 4.6. A corner cut polytope Q2n is pointed if and only if n is of the form:

n =

(
k + 1

2

)
for some k ≥ 1, k ∈ N.

Proof. Symmetric corner cuts have separators which are orthogonal to the diagonal. There-
fore, the symmetric corner cuts are those with points in a isosceles right-angled triangle.
Figure 3 shows this principle. Therefore, the parameters n allowing for a symmetric corner
cut are integers ak with a1 = 1 and ak = ak−1 + k, the explicit formula being n =

k(k+1)
2
. 2

Figure 3: Symmetric corner cuts in dimension 2

For the d-dimensional case, we need the following notion of symmetry.

Definition 4.7. Let λ be a staircase. If with p in λ, every permutation of the coordinates of
p is in λ as well, λ is called totally symmetric.

Lemma 4.8. Given a corner cut λ in dimension d. Then,
∑
λ lies on the diagonal if and

only if it is totally symmetric.

Proof. Only the “only-if-part” is non-trivial:
Let λ be a corner cut in dimension d, which is not totally symmetric, but with

∑
λ on the

diagonal. For each k, λ|xj=k is a corner cut in dimension (d − 1). Choose a coordinate j
such that the restrictions of the separator S to the planes xj = k (S|xj=k) are not for every
k orthogonal to the diagonals x1 = · · · = xj−1 = xj+1 = · · · = xd, xj = k. Since λ is not
totally symmetric, there is a smallest index i with the separator of λ|xj=i not orthogonal to
the restricted diagonal. To compensate this (

∑
λ is on the diagonal), there exists an index s

with the separator of λ|xj=s not orthogonal to this line either, and S|xj=s not parallel to
S|xj=i. Two disjoint (d− 2)-dimensional affine subspaces in Rd which are not parallel cannot
lie in a common (d−1)-dimensional affine hyperplane in Rd for d ≥ 3. This is a contradiction
to λ being a corner cut. 2

It is easy to see, that we get totally symmetric d-dimensional corner cuts for corner cut sizes
of the form

(
k+d−1
d

)
, namely the filled “d-pyramids” of integer points over the layer Lk−1 of

Qdn.

Theorem 4.9. A corner cut polytope Qdn is pointed, if and only if n equals
(
k+d−1
d

)
for some

k ≥ 1 in N.
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5. The one-skeleton of corner cut polytopes

In this section, we study the one-skeleton of corner cut polytopes. Although we have already
done this for dimension 2, we present a different aspect of the faces of 2-dimensional corner
cut polytopes, providing the idea of how to generalise the description to higher dimensions.
For dimensions 3 and higher, we obtain a necessary condition for two corner cuts to span an
edge of the corner cut polytope.

5.1. Face structure in dimension 2 revisited

Definition 5.1. For d-dimensional corner cuts λ and µ call the set of integer points λ \ µ∪
µ \ λ the symmetric difference λ⊕ µ of λ and µ.

Theorem 5.2. Let λ and µ be 2-dimensional corner cuts, not both yielding cover points.
Then, λ and µ correspond to vertices that span an edge of the corner cut polytope if and only
if the points in λ⊕ µ lie on a line.

To prove this theorem, we need the following lemmas:

Lemma 5.3. Let λ and µ be two corner cuts with λ⊕ µ on a line g.
Let λ and µ be given by λ = {v1, . . . , vn−k, vn−k+1, . . . , vn}, and
µ = {v1, . . . , vn−k, vn+1, . . . , vn+k}. Furthermore, let g be given by the equation w3x = a3;
obviously, w3vi ≤ a3 for i = 1, . . . , n− k.
If there exist integer points p1, . . . , ps 6= v1, . . . , vn−k below g, then there exists a point p ∈
{p1, . . . , ps} with

2p− vn 6= pj, j = 1, . . . , s or p2 <
(vn)2 + (vn+1)2

2
,

and

2p− vn+1 6= pj, j = 1, . . . , s or p1 <
(vn)1 + (vn+1)1

2
.

Proof. There are separators w1x = a1 and w2x = a2 for λ and µ, respectively:

w1v < a1 for v ∈ {v1, . . . , vn} , w1v > a1 for v ∈ {vn+1, . . . , vn+k} ,

w2v < a2 for v ∈ {v1, . . . , vn−k, vn+1, . . . , vn+k} , w2v > a2

for v ∈ {vn−k+1, . . . , vn} ,

w3vn−k+1 = . . . = w3vn = w3vn+1 = . . . = w3vn+k = a3.

We prove Lemma 5.3 by contradiction. Suppose that for all points pi, i = 1, . . . , s, either

2pi − vn = pj, for some j 6= i and (pi)2 ≥
(vn)2 + (vn+1)2

2
,

or

2pi − vn+1 = pj, for some j 6= i and (pi)1 ≥
(vn)1 + (vn+1)1

2
.
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Figure 4: Corner cuts λ and µ with separators

Then we know that all points pi, i = 1, . . . , s lie in one of the triangles ∆1, depicted in
Figure 5. The triangles are bounded by g but do not contain g. Because either (2pi − vn)
or (2pi − vn+1) coincides with another point pj, which also lies in ∆1, the points have to
lie in the triangles ∆2. This argument can be iterated. We conclude that the points pi lie
in the intersection of the triangles ∆k for k ≥ 1, which is empty, see Figure 5. We get a
contradiction. 2
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lacem

en
ts

vn

vn+1

∆1

∆2

∆3

∆4

Figure 5: The series ∆i, which leads to the empty set

Lemma 5.4. There exists no integer point p different from v1, . . . , vn−k with w3p < a3.

Proof. Again, we prove the lemma by contradiction:
Let p1, . . . , ps 6= v1, . . . , vn−k be points with w3pi < a3. We know that w1pi > a1, w2pi > a2,
and w3pi < a3 for i = 1, . . . , s. We call regions above one of the lines w1x = a1, w2x = a2
and w3x = a3 and below one of the others, the forbidden regions. Forbidden, because there
can not be other integer points in these regions than vn−k+1, . . . , vn+k and p1, . . . , ps. Points
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(2pi − vn) and (2pi − vn+1) are integer points for all i ∈ {1, . . . , s}, and

(2pi − vn)w1 > a1 , (2pi − vn)w3 < a3 and

(2pi − vn+1)w2 > a2 , (2pi − vn+1)w3 < a3.

Therefore, (2pi− vn) and (2pi− vn+1) are integer points in the forbidden region, but possibly
outside the first quadrant or (2pi − vn) = pj or (2pi − vn+1) = pj for some j 6= i. W.l.o.g.
let (vn)1 < (vn+1)1 and (vn)2 > (vn+1)2. It follows, that (vn)1 < (pi)1 < (vn+1)1 and
(vn)2 > (pi)2 > (vn+1)2. With Lemma 5.3, there exists a point p ∈ {p1, . . . , ps} with

2p− vn 6= pj for j = 1, . . . , s or p2 <
(vn)2 + (vn+1)2

2
,

and

2p− vn+1 6= pj for j = 1, . . . , s or p1 <
(vn)1 + (vn+1)1

2
.

Case 1: p2 ≥
(vn)2+(vn+1)2

2
(⇒ 2p− vn 6= pj for j = 1, . . . , s).

Then (2p− vn)1 > (vn)1 ≥ 0 and (2p− vn)2 ≥ (vn+1)2 ≥ 0. Therefore, (2p− vn) is in the first
quadrant and in the forbidden region, which gives us a contradiction.

Case 2: p1 ≥
(vn)1+(vn+1)1

2
.

Then (2p− vn+1)1 ≥ (vn)1 ≥ 0 and (2p− vn+1)2 > (vn+1)2 ≥ 0, analogously.

Case 3: p1 <
(vn)1+(vn+1)1

2
and p2 <

(vn)2+(vn+1)2
2

.

The point q = ((2p − vn)1, (vn+1)2) is an integer point in the first quadrant, and q 6=
vn−k+1, . . . , vn+k, p1, . . . , ps.

(2p− vn)2 = 2p2 − (vn)2 < (vn+1)2
(2p− vn)w1 > a1

=⇒ qw1 = (2p− vn)1w11 + (vn+1)2w12
(w12≥0)

≥ (2p− vn)1w11 + (2p− vn)2w12 = (2p− vn)w1 > a1

(2p− vn)1 < (vn+1)1

vn+1w2 < a2

=⇒ qw2 = (2p− vn)1w21 + (vn+1)2w22
(w21≥0)

≤ (vn+1)1w21 + (vn+1)2w22 = vn+1w2 < a2

Therefore, (2p− vn) is in the forbidden region, which leads to a contradiction. 2

Proof of Theorem 5.2. We start with the “only-if-part”:
Let λ and µ be two adjacent corner cuts, not both on the cover. Let λ \ µ = {λ1, . . . , λs}
and µ \ λ = {µ1, . . . , µs}. There exists a z ∈ R2+ with z

∑
λ = z

∑
µ the unique minimum

on corner cuts, i.e., z
∑
ρ > z

∑
λ for ρ a different corner cut, and z

∑
ρ ≥ z

∑
λ for ρ a
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staircase. W.l.o.g., zλ1 ≤ . . . ≤ zλs and zµ1 ≤ . . . ≤ zµs.
If we remove λs from λ and add µ1 to it, we get a staircase, and because of the minimality,
zµ1 ≥ zλs. It follows, that zλ1 ≤ . . . ≤ zλs ≤ zµ1 ≤ . . . ≤ zµs. Since

∑s
i=1 λi =

∑s
i=1 µi , it

follows that zλ1 = · · · = zλs = zµ1 = · · · = zµs. Hence, λ1, . . . , λs and µ1, . . . , µs lie on a
common line.

Remark. The line g is parallel to a supporting hyperplane of the edge (
∑
λ,
∑
µ).

We prove the “if-part” using Lemma 5.4:
We know that there is no integer point p 6= v1, . . . , vn−k below g. It is also easy to see,
that there can not be a corner cut ρ 6= λ, µ with v1, . . . , vn−k ∈ ρ and all points p ∈ ρ with
p 6= v1, . . . , vn−k on g. W.l.o.g., w3v1 ≤ w3v2 ≤ · · · ≤ w3vn−k. We distinguish two cases:

Case 1: If ρ is a corner cut with {v1, . . . , vn−k} in ρ, at most k − 1 points on g and at
least one above g, then, w3

∑
ρ > w3

∑n−k
i=1 vi + (k − 1)a + a = w3

∑
λ. (Analogously,

w3
∑
ρ > w3

∑
µ).

Case 2: Let ρ be a corner cut with at most {v1, . . . , vn−k−1} in ρ, and the rest of the points
on g or above. It is easy to see, that w3

∑
ρ ≥ w3

∑n−k−1
i=1 vi + (k + 1)a3 > w3

∑n−k−1
i=1 vi +

ka3 + w3vn−k = w3
∑
λ. Therefore,

∑
λ and

∑
µ are the unique minima of the function{∑

ρ|ρ ∈
(N2
n

)
cut

}
→ R,

∑
ρ → w3

∑
ρ. Hence, they form a face. 2

The following corollary is a consequence of Theorem 5.2.

Corollary 5.5. In dimension 2, there is at least one corner cut ρ between two corner cuts
λ and µ with respect to the dominance order, if and only if the points in λ⊕ µ span a plane.

5.2. A necessary condition for edges

Theorem 5.6. Let λ and µ be corner cuts in dimension d, d ≥ 3, not both vertices of the
cover. They can be adjacent as vertices of the corner cut polytopes only if the points in λ⊕µ
lie in a common (d− 2)-dimensional affine subspace.

Proof. Let λ and µ be adjacent corner cuts. Then, there is a z ∈ Rd+ with z
∑
λ = z

∑
µ

the unique minimum of the function {
∑
ρ|ρ ∈

(Nd
n

)
cut
} → R,

∑
ρ → z

∑
ρ. Hence,

z
∑
ρ > z

∑
λ for ρ 6= λ, µ a corner cut, and z

∑
ρ ≥ z

∑
λ for ρ a staircase. Let

λ \ µ = {λ1, . . . , λs}, w.l.o.g., zλ1 ≤ . . . ≤ zλs,

µ \ λ = {µ1, . . . , µs}, w.l.o.g., zµ1 ≤ . . . ≤ zµs.

If we remove λs from λ, and add µ1 to it, we get a staircase, and because of the minimality,
zµ1 ≥ zλs. Therefore we get

zλ1 = · · · = zλs = zµ1 = · · · = zµs = a,

and λ ⊕ µ lie on an affine hyperplane E, orthogonal to z (E : zv = a). Define p1 to be the
barycenter of λ1, . . . , λs, p2 the barycenter of µ1, . . . , µs, and g the line coincident to p1 and
p2; (p1, p2) = g. All the points below E lie in λ ∩ µ, since if not, there would be a smaller
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staircase, which is a contradiction. Also, all the points above E are neither in λ nor in µ,
with an analogous argument. Let w be a vector orthogonal to g in E and define F to be a
plane containing g and orthogonal to w. Assume the points λ ⊕ µ span the whole (d − 1)-
dimensional affine hyperplane E, then we know that not all points lie on the hyperplane F .
Take s points p1, . . . , ps on E, with wpi as small as possible. These points form a corner

cut in the hyperplane E, and together with λ ∩ µ a corner cut ρ in
(Nd
n

)
. Hence, λ, µ, and ρ

are three different corner cuts with z
∑
ρ = z

∑
λ = z

∑
µ, which is a contradiction to the

unique minimality. 2

6. Conclusions and problems

The main results in this article are a linear order of corner cuts in dimension 2, a characteri-
zation of pointed corner cut polytopes, and a necessary condition for two corner cuts in any
dimension to span an edge of the corner cut polytope.
It seems to be a quite intricate problem to prove a condition for edges that is necessary

and sufficient.
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